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From a consideration of two effects -the polarization of the vacuum of vector mesons and 
the scattering of vector mesons on each other-a criterion is obtained for the energies above 
which perturbation theory cannot be applied in the electrodynamics of the vector meson. 

1. In rE::cent times there has been much discussion 
of the possibility that the weak interaction is pro­
duced by the exchange of a charged vector meson 
(in what follows we call it the W meson). At pres­
ent there are no unambiguous experimental indica­
tions on this point. The assumed existence of such 
a meson leads to serious difficulties, in particular 
in the treatment of electrodynamic corrections to 
the weak interaction, since the electrodynamics of 
the W meson is not renormalizable. This has the 
result that the contribution of virtual processes is 
completely determined by the region of large en­
ergies of the virtual particles (which here are 
photons and W mesons ) , or more exactly by the 
energy region in which the electromagnetic inter­
action of the W meson cannot in general be re­
garded as weak. (We remark at once that such 
assertions have meaning if it is at all possible to 
formulate the electr.odynamics of the W meson 
within the framework of field theory. All of our 
further discussion is entirely based on the assump­
tion that this is possible.) 

The question, at what energies (by energy we 
always mean some invariant characteristic quan­
tity, for example the energy in the c.m.s.) the for­
mulas of perturbation theory can be applied in the 
electrodynamics of vector mesons, has been in­
vestigated in a number of papers, the first of which 
were the papers of Landau [l] and Oppenheimer. [2] 

From an examination of the Compton effect on the 
vector meson LandauC1J derived the result that in 
the electrodynamics of mesons without an anoma­
lous magnetic moment the formulas of perturba­
tion theory are applicable at energies E such that 
e 2E2/m2 « 1 (m is the mass of the vector meson). 

In the present paper we refine this criterion, 
and give an exact limit on the energies, above which 
limit the apposite quantities (vertex functions, scat­
tering amplitudes ) in the electrodynamics of the W 
meson cannot be described by the first approxima-

tion of perturbation theory without coming into con­
tradiction with the fundamental principles of quan­
tum field theory. This treatment will be carried 
out both for the case in which the vector meson 
has an anomalous magnetic moment (of the order 
of unity ) , and for the case in which there is no such 
anomalous moment. We consider two effects: the 
polarization of vacuum owing to vector mesons, and 
the scattering of a w+ meson by a w- meson. From 
a consideration of the polarization of vacuum we 
shall obtain a limit Kmax on the mass of a virtual 
photon, above which the vertex function for the de­
cay of a virtual photon with mass K into two W 
mesons with momenta k1 and k2 [ k~ = k~ = - m 2, 

( k1 + k2 )2 = - K2 ] must differ decidedly from its 
unperturbed value and decrease with increase of 
K2 -that is, the electromagnetic interaction of the 
meson must begin to be cut off. In the study of the 
scattering of w+ by w- we shall find a limit on 
the energy, above which the cross section for this 
scattering, as calculated in the first approximation 
of perturbation theory, exceeds the unitary limit 
"' 7flt2. 

2. We start from the K1:illen-Lehmann represen­
tation for the photon Green's function, whose trans­
verse part can be put in the form 

Here 
1 

p (x2) =- Im D (- x2) 
n 

= (2;)3 ~ <O j LL (0) In) <n I Av (0) I 0) 
n, v 

(1 ') 

(1 ") 

is the positive spectral function, Av is the Heisen­
berg operator of the photon field, and I n) is a 
physical state from the complete system of func­
tions with the four-momentum kh = -K2. The in-
tegration in (1") begins at the square of the mass 
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of the lowest intermediate state that contributes 
to p ( K2 ). 

From the representation (1") there follows the 
inequality 

(2) 

This inequality is an immediate consequence of the 
general integral representation for the function 
-D-1(-K 2 ), which, as can be seen from (1"), is 
an R-function in the complex plane of K2• We 
shall not give details here of the proof of the in­
equality (2), which is obtained just as in the cited 
papers [3 , 4]; the only thing important for us is that 
the proof of (2) does not require any additional as­
sumptions beyond those that are the basis of the 
Kallen-Lehmann representation for the Green's 
function. We shall consider only the contribution 
made by the two -meson intermediate state to p ( K2 ) 

[this only strengthens the inequality (2) ], and shall 
calculate this contribution in the lowest approxima­
tion in the charge e (here e is the renormalized 
charge, and e 2 = a= 1/ 137 ). For this purpose we 
use the expression for the vertex function 
r~a(k2 , k1 ) in first approximation (cf., e.g., [5J): 

r~aV(k2, k1) = 6a~(kl + k2)v- 6~vk2a- 6avk1~ 

+ v[6av(k2- klh- 6llv(k2- k!)a]. (3) 

Here y is the anomalous magnetic moment of the 
W meson. The corresponding matrix element oc­
curring in the definition of the two-meson contri­
bution to p ( K2 ) is given by 

