
SOVIET PHYSICS JETP VOLUME 20, NUMBER 2 FEBRUARY, 1965 

PROBABILITY OF A NON-ADIABATIC TRANSITION NEAR THE TURNING POINT 

V. K. BYKHOVSKil, E. E. NIKITIN, and M. Ya. OVCHINNIKOVA 

Institute of Chemical Physics, Academy of Sciences, U.S.S.R. 

Submitted to JETP editor March 10, 1964 

J. Exptl. Theoret. Phys. (U.S.S.R.) 47, 750-756 (August, 1964) 

It is demonstrated that the quasi-classical and the quantum-mechanical treatment are com­
pletely equivalent for the case of two linear electron terms connected by a constant interac­
tion matrix element. Formulae are obtained for the transition probability in various limiting 
cases. Their validity embraces the greater part of the range of the two characteristic param­
eters, E and b. In the intermediate range of E and b the system of coupled wave equations 
is integrated numerically. 

THE evaluation of the probability of a non-adia­
batic transition in the vicinity of quasi-crossing 
points of electronic terms is the fundamental prob­
lem in the calculation of the cross section of in­
elastic atomic collisions, of the rate of radiation­
less transitions in complicated molecules, etc. In 
the general case the problem reduces to the solu­
tion of a system of coupled second order wave 
equations for the wave function describing the nu­
clear motion. At the present time even for only 
two coupled levels a general solution has been ob­
tained only for the case where the distance between 
the point of the term crossing and the turning point 
is sufficiently large. [1] This condition is fre­
quently violated for slow atomic collisions. It is 
thus necessary to find the transition probability 
for the case where the turning point and the cross­
ing point are close together. 

The simplest way to perform such a calculation 
is in the classical approximation. [2] There the mo­
tion of the nuclei is treated classically by introduc­
ing a kind of mean trajectory whose parameters 
correspond to a certain average of the character­
istics of the two considered electronic terms. In 
the following we shall consider a situation arising 
typically in slow atomic collisions, viz., the case 
of two linear terms which cross in zero-order ap­
proximation and whose interaction is given by a 
constant matrix element. The given one-dimen­
sional treatment can immediately be generalized 
to the case of three -dimensional scattering in a 
central field. 

1. CONNECTION BETWEEN THE CLASSICAL 
APPROXIMATION AND THE EXACT QUAN­
TUM MECHANICAL SOLUTION FOR TWO 
STATES 

The system of coupled wave equations has the 
form 

n2 d2Ut 
Zm dx2 + (E + F 1x) u 1+ au 2 = 0, 

n2 d2u2 
Zm dx2 + (E + F 2x) U2 + au1 = 0. (1) 

Here a is the interaction matrix element, F 1 and 
F 2 are the forces at the point x = 0 where the 
terms cross in zero order approximation, and 
E = mv 2/2 is the energy measured from that point. 
For the following it is convenient to introduce the 
mean force 

F == (F!F2) 1;,, 

and also the quq,ntities 

(2) 

E' = 2mE I fl2, F;' = 2mF; I fl2, a' = 2ma I fl2• (3) 

We try to obtain a solution of (1) in terms of the 
following contour integral: 

( ) 1 \ [·k . F 1 ' + F2' ( k3
3 -E'k)] u; x = .. ,r- ~ exp 1 .x - 1 ZF , F , 

r n 1 1 2 

1 
X ,,r- q>; (k) dk, 

r F;' 
(4) 

where l is a contour such that at its endpoints the 
integrand vanishes. The functions c:p i ( k) then have 
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to obey the equation 

. dcp1 l'l.F' a' 
l (JJi' = 2Fl'F2' (k2- E') IPl- (Fl'F2')'i• IP2• 

-~ l'l.F ~ 
1 dk=- 2F1'F2' (k2 -E')cp2 - (F1'F2')'J, cp11 

l'l.F' = F2' -F1'>0. (5) 

The adiabatic approximation for the functions q; i ( k) 
is obtained from this system after diagonalization 
of the right-hand side of (5). In that approximation 
no transitions occur between the terms. The nuclei 
then move on the deformed terms [in the variables 
z, E and b the adiabatic splitting between the terms 
equals to the square root in the integrand of (13b) ). 

