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We present a theory of the oscillations of the longitudinal magnetoresistance due to reso
nance scattering of optical phonons by electrons in a strong magnetic field ( Q T » 1). The 
electrons are assumed to obey Boltzmann statistics. The maxima of longitudinal and trans
verse resistances at resonance coincide if scattering by optical phonons predominates. If, 
however, scattering by optical phonons is small compared with scattering by acoustic 
phonons, the transverse magnetoresistance peaks correspond to minima of the longitudinal 
magneto resistance. 

1. INTRODUCTION AND FORMULATION OF THE 
PROBLEM 

THE authors have previously predicted [ 1, 2] a 
new type of oscillations of the transverse resist
ance of semiconductors, connected with the scat
tering of electrons by phonons having a nonzero 
limiting frequency w 0 (optical phonons). When
ever the distance between any two Landau levels 
coincides with the energy of the optical phonon, 
i.e., when the resonance condition Mrl = w 0 is 
satisfied ( Q -cyclotron frequency, M-integer), 
the electron scattering probability increases, and 
the magnetoresistance, which is proportional to 
this probability, passes through a maximum. These 
oscillations can be observed if rlT » 1, where 
T-relaxation time of the conduction electrons. 
The effect can exist for both Boltzmann statistics 
[ 1•2] and Fermi statistics (the latter case was 
considered by Efros [3]). The question of the most 
favorable conditions for the experimental observa
tion of these oscillations was discussed in detail in 
[4] 

The first brief communication on the observa
tion of oscillations of transverse and also longi
tudinal magnetoresistance of such origin was pub
lished by Puri and Geballe[ 5J. They reported the 
existence of two maxima located at 20 and 40 kOe 
(for n-InSb). Unfortunately, they did not report 
whether these data pertain to the longitudinal or 
to the transverse effect. Detailed data on these 
oscillations and their temperature dependence are 
contained in the paper by Parfen'ev, Shalyt, and 
Muzhdaba [s ,a]. In particular, they compared the 
oscillations of the transverse and longitudinal 

magneto resistances ( Pxx and pzz). As a net 
result they observed the following interesting fact: 
the maximum of ~Pxx is observed at the field 
corresponding approximately to the minimum of 
~pzz. 

The purpose of the present paper is to construct 
the theory of the oscillations of the longitudinal 
magnetoresistance and to interpret the experimen
tal data. In this section we present qualitative 
concepts that explain the nature of this effect. 
The detailed theory is developed in the next sec
tion. For concreteness we consider the first res
onance. Resonances of higher order can be ana-
lyzed analogously. 

In the experiments one measures the transverse 
magnetoresistance, which in the simplest case 
(see [ 4]) is connected with the transverse compo
nent of the conductivity tensor uxx of the theory 
by the relation uxx = uxxlu~ . The quantity uxy 
= nec/H does not depend on lhe scattering. In the 
absence of scattering uxx = 0 and consequently 
Pxx = 0. In the case of weak scattering, uxx is 
proportional to the scattering probability. The 
contribution made to uxx by electrons with energy 
E, which are in states with Landau quantum number 
N, is proportional to the number of such electrons 
(which in turn is proportional to exp [ - E/kT] and 
to the density of the initial states), to the proba
bility of their transition to all other states (over 
which it is necessary to sum), and to the density 
of the final states. If there are some two inde
pendent scattering mechanisms (for example, 
acoustic and optical phonons), then their contri
butions to the scattering probability, and conse
quently also to uxx, simply add up so that they can 
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be regarded independently. 
Let us consider oscillations of the quantity 

a~~· which is the part of O"xx connected with 
scattering by optical phonons. The density of the 
states of the electron in the magnetic field is pro
portional to [ E - nQ ( N + Yz) ri/ 2 and becomes 
infinite whenever E- nQ (N + 1/z), i.e., Pz- 0. 
When the magnetic field is such that the frequency 
of the optical phonon is a multiple of the cyclotron 
frequency, the transitions designated by the arrow 
1 in the figure become possible. For such transi
tions, the densities of both the initial and the final 
states have a singularity, so that the transition 
probability is anomalously large, and as a result, 
~O"xx has an oscillating maximum at this value 
of the field. 