(k2'A2; k1'A1I Av (0) I O> = -e ( 4:rt I 4k10k2o) 'I•D ( (k1 + k2)2) 

X el' (k2) r~av (k2, -k1) ea~' (k1), (4) 

where e~ is the real polarization vector of the 
meson. We note its properties: 

ke' (k) = 0, 

The calculations give the following expression for 
p ( K2): 

ot (x2- 4m2 )'/, ( x2- 4m2 ) 
p (x2) = 3:rt I D (- x2) 12 x2 4m2 

( x2 +4m2 ) X x2 + 3m2 + 3x2y + x2 4m2 y2 • (5) 

This expression must be integrated in Eq. (2), 
beginning at K2 ~4m2 • The integral in (2) diverges 
at the upper limit, however, so that we know that 
p(K 2 ) cannot be defined by (5) for large K2• Cutting 
off the integral in (2) at a value Kfuax, we" get an 
upper limit on the mass of the virtual photon for 
which the representation (5) for p ( K2 ) is still 
valid, or in other words for which the formula (3) 

for the vertex function is valid without the radia­
tive corrections being taken into account. 

Thus after substitution of (5) in the "cut off" 
integral in (2) we get the following: 

x2 = - (k1 + k2)2;;::; x!ax = 12na-1m2, V = 0, (6') 

x2 = - (k1 + k2)2;;::; x;."x = y-1 (96:rt I a) 'f,m2, V =I= 0. 
(6") 

Numerically Kmax = 70m (y = 0) and Kmax 
= 14my-112 (y "" 0 ). If the anomalous magnetic 
moment of the W meson arises owing to radiative 
corrections and furthermore is small (smaller in 
order of magnitude than a 112 ) , - K~ax will be de­
termined by (6'). A striking feature of (6') and 
(6") are the large numerical coefficients. 

It follows from (3) and (5) that for K2 ~ K~ax 
the vertex function must fall off in such a way that 
the integral in (2) will converge. Since roughly 
speaking p ( K 2 ) is proportional to I r ( K ) 12 (roughly, 
because r ~a has a Spin structure), for large K2 

the quantity r (K) must fall off if y = 0 and must 
fall off more rapidly than ( K2 ) - 1/ 2 if y "" 0. 

Assuming that the vertex function does not dif­
fer from its unperturbed value (13) for K2 < Kinax• 
we can easily find the minimum admissible devia­
tion of the photon Green's function D(q2 ) from the 
free function D0 ( q2 ) = q - 2• For this purpose we 
write down the general expression for D - 1 ( q2 ) as 
an R-function of q2 (cf. [4]): 

00 ( 2) d 2 n-l ( 2) 2 {i 2 (' p X X 
q = q - q ~ I D (- x2) 12 (x2 + q2) (x2)2 

a 

- q2 ~ Rn (xn2)2 (:n2 + q2)} ' 
(7) 

where the constants Rn and K~ are real and posi­
tive. From (7) we have 

x2max 

q2 D ( q2) > { 1 _ q2 ~ 
4m' 

Substituting (5) and (8), we find that for q2 » m 2 

(9') 

(r=f=O). (9") 

The relations (9') and (9") provide a possibility 
of estimating when the effect of polarization of 
vacuum owing to vector mesons can appear in ac­
tual experiments. For example, it follows from 
(9') that in experiments on electron-electron scat­
tering (with clashing beams ) we can expect that 
when there is a momentum transfer q F>J 20m there 
will be an increase of the differential cross section 
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by more than 20 percent in comparison with the 
value when the polarization of the mesonic vacuum 
is not taken into account. For y ?'- 0 the vacuum­
polarization effect becomes manifest at much 
smaller momentum transfers. Indeed, if y = 1, 
a 20 percent effect appears already at q ::::J 5m. 

FIG. 1 FIG. 2 

3. Let us now examine the amplitude for scat­
tering of a w- on a w+ meson; in lowest order 
this is given by the diagrams of Figs. 1 and 2. Here 
Pa. Pc are the momenta of the w- before and after 
scattering, and Pb· Pd are the corresponding mo­
menta of the w+. Our notations are for the c.m.s.: 
P = Pa = -Pb• k = Pc = -pd; w is the energy of 
the mesons in this system, w = Poj (j =a, b, c, d). 
The differential cross section for scattering in 
states with definite helicity is 

;~ = lcpAcAd; AaAb (ro, !J, <D) \2, 

where cp is the helicity amplitude defined by Jacob 
and Wick[6]: 

1 
cpAcAd; AaAb = 2p 2J (2J + 1) (AcAd I TJ ( ffi) \ AaAb) 

X d{a-Ab; A c-Ad (!l) exp [i (Aa - Ab - Ac + Ad) <D]. (1 0) 

Starting from the diagrams of Figs. 1 and 2, we 

get the following expression for this amplitude: 

(11) 

