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We investigate the interaction between charged particles and a plasma consisting of cold ions 
and hot electrons moving relative to the ions with a velocity exceeding that of two-tempera
ture sound. The rate of energy and momentum change due to emission and absorption of tur
bulent sound oscillations is determined. It is shown that the details of the turbulence spectrum 
do not affect the dependence of the indicated quantities on the particle velocity or on the direc
tion of motion. The level of the turbulent fluctuations determines only the overall coefficient 
in the expressions for energy and momentum transfer. The energy of a particle moving in a 
plasma decreases if the particle velocity v satisfies the condition v • u > s 2 (u is the mean 
directed electron velocity, s is the velocity of two -temperature sound); the particle energy 
increases if v · u < s 2• The rate of change of the particle energy is proportional to the effec
tive temperature T of the turbulent oscillations, provided the value of v · u lies between 
s 2 ± (u2 -s2 ) 112 (v 2 -s2 ) 112• Near the boundaries of this region the energy varies as T3/ 2• If 
v ~ u or v ~ s (and v • u ~ v ) the rate of particle energy loss is proportional to T2 • Interac
tions between charged particles and other types of turbulent oscillations are also considered 
e.g., with high-frequency-electron or short-wave-ion oscillations. 

1. INTRODUCTION 

As is well known, the intensity of the interaction 
between charged particles and a plasma is deter
mined by the fluctuation level in the plasma. If the 
plasma is characterized by a very high fluctuation 
level, the change per unit time of the energy and 
momentum of a particle moving in the plasma is 
also very large. 

The interaction between particles and a plasma 
whose state is close to unstable was investigated 
in [1]. In such a plasma the damping decrement 
of oscillations of any kind (for example, two-tem
perature sound or Langmuir oscillations) is much 
lower than the damping decrement of the corre
sponding oscillations in an equilibrium plasma. 
Because of this, the level of the fluctuations in a 
nearly-unstable plasma is much higher than the 
thermal level[2- 4J, and this can lead to very in
tense slowing down of a particle moving through 
the plasma. 

In the present paper we investigate the interac
tion between particles and a plasma in which, neg
lecting nonlinear effects, oscillations of arbitrary 
type, do not attenuate but grow. The growth of the 
random oscillations continues until the nonlinear 
effects bring about a stationary distribution of the 
fluctuations, i.e., until the plasma goes over into 

a state of stationary turbulence 1 >. 
An essential feature of the steady -state spec

tral distributions of the fluctuations is the fact that 
the effective temperature of the waves is small at 
wave-vector values q corresponding to non-grow
ing oscillations, and increases sharply near wave
vector values that separate the stability and in
stability regions of the oscillations. At wave
vector values corresponding to growing oscilla
tions, the effective temperature varies smoothly 
with varying q, remaining very large. This char
acter of the spectral distribution of the fluctua
tions enables us to investigate the interaction be
tween charged particles and a turbulent plasma 
in general form, without making use of detailed 
properties of the turbulence spectrum. 

In the present paper we determine the variation 
per unit time in the energy and momentum of a 
charged particle, due to the emission and absorp
tion of sound oscillations. We obtain in explicit 

l)The limitation on the growth of the amplitude of the waves, 
resulting from the nonlinear interaction between the waves and 
the plasma particles, was investigated in[ 5 • 61. The spectral 
distributions of the turbulent fluctuations are determined 
in[7 - 9 ]. The interaction between the particles and a plasma 
in which the external sources produce a nonequilibrium wave 
distribution was investigated in[' 0 ]. 
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form the dependence of these quantities on the 
direction and on the magnitude of the particle ve
locity. The level of turbulent fluctuations deter
mines only a common coefficient in the expression 
for the variation of the energy and momentum of 
the particle. We investigate also the particle
energy variation due to the emission and absorp
tion of high-frequency electronic and short-wave 
ionic oscillations. 

2. INTENSITY OF CERENKOV RADIATION 

Let us relate first the change in the energy of 
a particle passing through a plasma with the effec
tive temperature of plasma oscillations. 