In general, for the oscillations to occur it is 
necessary to have a certain irregularity (i.e., a 
nonmonotonic change) in some of the quantities 
characterizing both the initial and the final state. 
Therefore, for example, the transitions desig
nated in the figure by the arrow 2 make no contri
bution to the oscillating part of O"op, since for 
these transitions only the density xtf: the final 
states has a nonmonotonic dependence, and the 
density of the initial states is a monotonic function 
of E. Such transitions, and also, for example, 
transitions of type 3, produce a non-oscillating 
"background" of the function Pxx (H). 

Now let us proceed to the analysis of the longi
tudinal magnetoresistance pzz (H). It is connected 
with the longitudinal conductivity O"zz• which can 
be calculated in the theory, by the relation pzz 

= 1/ O"zz. The contribution made to O"zz by elec
trons of energy E, in a state with Landau quantum 
number N, is proportional to exp (- E/kT) and to 
the density of the initial states, and is inversely 
proportional to the scattering probability summed 
over the final states, or, what is the same, directly 
proportional to the relaxation time. Therefore in 

the general case, when there are two independent 
scattering mechanisms, their contributions to 
O"zz are far from independent, and they must be 
regarded simultaneously, with account taken of the 
possible simultaneous action of these mechanisms. 
We begin with an analysis of the simplest cases, 
when one of these two mechanisms is effective, 
and will then investigate their joint action. 

Assume that the scattering takes place only on 
the optical phonons. If the magnetic field exceeds 
the resonant value, then for nQ/kT » 1 the tran
sitions shown by the arrow 1 in the figure are for
bidden by the energy conservation law. When the 
magnetic field decreases and reaches a resonant 
value, such transitions become possible. This 
leads to an increase in the scattering probability, 
i.e., to a decrease in O"zz• meaning an increase in 
pzz· With further increase of the magnetic field, 
the resonance condition is violated, and this leads 
to a decrease of pzz. Thus, in this case pzz has 
a maximum at resonance, i.e., the maxima of the 
longitudinal and transverse magnetoresistance 
coincide. 

Assume now that there is only acoustic scat
tering, which can be regarded as elastic with suf
ficient degree of accuracy. When liQ » kT, the 
electrons are essentially in states with N = 0 and 
E "'" kT ("on the bottom" of the Landau zero band). 
The main mechanism of the electron relaxation is 
scattering with transitions inside the Landau zero 
band. However, we are interested in a larger 
interval of electron energies (of the order of 
nw0), and we must therefore see how the relaxa
tion time behaves at larger E. In acoustic scat
tering, the transition probabilities summed over 
the final states, designated in Fig. 1 by the arrows 
4, 5, etc., exhibit maxima that are the consequences 
of the maxima of the final-state density. Because 
of this, the plot of the relaxation time T vs. 
energy is a sawtooth curve with minima at 
E = nQ ( N + 1/z). O"zz is the integral of the product 
of T (E) by a smooth function of the energy, and is 
consequently a nonoscillating function of H. How
ever, if the problem were to involve also some 
characteristic energy leading to an additional non
monotonicity of the integrand, this would lead to 
oscillations of O"zz 1l. In the presence of Raman 
scattering the role of such a characteristic energy 
can be played by the end-point energy nw0 of the 
optical phonon. 

l)In the case of Fermi statistics, the role of the character
istic energy is played by the chemical potential, and the oscil
lations of azz constitute the well known Shubnikov-deHaas 
effect. 
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Let us proceed to an examination of Raman 
scattering. 

At sufficiently low temperatures, the optical 
scattering, proportional to exp ( - nw 0/kT), is a 
small effect against the acoustical scattering 
background. However, the oscillations of interest 
to us are due only to the optical scattering. The 
behavior of the function O"zz (H) near resonance 
is connected with the existence of two oppositely 
acting factors. First, the probability of transi
tions of type 1, and consequently also the number 
of such transitions, increases at resonance, and 
this, as noted above, leads to a decrease in the 
corresponding contribution to O"zz. Second, the 
number of transitions of type 2 decreases, since 
most electrons that are in the state Pz1 undergo 
transitions of type 4. This leads to an increase in 
the corresponding contribution to O"zz. 