Here (12') and (12") are the contributions from dia­
grams 1 and 2, respectively. The vertex r~a is 
given by Eq. (3). The time components of the 
helical-polarization vectors in (11) are given by 
the relations 

£o'i = PiSAi I ro, f]oAi = Pit'J;Ai I ro; 

and their space components are 

A ffi I Aa ( ., ) ~ a=- ea (1 -I Aa ) - v- el + l/\.ae2 ' m 2 
A (t} I Ab ., 

'1j b =-mea (1 -I Ab ) + V2 (el- ll\.be2), 

~V = ~ e3' (1 -I Ac \) - .. ~- (e1'- iAce2'), 
m r2 

'1j v = - ~ ea' (1 - I Ad I) + VAd_ (el' + iAde2'). (13) 
m 2 

Here ej and ej are unit vectors for linear polari­
zations connected with two systems of axes in which 
the respective directions of the z axis are along 
p and k. We note that p = pe3, k = ke3. 

The vectors ej are obtained from ej by means 
of a rotation R ( <1>, e, -<I>). Therefore all of the 
scalar products that arise in the calculation of con­
crete helicity amplitudes from (11) are given by 
the formulas 

sin2 <D + cos e cos2 <D 
-sin <D cos a> (1 -cos 0) 

-sin (D cos (D (1 -cos !l) cos <D sine 
cos2 <D +cos e sin2 <D sin <D sine 

-cos a> sine 

It is now easy to calculate the amplitude cp in 
(11) and to determinewhen, as the energy increases, 
this quantity comes to exceed the limiting value im­
posed on it in the general formula (10) because of 
the unitarity of the scattering matrix sJ ( w ) = 1 
+ iTJ ( w ). For w2 1m2 » 1 the amplitude (11) al­
ways contains a small number of partial waves, 
since the dependence on the scattering angle in the 
denominator of the function M~2J;af3 [see (12")] 
cancels out at high energies. Moreover, it is natu­
ral to expect that the helicity amplitudes (11) will 
increase most rapidly with the energy for A.j = 0, 
since, as can be seen from (13), there is an addi­
tional power of the energy w for these ( longitudi­
nal) polarizations. For y ?'- 0 and w2/m2 » 1 we 
have 

-sin <D sin a cos a 

cpoo;oo = Y2 {:: ( ~ - 6P1 (cos a)-; P 2 (cos !l)) · 

Since 

1<0.0\TJ\O.O>I = J<O.OJi-1 (SJ-1)\0.0)\ 2 <2, 

when we compare (14) with (10) we find w4 

< 3m4/2ay2• 

(14) 

As can be seen from (14), for y = 0 the quantity 
cp oo;oo is identically zero. This can also be seen 
easily from the form of the vertex r~a(k2 , k1 ) in 
Eq. (3), which for y = 0 has the property 

ll k2f3rf3a(k2, k1 )kw = 0. Therefore for y = 0 the 
amplitudes that increase most rapidly with the 
energy are those for which at each of the vertices 
of the diagram of Fig. 1 or 2 one of the mesons is 
transversely polarized and the other is longitudi-



THE ELECTRODYNAMICS OF VECTOR MESONS 499 

nally polarized. An example of such an amplitude 
is cp 00 •11 , which at high energies comes only from 
the on~ diagram of Fig. 2. For Cfoo;u we get at 
high energies 

(15) 

Again using (10) and noting that I< 0, 0 I TJ 11, 1) I 
< 1, since the process is inelastic, we get w2 

< 2m2 /a. 
We get analogous results for the other helicity 

amplitudes. For example, from an examination of 
Cfo-t;to we have (for y = 0) w2 <3m2 /a. 

It seems to us convenient to formulate the final 
result in terms of the variable s 2 = - (pa + Pb )2, 

which coincides with the variable K2 = - ( k1 + k2 ) 2 

which was considered in connection with the photon 
Green's function in Sec. 2. We finally get 

s2 = - (Pa + Pb) 2 ~ s!ax =8m2 / a, V = 0, (16') 

S2 = - (Pa + Pb) 2 ~ S~wx = r-l m2y24ja ' v =f=. 0. (16") 

Thus the actual scattering of W mesons must in 
any case not be described in terms of only the con­
tribution of the two diagrams of Figs. 1 and 2 for 
s 2 ;:>. sfuax· It can be seen from a comparison of 
Eqs. (6'), (6") and (16'), (16") that the limitations 
obtained from a consideration of actual scattering 
are somewhat stronger (by about a factor four in 
the size of s 2 ) than those that arise from a consid­
eration of the vacuum polarization. It must be 

pointed out, however, that whereas from the con­
sideration of the vacuum polarization we can draw 
the conclusion that the vertex function r~a(k2 , k1 ) 

falls off for K2 > Kfuax• no such conclusion can be 
drawn from the consideration of the scattering am­
plitude, since for s 2 > s~ax the unitarity can be 
restored not only through a change of r, but also 
through diagrams with the exchange of two or more 
photons. 
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