Introducing new functions and a new argument by 

Ai::=cp;exp [± ~ i(F'f21'l.F' ( ~3 -E'k)], t =; k, (6) 

we obtain from (5) the following system of equa­
tions, which is identical with the equations of the 
classical approximation: [ 2] 

.· a [·~l'l.Fx(t) J .· lA 1 = - 1i: exp l ~ 1i dt A 2 , lA 2 

a [ . \' l'l.Fx (t) J 
= -Ti: exp - l .) 1i dt A1 ; 

x(t) = Ft2 /2m- mv2 I 2F. (7) 

The main terms of the asymptotic expansion of 
q; i (or Ai ) can be obtained by solving (5) with the 
assumption ~FIx ( t) I » a; this yields 

IP1,2 ~ C1,2 exp [ =F ~ i (F')-'l.l'l.F' ( ~3 
- E'k)]. (8) 

Here the constants C1 and C2 depend on the ar­
gument of k at which I k I - oo • Let c; and c; 
be the values of these constants for k- + oo and 
C1 and C2 their values for k- - oo. Inserting 
(8) in (4) and investigating the asymptotic behavior 
of Ui (x) as I xI - oo one finds that the Ui (x) are 
exponentially damped only if one takes for the con­
tour l a straight line parallel to the real axis and 
shifted into the lower half -plane of k. Then for 
x- + oo the asymptotic behavior of ui (x) is de­
termined by the two saddle points k0 = ± (Fix + E ') 112 

in (3). As x- + oo we obtain I k0 I - oo; the use of 
the asymptotic solutions (8) instead of the exact 
functions <Pi ( k) is thus justified. Evaluation of (4) 
for x - + oo yields 

Un(x)~iCn+(Fn'x)-'l•exp[ ~ i(Fn')'l•x'l•+ i:] 
+ iCn-(Fn'x)-'l•exp [- ~ i (Fn')'l•x'/,_ i: J, n = 1, 2. 

(9) 

The boundary conditions for the non -adiabatic 
transitions are as follows: unit incoming flux in 
state 1 and no incoming flux in level 2, i.e., c~ = 0 
and I Cil = 1. One sees from the asymptotic ex­
pression (8) that I c{ I = I <Pi ('F oo) I, i.e., I cf 12 

= I Ai ( 'F oo ) 12• Thus the system of wave equations 
(1) together with the indicated boundary conditions 
is fully equivalent to the system (5) with initial 
conditions A2(- oo) = 0 and I A1 (- oo) I = 1. At the 
same time the system (5) together with these ini­
tial conditions corresponds exactly to the problem 
of non -adiabatic transitions formulated in the clas­
sical approximation. [2] The probability of non­
adiabatic transitions is given in any calculation 
(classical or quantum-mechanical) by P 12 

= I A2 ( + 00 ) 12. 
The validity of the previously used classical 

approximation [2] was shown only for small values 
of ~F /F. It follows from the above discussion 
that this approximation is valid in fact for arbitrary 
values of ~F/F if one takes the value 1> (F1F 2 )11 2 

= F for the force which determines the classical 
trajectory. The only limitation is the requirement 
that F be real; for F 1F 2 < 0 the system (5) is 
non-Hermitian. This is not surprising since in 
this case the non -adiabatic transition corresponds 
to a transition across a repulsive barrier (or a 
tunnelling through it), where the analogy with a 
classical motion is completely lost; the current 
conservation equation then acquires an entirely 
different form. 

2. FORMULAE FOR THE TRANSITION PROBA­
BILITY IN DIFFERENT LIMITING CASES 

The system of equations for the wave functions 
describing the nuclear motion contains three di­
mensionless parameters which can be constructed 
from the four quantities E, F 1, F 2, and a. Never­
theless the transition probability depends only on 
two dimensionless parameters. It is convenient 
to choose for these the quantities E = E~F/2aF 
and b = 4an-1 (ma/F~F )112 (these definitions co­
incide with those of [ 2J). If we introduce the di­
mensionless quantity T = 2at/li, the system (5) 

takes the form 

idA1,2 I dT = 1!2 exp [ +i(T3 I 3b2 - eT) )A2,1. (10) 

Let us trace through the way in which we can 
obtain from (10) the well-known Landau-Zener 
equation. [4 ] For that it is necessary that the sta-

1 )This fact was noted by Sayasov['] for the case of an ex­
ponentially small transition probability. However, it must be 
noted that the expression given in that paper for the pre­
exponential factor is valid only for the condition o >> 1. 
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tionary phase points T = ± b€1/2 in the exponent of 
(10) be sufficiently far apart so that the function 
f( T ) = r 2 /3b2 - ET can be represented at both 
places by E112b - 1 ( T ± b€112 ) + const. Then the 
system (10) is equivalent to a twice repeated tran­
sit through the nonadiabaticity region with linear 
crossing zero-order terms. After averaging over 
the phase difference f(b£ 112 ) - f(- b£1/2 ) between 
the two transition points we then obtain 

pi2 = 2e-2n0 ( 1 - e-2n0)' 

where o = b/8£112• 

(11) 