The number of type-1 transitions is propor
tional to the number of optical phonons N0 

= exp ( - nw 0/kT). The number of type-2 transi
tions is proportional to N0 + 1 ~ 1, and also to the 
number of electrons in state with quasimomentum 
tipz 1, which is smaller than the number of electrons 
on the bottom of the Landau zero band, roughly 
speaking, in a ratio exp (- tiQ/kT), which at reso
nance is also equal to exp (- nw0/kT). Thus, both 
contributions to the oscillating part of O"zz are 
exponentially small, and only concrete calculations, 
which will be carried out in the next section, can 
decide which predominates. It follows from these 
calculations that when 1/r is smaller than or of 
the order of unity, the magnetoresistance at reso
nance has a minimum. The parameter 1/r is 
equal to 

.!_ = 3 ViikT ( liwo)'f, ~ r. 
r 4/iQ kT. Uo 

where y-constant of the coupling between the 
electrons and the optical phonons, u0 = e/mw0, and 
u-mobility due to scattering by the acoustic 
phonons. 

If 1/r slightly exceeds unity then, as shown by 
the investigation of the simplest model (standard 
band, isotropic scattering) in the next section, the 
minimum should disappear and should be replaced 
by a maximum with further increase of 1/r. The 
exact value of 1/r (which depends on the magnetic 
field and on the temperature) at which the mini
mum disappears was not determined. The point is 
that this value can differ from the one obtained for 
the simplest model under real conditions, which 
are characterized by a non-parabolic electron 
spectrum, some anisotropy of the scattering, a 
finite contribution from impurity scattering, etc. 

We can only state that in most complicated cases 
this value is also of the order of unity. Therefore 
the agreement between theory and the experiments 
[ 6 ,8] in which a resonant minimum was observed at 
1/r ~ 2, should be regarded as satisfactory. 

2. CALCULATION OF THE OSCILLATING PART 
OF THE MAGNETORESISTANCE 

The expression for the density of the longitu
dinal current in the magnetic field is of the form 

( 1) 
n 

Here e-electron charge, Vz = npz/m-its velocity 
component, gH-density of the electron states in 
the magnetic field H, and fn ( pz) is a correction 
to the distribution function of the electrons with 
Landau quantum number n and with quasi momen
tum tipz. This correction is linear in the electric 
field E. The distribution function is a solution of 
the kinetic equation 

(2) 

where 

Fo(En) = exp [I! I kT- En(Pz) I kT] 

is the equilibrium distribution function; S0 and Sa 
-collision operators describing the scattering of 
the electrons by optical and acoustic phonons, re
spectively. 

The operator S0 is represented in the form of a 
sum of arrival ( s;r) and departure ( s~) terms: 

~d 2n 
So In (Pz) = -In (Pz) 1i: ~ ~I Cq 12 

n',pu',Pz' q 

X {I (n, py, Pz I e-iqr In', Pi/, pz') I2No<'3 [En (Pz) 

+ liwo- En• (pz') I + I (n, py, Pz I eiqr In', Pu', pz') 12 

X (No+ 1) <'3 [En (Pz) -liwo- En• (pz')]}, (3a) 

S arj ( ) 2ft ~ f ( ') ~ IC 12 
0 n Pz = 1[ L.J n' Pz L.J q 

n',py',pz' q 

X {l(n, py, Pzle-iqrln', py', p/)12 

X N o<'3 [En (Pz) - liwo - En• (pz')] + 
+I (n, py, Pz \ eiqr In', py', pz') 12 (No+ 1) 

X b [En (Pz) + liwo- En• (pz')]}. (3b) 

Here 

No= [etlw,/kT -1]-1, 
1Cql 2 =A I q2Vo, A= 2nliwoe2 (1 I eoo -1 I Eo), (4) 

where V0-normalization volume and E 0 and E00 -

dielectric constant of the crystal with and without 
account of the ionic part, respectively. 
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Further, 

X {I (n, py, Pz I e-iqr In', P·u', pz') 12 

+I <n, Pv• Pz I eiqr In', py', pz') 12}, 

x jCqF~ = Eo21iq /2Vopw 

(5) 

(6) 

( E 0-deformation-potential constant, w-sound 
velocity, p-crystal density). We have neglected 
here unity compared with Nq = kT /nwq » 1, where 
wq = wq -frequency of the acoustic phonon with 
wave vector q; we have also neglected the energy 
of the acoustic phonon in the argument of the 
6 -function, meaning that we have neglected small 
quantities of the order of the ratio of the sound 
velocity to the electron velocity. It is easy to 
verify that with the same degree of accuracy we 

Aar 
have Sa fn (pz) = 0. 