The probability of the transition of a particle 
from a state with momentum p into a state with 
momentum p' is connected with the correlator of 
the charge density fluctuations by the known re
lation 

(1) 

where ( p2 )qw -charge -density correlation func
tion, nw = (2J.d-1 (p' 2 -p2 ), and nq = p'-p -
changes in the energy and momentum of the par
ticle, ez -charge, and J..l. -mass of the particle. 

We discuss first the case of a plasma consist
ing of cold ions and hot electrons moving relative 
to the ions. In the region of large wavelengths 
(aq « 1) and "medium" frequencies (q(Ti/M) 112 

« w « q ( Te /m )112 ) the correlator of the charge 
density in such a plasma can be represented in 
the form 

<p2)qw = 1i4q2(aq)2{T(q)6(w _ qs) 

+ T(-q)6(w + qs)}, (2) 

where Te and Ti -temperatures, m, M -masses 
of the electrons and ions, s = (Te/M) 112 -two
temperature sound velocity, T(q) -so-called ef
fective temperature of sound oscillations, and 
a = TU2 ( 47re 2n) - 112 -electronic De bye radius. 
Recognizing that the effective temperature of the 
oscillations is a function of two scalar quantities 
q and TJ = q • u, where u -directed velocity of the 
electrons, w.e shall henceforth denote the effective 
temperature by T ( q, q • u ) . 

Using (1) and (2), we can determine the energy 
lost by a particle per unit time to excitation of 
sound oscillations with wave vectors in the inter
val ( q, q + dq ) : 

dP = - (eza) 2qs(2~tn)-1 {T ( q, qu) 8 (qv- qs + fiq2f2~-t) 
-T(q, -qu)6(qv + gs + /iq2 /2~-t)}dq, (3) 

where v -particle velocity. The first term in this 

expression describes the absorption, and the sec
ond the induced emission of oscillations by the par
ticle (we are interested in plasma states for which 
the number of sound waves in the plasma is very 
large, so that we need not, naturally introduce in 
(3) an additional term to account for the spontane
ous emission that is independent of the number of 
waves). 

Integrating in (3) over the angle variables, we 
obtain the intensity of the Cerenkov radiation per 
unit frequency interval: 

(4) 

;; { , v2 )-'/, } & D (q) = ~ dcp cos 8- ( S'i" -1 sin 8 cos cp &TJ T (q; TJ); 
0 (5) 

e (the angle between the vectors v and u) and TJ 
are connected with the integration variable cp by 
the relation 

T] = qu{sv-1 cos e + (1- s2v-2) '/,sine cos cp}. (6) 

We see that the energy lost by the particle is 
determined by the function 8T ( q, TJ )/ 8TJ ( TJ = q • u); 
to calculate the energy losses it is necessary 
therefore to know the character of the dependence 
of the effective temperature on the quantity q • u. 
At small values of q • u, when the oscillations with 
wave vector q attenuate ( q • u < qs ) , the effective 
temperature is determined by the formula [2- 4] 

T(q, qu) = Te(1- qu/ qs)-1. (7) 

When q • u ~ qs the effective temperature increases 
sharply. When q · u > qs, the quantity T ( q, q • u) 
becomes (for fixed q) a smooth function of q • u. 

It follows from this dependence of the effective 
oscillation temperature on q • u that the derivative 
at/8(q • u) has a sharp maximum at some value of 
q • u close to qs, namely q • u = TJo ~ qs. The pres
ence of such a maximum enables us to calculate the 
function D ( q) without knowing in detail the depend
ence of T on q · u when q · u > qs. 