The conditions requiring a large phase differ­
ence and a small non -adiabatic region compared 
with the distance between the points of stationary 
phase have the form 

S = be%~1, e~i. (12) 

These conditions, which determine the region of 
validity of the Landau-Zener formula, are consid­
erably broader than the conditions contained in the 
literature. [3] The earlier derivations of the 
Landau-Zener formulaC4, 5J assume that the turn­
ing points at both levels are far removed from the 
crossing points. In fact, the formula is valid also 
in those cases where the conditions for a quasi­
classical motion can be violated. In particular, 
Eq. (11) is valid at all energies E in the case 
where two zero-order linear terms cross and one 
of the terms has zero slope. [G] 

By solving the system (10) we find for the prob­
ability P 12 at small and large values of the param­
eter b the expressions [2] 

P 12 = nb'hCD2 (-eb'l'), b~ 1, (13a) 

{ ~. 

P 12 = B exp 2 Re ib S [1 + (z2 - e) 2 ]'1•dz}, b ~ 1, (13b) 
0 

where <I> is the Airy function. In Eq. (13b) the pa­
rameter ~ 0 denotes that root of the integrand clos­
est to the real axis. The relation (13a) follows 
from usual perturbation theory for the expansion 
in terms of the small parameter b; the expression 
(13b) is obtained from the adiabatic perturbation 
theory. The pre-exponential factor B in (13b) 
should be obtained by solving the system (10) in the 
vicinity of the zero of the integrand in (13b). In the 
considered case there are four such points. They 
are symmetrical about both the real and the im­
aginary axis of z. The condition b » 1 indicates 
in all cases except for E « 1 that the phase dif­
ferences between these points is sufficiently large 
so that one may neglect interference between the 
probability amplitudes. Then one does not have 
to solve the corresponding equations, since an 

analogous situation obtains in the well known 
Landau-Zener case, where B = 2. 

The computation of B for the cases b » 1 and 
E « - 1 requires special discussion. Physically, 
it is clear that for large negative E (where the 
nonadiabatic transition occurs by tunnelling from 
below the crossing point) both approximation meth­
ods (the adiabatic perturbation theory and the per­
turbation theory for small b) must lead to the same 
result. For this to be true one has to choose for 
the coefficient B the value 1rb/ 4£1/2• [ 2] This dif­
fers from the above value 2 for the following rea­
sons. For E « - 1 two branch points of the inte­
grand of (13b) approach each other so that it is not 
possible to neglect the interference between the 
probability amplitudes. As E - - oo these points 
move in the z -plane along the imaginary axis; 
their arguments being then equal to 1r/2 
± arg ( i + E ) 112• 

In order to account fully for the interference 
one has to solve the system (5) in the vicinity of 
the indicated zeros. C7J Then the system (5) leads 
to the second -order equation for the parabolic 
cylinder functions. Omitting the intermediate 
steps we give directly the final expression for B, 
which is valid for E « - 1 and I E j112b1/ 3 » 1 
(i.e., the conditions where one can limit oneself 
to the contributions from only one pair of the 
branch points ) : 

B = 2ncS[r(1- b)]-2b-2oe2o, 6 = b /8jej'"· (14) 

One can neglect the interference if it is permis­
sible to average B over a small energy interval 6.€ 
by replacing rapidly oscillating factors by their av­
erage values. Transforming the r function in (14) 
by means of the formula r (x) r (1 -x) = 1r/sin 1rx 
we find 

B = 2n-1b sin2 nc'lf2 ( 6) e206-26• (15) 

The averaging over the oscillations can be per­
formed if 0 » 1. When approximating r ( 0 ) by its 
asymptotic expression we find upon averaging that 
B = 2. In the opposite case, for o « 1, it follows 
from (14) that B = 21ro. This way we finally obtain 
these expressions for B: 

B = 2 for e > 0, b ~ 1 

and e~-1, b~8jej'i•, (16a) 

B = nb/4jej'/, for e~-1, b~8jej'i•. (16b) 

It is of interest to point out that the parameter o 
coincides with Massey's parameter ~, which for the 
present problem is ~ = 2a6.Z/tiv, where v is the 
velocity of the transition through the region of 
non-adiabaticity, 2a is the minimum in the split-
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ting of the terms, and t::.l is a characteristic di­
mension of the region. For linear zero -order 
terms the terms actually differ considerably from 
the linear terms over the interval t::.l ~ 2al t::.F. 
From this follows that ~ ~ a 2 I t::.Ffiv = 6. This 
way we see that the usual perturbation theory is 
applicable for the computation of the transition 
probability at large velocities v independently 
of whether the transition occurs above the bar­
rier (a 2 I t::.Ffiv « 1) or by tunnelling (a 2 I t::.Fn I iv I 
« 1 ). We further note that the parameter S = e:b213 

has the meaning of a dimensionless distance (in 
units of n) between the crossing point and the 
turning point on the average trajectory [in the 
sense of (2)]. 