For our subsequent transformations we shall 
find the following formula convenient when n' > n: 

I (n, py, Pz I e-iqr In', Pv', Pz') I 
= 0 ' 0 ' Q n'-n (u)· Py• Py -qy Pz' Pz -qz n • 

Qnn'-n (u) = (n'!n!f'l•e-u/2U(n'-n)/2Lnn'-n (u). (7) 

Here 

u=qj_2a2 /2, qj_ 2 =qi+ql, a2 =cli/eH, 

and L~-generalized Laguerre polynomial, equal 
to 

Taking into account the relation 
00 

~ du[Qnn'-n(u))2 = 1, 
0 

and also (7), we reduce (5) to the form 

Sad=-~ 2] [z2 - 21)(, (n'- n)r'\ 
Ta n' 

( 8) 

(9) 

where the radical is the result of integration with 
respect to qz using 6 -functions, and the summa
tion is over all n' for which the radicand is posi
tive. Here and throughout 

a = nQ I 2/<T, z = Pz I Pr, PT = y27nkT I 1. 
Ta = :rrNpw2 /i2E02 (mkT)'I•. (10) 

Analogously 

Sod=_ !_ (liwo)'/, 2] [ Gnn' (Yr+) + Gnn' (y2+) , No 
4to kT n' [z2 - 21)(, (n'- n- w0 jQ)] 1' 

+(No+ 1) Gnn' (yn + Gnn' (yn , 1 , ( 11) 
[z2 - 21)(, (n'- n + Wo/Q)] 1'J 

where 
to= 2n/i2 (/iw0 /2m) 'I• A - 1, 

• 00 

Gnn•(y)= ~ !Qnn'-n(u)]Z(u+y2f 1du; 
0 

(12) 

(13) 

Ytz = (2a)-'h{z+[z2 -2a(n'-n-w0 IQ)]'i•}, 

Yl.z = (2a)-'i>{z± [z2 -2a(n'-n+ w0 /Q))'i'}. (14) 

The summation in (11) is over those value of n' 
for which the radicand is > 0. 

Finally, the arrival term in the collision opera
tor is of the form 

1 ( liw 0 ) '/, \ "" 2t0 kT 'jdQ-;fn·[(z-Q)pr]Gnn'(Q) 

x {Noo !(Q- Yn (Q- Ynl +(No+ 1) 

X o !(Q- Yr+) (Q- Yz+)l}, 

where Q = qz IPT. The functions Gnn' ( Q) in 
these expressions are equal to 

Gnn•(Q)=_!_Lnn'-n(-Qz) r tn'e-t dt 
n'! ~ (Qz+tf+I 

= _!_ L n'-n (- Q2 ) r e-•Q'snd~ • 
n! n ~ (1 +sf +I 

(15) 

(13a) 

We shall seek the correction to the distribution 
function in the form 

1 liepr 
In (Pz) = 21)(, mkT TaEZ'Xn (I z!) 

x exp [- 21)(, ( n + ~ ) - z2 + :r J . (16) 

The concentration of the conduction electrons in 
the magnetic field, expressed in terms of F0, is 
equal to 

(17) 
n 

Combining (1), (16), and (17) we can represent the 
expression for the conductivity CTzz in the form 

fJzz(H) = 3fz(1- e-2")a(O)l /a, (18) 

00 00 

J = 2] e-2an ~ dz z2e-z'Xn (I Z !), (19) 
n=O -co 

where CJ ( 0) = ( 4/3Vrr) n0e 2T a 1m-conductivity at 
H = 0, due to the scattering of the electrons by the 
acoustic phonons only. 