In fact, let us expand the function ( ElT / ElTJ ) - 1 in 
powers of the quantity TJ - TJo· Noting that when TJ 
= TJo the function ( ElT/ElTJ )-1 has a minimum, we 
obtain 

where 

is a small quantity proportional to 
Tt~[T(q, q•u)Jq5u>qs. and 
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is a quantity of the order of unity. Substituting this 
expansion in (5) and recognizing that TJo R-J qs, we 
see that the main contribution to the integral that 
determines the function T ( q) is made by angles 
cp close to cp 0, where 

v 1 u - cos e (9) 
cos cro = 1 • 

( v2 1 s2 - 1) 1• sin 6 

For cos2 cp 0 < 1 (and for not too small values of 
sin cp 0 ) we obtain for D 

D ( ) = rtT (A-6 u)-1 (1- .::_)-'/•co~ fJ -.s21 uv. (10) 
q e q V 2 Slll 8 Slll cpo 

The value of I D I is proportional to the large pa
rameter ~ - 1 and increases sharply with decreas
ing sin cp 0• At very small values of I sin cp 0 I 
(!sin cp 0 12 « ~s/u(1-s2/v 2 ) 1 12 sine, and cos 2 cp 
can be both larger and smaller than unity), we ob
tain by using (5) and (8) 

The plus sign in this expression corresponds to the 
case e R-J e+ the minus sign to the case e R-J e_, 
where e ± -the two values of the angle e at which 
sin r:p 0 vanishes, 

cos 8± = (uv) - 1{s2 + (u2 - s2) 'f,(v2 - s2) '/,}. (12) 

Thus, for very small values of I sin r:p 0 I, the value 
of D is proportional to ~ -3/ 2• 

If u- v, then sine+ - 0, and (11) no longer 
holds. For sine+« ~s(v2 -s2 )-112 we obtain in 
place of (11) 

(13) 

In this case D is particularly large and is propor
tional to ~ - 2• 

We note that in deriving (10) and (11) we have 
assumed that the particle velocity v is not too 
close to the velocity of sound s. Using (5) and (7) 
we can verify that when 1-s2/v2 « (~s/u) 2 sin-2 e 
the function D is determined by relation (13) if 
cos e R-J s/u, and changes sharply when Ieos e- s/~1 
increases. 

The case when cos r:p 0 > 1 (and the difference 
cos r:p 0 -1 is not too small) corresponds to a par
ticle velocity such that the particle cannot interact 
with the turbulent sound waves. In this case we 
cannot use expansion (8) to determine D ( q); it is 
easy, however, to calculate D ( q) directly, by sub
stituting in (5) the expression (7) for the effective 
temperature. We then obtain 

In this case D does not contain the large par am
eter ~ - 1 ; nonetheless, if I sin r:p 0 I « 1, this quan
tity is very large (although it is much smaller 
than when cos2 r:p 0 ~ 1). This is due to the intense 
interaction of the particle with the sound waves, 
for which qs - q • u « qs and whose effective tern
perature is large, in accordance with (7). 

The case cos r:p 0 < - 1 corresponds to a par
ticle moving in such a way that it interacts effec
tively with the turbulent sound waves with q • u 
> qs. As already noted, aT I a ( q. u) is small in 
the region q • u > qs, so that when cos r:p 0 < -1 
the function D ( q) has the same order of magni
tude as when cos r:p 0 > 1. 

We note that the main results of this section 
(and consequently also the expressions for the 
change in the energy and momentum of the par
ticle) remain in force even if aT/ a17 is not small 
in the region 17 > TJo· In fact, the contribution of 
aT I aT] with TJ > TJo to the expression for D can 
only change the function D when e + < e < e _, 
without changing the value of D at e R-J e±, and 
consequently without changing the character of 
the function D when e + ~ e ~ e _ • In particular, 
the function D is positive for e = e+ and negative 
for e = e_, so that it must vanish at some value 
of the angle e = eo. e+ < eo < e_ [ eo can differ 
here somewhat from cos-1 (s2/uv )]. 

3. CHANGE IN PARTICLE ENERGY 

The function D, in accordance with (4), deter
mines the spectral distribution of the energy ra
diated by the particle. Substituting D in (4) and 
integrating over the frequencies, we obtain an ex
pression for the change in particle energy (per 
unit time) P, due to its interaction with the sound 
waves. 