3. THE GENERAL DEPENDENCE OF THE TRAN­
SITION PROBABILITY ON THE ENERGY AND 
ON THE FORM OF THE ADIABATIC TERMS 

The approximate expressions for the transition 
probability given above allow the evaluation of P 12 

in a very wide region of the variables e: and b. In 
Fig. 1 we have shown the region in the ( e:, b) plane 
where the different expressions for P 12 are ap­
plicable: 

1. In the region I, for b « 1, formula (13a) 
holds (the figure shows the region b < 113 ). 

2. In the region II, for S » 1 and e: » 1, the 
Landau-Zener formula is applicable. However, it 
should be kept in mind that for S » 1 and E ~ 1 
the transition probability is exponentially small 
and can be computed from (13b) with B = 2. There­
fore, one can use in the whole region II the Landau­
Zener formula with an exponent given by (13b). In 
the figure this region corresponds to the part in 
the ( e:, b) plane where e:b213 > 3. In addition, the 

FIG. 1. Regions of applicability of the diverse limiting 
formulae for the probability of a non-adiabatic transition. 

-t,O ·1,0 0.0 1,0 

FIG. 2. Influence of the turning point on the probability 
of a non-adiabatic transition, P 12 • Curve 1: the function 11 (E), 
which determines the transition probability for the case of 
exponentially small P 12 [see Eq. (18)]; Curve 2: result of the 
Landau-Zener approximation (the turning point is not taken 
into account). 

curve 27T6 = ln 2 is also shown; this is the locus 
for the maximum of P 12 which then has the value 
11 n 
12· I, 

3. In the region III with E « 1, I S I » 1 the 
transition probability is exponentially small. It 
can be computed from (13b) with a pre-exponential 
factor B [see Eq. (15)], i.e., 

P12 = B(e)exp(-M(e)), (17) 

~' 

,-1 (e) = Re 2i ~ [1+ (z2-e)2 ]'i•dz. (18) 

The function !:::,.(E) was computed numerically in 
the region e: > 0 in steps of 0. 01. It is shown in 
Fig. 2. 

All these regions over lap pairwise: regions I 
and II overlap for b « 1 and e:b213 » 1, regions II 
and III for e:b2/.l » 1 and (bl8e: 112 ) » 1, andre­
gions III and I for e:b213 « - 1 and b « 1. 

In connection with the above discussion it is of 
interest to report that Dykhne and Chaplik[8] have 
pointed out that the Landau-Zener formula is cor­
rect within the framework of time-dependent per­
turbation theory for all values of the splitting since 
for an exponentially small probability this formula 
coincides with the general expression for the tran­
sition probability in the adiabatic approximation.C8J 
From the above discussions one sees that this re­
sult turns out to be valid in the larger region of 
applicability of the Landau-Zener relation, where 
account is taken of the influence of the turning 
points and the motion of the nuclei above the bar­
rier is described quantum -mechanically. For tun­
nelling non-adiabatic transitions ( E < 0) at suffi­
ciently low energy the interference of the proba­
bility amplitudes from two zeros of the function 
t::. ( e: ) is always important. Then the pre -exponen­
tial factor is smaller than 2 and the generalized 
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FIG. 3. Transition probability P obtained from numerical 
integration of the system (5). 

Landau-Zener formula (Eq. (15) of [ 2]) is not 
applicable. 

In the intermediate region (I E I ,..,. 1, b ,..,. 1) 
the system (10) was integrated numerically by the 
Runge-Kutta method. The parameter b = <% )112 

was chosen such that for I E I » 1 the solution lies 
in the region of maximum probability, as computed 
by the Landau-Zener formula (this probability is 
maximal on the parabola 21ro = In 2 and has the 
value % after averaging over the oscillations). 
The graph of P 12 ( E), Fig. 3, shows that P 12 ap­
proaches the asymptotic value quite fast. 
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