Substituting (9), (11), and (15) in (2), integrating 
in (15) with respect to Q with the aid of 6-functions, 
and going over to dimensionless variables y and 
z, we represent the initial kinetic equation (2) in 
the form of the following infinite system of differ
ence equations: 
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X [Jlz2 - 2a (n'- n ~ w0jQ)] +(No+ 1) A~-;{·Xn• 

where 

_1_ Vn (z2) := ~ [z2 + 21X (n- n') ]-'/, 
lz I n' 

+ No ~ Gnn' (yl+) + Gnn' (y2+) 
f n' (z2 - 21X (n'- n- Wo/Q)]'f, 

No + 1 "" Gnn' (yl-) + Gnn' (y2 -) 
+ --r-~ (z2 - 2~X (n' -n + w0jQ)]'f, ' 

(21) 

A~=/i) = (Gnn' (y~) - Gnn' (y'1)1Jz, 

1 _ 1 Ta ( nw0 )'f, 
(22) 

r- 41X e; kr · (23) 

We confine ourselves further to an examination 
of the quantum limit ( nQ /kT » 1), and are inter
ested in the behavior of the function CTzz (H) near 
the first resonance, when Q ~ w 0• Near resonance, 
the first term in the left side of (20) (departure 
term) has a singularity which causes it to in
crease, whereas the second term (arrival term) 
has no singularity. Furthermore, in the departure 
term we have the sum Gnn' ( y~) + Gnn' ( Yf), while 
in the arrival term we have the difference of these 
quantities. The two foregoing circumstances 
cause the arrival term to be smaller than the de
parture term when r « 1 at least in a ratio 
2/3f2a. If along with the optical scattering there 
is also an appreciable role played by the acoustical 
scattering, so that r ;?:. 1, the arrival term turns 
out to be even smaller relatively (see below). 
By virtue of the foregoing we shall henceforth 
neglect the arrival term compared with the de
parture term. 

Then Xn (I z I) = I z 1/vn ( z 2). Substituting this 
expression in (19) and confining ourselves by vir
tue of the condition 201. » 1, to the first two terms 
in the series for J, we obtain 

00 00 

~ xe-x ~ xe-x 
J = dx--+e-2"' dx--

Vo (x) 'V1 (x) 
0 0 

(x = z2). (24) 

We shall henceforth be interested in the oscillating 
part of (24). It is proportional to exp (- fiwo/kT) 
« 1. In the lowest approximation in this param
eter, to which we confine ourselves, the interval 
of variation of x in the first integral is of the 
order of 201. and in the second integral of the 
order of unity. 

We introduce the quantity o = w0/Q - 1, which 
characterizes the degree of deviation of the mag
netic field from the resonant value, and which 
vanishes at resonance. We write down the ex
pression for the discontinuous functions v 0 ( x) 

and v1 ( x) in the significant interval of variation 
of x for the case o < 0 ( Q > w0 ), confining our
selves to the terms that are principal when I 6 I 
« 1: 

1) vo(x) = 1 for x < 211\la, 

2N0 • I X 
2) 'Vo (x) = 1 + I' V x- 2111 I IX 

for 2 111 1 a< x < 2 (1 - 111 !)IX, 

3) 'Vo (x) = 1 + ; V x- 2a t1 - Ill I) 

for 2(1-llll)a<x<2a, 

.I X b I X 

4) 'Vo (x) = 1 + v X - 21X + f v X- 2 (1 -161) IX 

for 2~X < x, 

.I X b f X 

5) VI{ X) = 1 + v X + 21X + f l! X + 2161 IX 

for x<21X(1-jll)[, (25) 

where 

00 

b = 2 ~ dye-v (1 + yt1 = 1.2. 
0 

The function v0 ( x) is determined in region 1 
exclusively by scattering by acoustic phonons with 
transitions inside the Landau zero band. In region 
2 the absorption of the optical phonons with transi
tions to the Landau first band begins to play some 
role. In region 3 the possibility appears of emis
sion of an optical phonon with transition inside the 
zero Landau band. In region 4 there come into 
play transitions with participation of an acoustic 
phonon from the zero Landau band to the first 
(transitions of type 4, shown in the figure). 
Finally, the form of the function v 1 ( x) is deter
mined by the reverse transitions with participation 
of an acoustic or optical phonon from the Landau 
first band to the zero band, and also acoustic 
transitions inside the Landau first band. 

We note that the quantity 21 o I 01. is not assumed 
to be small here. We can easily find in the same 
manner an expression for the functions v0 ( x) and 
v 1 (x) with w0 > Q. We shall not write out this 
expression in explicit form. 

If we let r approach infinity in (25), we obtain 
expressions that describe acoustical scattering 
only. The corresponding functions will be denoted 
by v~(x) and vf(x). The function v~(x) is dis
continuous only at x = 201.. 