If the angle e between v and u lies in the in
terval e+ < e < e_, where the angles e± are de
termined by the formula (12), then P takes the 
form 

p = (ezsQ)2 : Aj (v), (15) 

where A is a large quantity, proportional to the 
ratio of the effective temperature of the turbulent 
sound waves to the temperature of the plasma 
electrons 

(16) 

n2 = 47re 2n/m -square of electronic plasma fre-
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(17) 

Formulas (15) and (17) determine in explicit 
form the dependence of the variation of the particle 
energy on the magnitude and direction of its veloc
ity. It is easy to see that when e+ < e < e_, where 
cos e0 = s 2/uv, the particle loses energy. When e0 

< e < e_' the interaction with the sound oscillations 
leads to an increase in the particle energy. When 
e = e0, the change in particle energy vanishes. As 
e-- e±, the value of 1 P 1 increases sharply. 

At angles e very close to e±, formula (15) 
ceases to be correct. When 

18- 8±1 ~~(s I u) {1- s2/v2 )'1• 

( ~ -quantity of the order of the ratio of the elec
tron temperature to the effective wave temperature 
in the turbulence region) we obtain, substituting 
(11) in (4) and integrating over the frequencies, 

p = (ezQ)2!!!... A I (18) 
s J.t 1 ±' 

where A1 -large quantity proportional to ~- 312 

A _ __!__ \ ( )at-'/,, -'/• d 
1- 2 a J aq "' "' q, (19) 

(the plus and minus signs correspond to the cases 
e ~ e± ). We see that when e ~ e± the change in 
particle energy per unit time is especially large. 

At very small values of e+ (which corresponds 
to u ~ v ), relation (18) ceases to be valid. For 
e+ « ~s(v2 -s2 )- 11 2 , we have in place of (18) 

P (ezQ)2 m A A ~ ( )at-2 d = ---- 2• 2 = a aq "' q. 
v J.t 

(20) 

We emphasize that a very large change in the 
particle energy per unit time (proportional to ~ -t, 
~ -3/2, or ~ - 2 ) takes place when the angle between 
v and u lies in the region e + ~ e ~ e _. In order 
for the angle region to exist it is necessary to sat
isfy the inequalities v > s and u > s. The first of 
these inequalities is the condition for the effective 
interaction between the particle and the sound os
cillations ( Cerenkov condition), while the second 
inequality ensures the existence of turbulence 
sound oscillations. 

As u--s we have e+-- e_-- cos-1 (s/v ). Ex
pressions (15) and (18) for P vanish when v • u 
= s 2 and u = 2, for in this case the energy loss is 
proportional to 1/~ raised to a power lower than 
the first. In fact, substituting (8) in (5) and (4) we 
obtain 

(21) 

In the derivation of (15)- (21) it was assumed 
that the particle velocity v is not too close to the 
velocity of sound s ( 1 - s 2 /v2 » P'; in the general 
case described by formula (15) 11 = 1; in the case 
when e ~ e± we have 11 = % ). If 1- s 2/v2 « ~~~. 
then for e = cos-t ( s/u) the energy lost by the 
particle is determined by formula (20) and is pro
portional to ~ - 2• At other values of e, P does not 
contain the large parameter 1/ ~. 

If e > e_, and also if e < e+ and u < v, then the 
change in particle energy can be determined by 
substituting (7) in (5). Integrating over frequencies 
lower than some maximum frequency s/a, where 
a is on the order of several Debye radii, we obtain 

p = (ezQ)2 !!!... ag (v), 
s J.t 

where a = Y4 (a/a )4 and 

g (v) = s-2 (uv- u2 ) { ("s: - 1 r 
- --1 --1 ( u2 ') ( v2 ) }-'/, 

s2 sz . 

(22) 

(23) 

We note that this formula takes into account the 
induced emission and absorption of sound oscilla
tions by the particle, and does not take into account 
other processes that change the particle energy 
(short-range collisions, spontaneous emission of 
sound oscillations, emission and absorption of 
other types of plasma oscillations). Therefore 
expression (22) determines the total particle en
ergy loss only at angles e sufficiently close to e±, 
when the relative contribution of the other proc
esses to the change in its energy is small. 

If e < e+ and u > v, then the change in the par
ticle energy per unit time is much smaller than if 
e+ < e < e_. In this case, in order to establish the 
dependence of P on v, it is necessary to know in 
detail the behavior of the function T ( q, q • u) for 
q • u > qs. 