We rewrite (24) in the form 

l = Ja- !!.l, (26) 
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00 00 

1• = dx-- + e-2" dx--, ~ xe-x ~ xe-x 
vo• (x) . v1• (x) 

(27) 
0 0 

2<> 

t'1J = ~ dxxe-x (1- 1fvo) 
0 

00 
[ 1 + dxxe-x 

}" 1 + Y xf(x- 2a) 

+ e- 2" I dxxe-x -- . 
00 

[ 1 1] 
~ 1 + Y xj(x + 2a) V1 

(28) 

Inasmuch as the quantity ~J, together with the os
cillating part of CTzz, is small like exp ( - tiw0/kT), 
we obtain on the basis of (18) the following expres
sion for the oscillating part of the specific resist-
ivity: 

Calculating the integrals (28) with allowance 
for (25) and expanding in powers of the small 
parameter 2N0/r « 1 ( 1/r is not assumed to be 
small), we find that the ratio of the value of the 
function ~J at 2a I o I « 1 to its value at 2a I o I 
» 1 is approximately equal to 

{4 f+1 'Vii 1 /nwo b 
r r + z + -2- V kT b + r 

_ [ 1 _ ( 1 + ~ r J} ~-\ (29) 

00 
1i [ 1 ] I - I ( x 1 Wo \ 1 - e-x dx 

- ~ 1 k'i') 1 + (blf)Ji(x+1iwofkT)Ix (3 0)' 

For bV tiw 0/kT /r « 1 

I= 'jln(hwol kTJ'f,b 1 r (30a) 

and then the ratio (29) does not depend on r at all 
and depends only on tiw0/kT, being smaller than 
unity in the presently considered case tiw0/kT 
» 1. This means that the function ~J, and conse
quently also ~Pzz• has a minimum at resonance. 
On the other hand, if bV tiw 0/kT /r » 1, then 

I= 1 + liwo I kT- CYnf 2) (r I b)'jfliwo I kT (30b) 

and the minimum disappears only when 1/r is 
somewhat larger than unity. An analysis of the 
case 6 > 0, when the magnetic field approaches 
resonance from below, leads to a similar con
clusion. 

The investigated behavior of ~Pzz near reso
nance indicates a tendency for the appearance of a 
maximum with decreasing r, a tendency which can 
be clearly seen when 2N0/r » 1. In this case the 
first and second parameters of (25) take the form 

Vo (x) = b ""' r X No for X< 2 I 61 a, V 2 r 

1 jx No • j x No 
Vo (x) = b v 2a f + 2 v X- 2161 a f 

for 2161 a< x < 2 (1 -161) a,. (25a) 

and the other intervals of variation of x are insig
nificant. We present for illustration an expression 
for the function pzz (H) in the case when the mag
netic field tends to the resonance from the side of 
larger values ( 6 < 0): 

1 /ffio b 1 ( ) 
Pzz (H) = p (0) V Q 4 1 - F (2a I 6 I) . 31 

Here 

p (0) =. m I noe2toe'hroof~<T, 

2 r Yz + xe-Zdz 
F (x) = Jlit e-x .l 1 + b (zkT j41iw0 )'!. • 

0 

The quantity pzz (H) has a maximum at 6 - 0. 
It is seen from the foregoing that the function 

Pzz (H) is quite sensitive to the value of the para
meter r. We present for this parameter an ex
pression in terms of the quantities that can be 
measured directly from experiment. To this end 
we write down the expression for the time t 0 con
tained in (23) in the form 

to= 112vwo, 

where 

is the constant of the coupling between the electrons 
and the optical phonons, introduced in [ 7]. Further, 
we express the time Ta in terms of the mobility u: 

Ta = 3'jfn mu I 4e. 

As a result we obtain the expression 

__!_ _ 3 'Vii ( 1iwo )'!. !!..___ 
r - Sa \ kT r Uo ' 

written out in the first section. 

e 
Uo = --· mm0 

We note in conclusion that the electron spin is 
not taken into account explicitly in the present 
calculations. Therefore the results are valid 
when the probability of electron scattering with 
spin flip is much smaller than the probability of 
scattering without spin flip. 

In semiconductors with larger impurity concen
tration, the main cause of elastic scatterings are 
not the acoustic phonons, but the impurities. In 
this case we should also expect a resonant mini
mum or maximum, depending on the relative inten
sity of the impurity scattering and the scattering 
by the optical phonons. 
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