In concluding this section, let us estimate the 
coefficients A and A0, 1, 2 in expressions (15), (18), 
(20), and (21) for the change in the particle energy 
per unit time; these coefficients are independent 
of the particle velocity. We use for this purpose 
the expression obtained for the effective tempera
ture in [7] under the assumption that the growth 
of the amplitude of the sound waves with q • u > qs 
is limited by nonlinear Landau damping by the ions, 
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Te Te ( msu )'f, 
T (q, qu) ~ (aq)s R, R = e2ja Ti~lt'e (qu > qs), (24) 

where Te -electron mean free path time. Putting 
~ "' Te /T and A. "' 1, and integrating with respect 
to q from q "' s/ Ti to q "' a - 1 ( Ti -ion mean free 
path time), we obtain 

A ~ R, A 0 ~ R'l•, 

(25) 

4. CHANGE IN PARTICLE MOMENTUM 

We now see how emission and absorption of 
sound waves changes the momentum of a charged 
particle. Using (1) and (2), we can determine the 
momentum transferred to the particle per unit time 
by the sound with wave vectors in the interval 
(q, q +dq): 

dQ = -(eza) 2 (2n:h)-1q{T(q, qu)l\(qv- qs + hq2 /2!-l) 

+ T(q,- qu)l\(qv + qs + !iq2 /2j.t)}dq. 

Integrating with respect to q in this relation, we 
obtain 

Q = (eza) 2
2us I dq q4 {ID (q) + i,.d,. (q) + ivdv (q)}, (26) 

ll(lV .\ 

where 

I= (uv sin 8)-2 {u(v2 - uv) + v(u2 -- uv)}, 

iu = (uv sin e)-2 {uv2 - v(uv) }, 

iv= (nvsin8)-2 {vu2 -u(uv)}, (27) 

the function D is determined by formula (5), and 

': [ ( v2 )-';, J du (q) = (qst1 ~ dq; cos 0 - -:52- 1 sin 0 cos q> 
0 

x (T + (lJ- qs) ar;alJ], 

" 
dv (q) = v (qsut1 ~ dq;T (q, lJ) (28) 

0 

[ the quantity 1) is connected with the integration 
variable rp by relation (6)]. 

To determine D, as shown in Sec. 1, it is suf
ficient to know the behavior of the function 
T(q, q • u) near q • u = qs; to calculate du and dv, 
on the other hand, it is necessary to know also the 
explicit form of the function T at q • u ;r. qs. It is 
easy to verify, however, that if 1 e - e± 1 « sin e±, 
where the angles e± are determined by (12), then 
I iudu I « I ID I and I ivdv I « I ID 1. Taking (4) into 
account, we can thus relate the change in the mo
mentum of the particle Q at e "' e± with the change 
in its energy P: 

Q=IP. (29) 

This relation, together with formulas (15)-(22) for 
P, enables us to determine the dependence of Q on 
the magnitude and direction of the particle velocity 
v. 

According to (29), when the particle moves, the 
fastest to change is the projection of its momen
tum on the direction of ±I, 

QIIII-1 = (zwsin8)-1 lu-viP. 

The projection of the particle momentum on the 
direction of (v- u) does not change when the par
ticlemoves, Q(v-u)=O. 

We note that in the interaction between a par
ticle and a non -equilibrium plasma, the case 
I e- e± I « sin e± (to which formula (29) pertains> 
is of greatest interest, for in this case the change 
in the particle momentum per unit time (together 
with its energy) is particularly large. 

We present one other expression for the func
tion Q in the case when the particle velocity is 
close to the beam velocity both in magnitude and 
in direction ( s 1 v- u 1 u - 2 < e « ~s (v2 - s 2 > - 112 >. 
Here Q = vPv-2, where P is determined by (20). 
In this case the change in particle momentum per 
unit time is proportional to ~ - 2 and is therefore 
especially large. 

5. RADIATION OF SHORT-WAVE IONIC AND 
HIGH-FREQUENCY ELECTRONIC PLASMA 
OSCILLATIONS 

As is well known, a plasma consisting of hot 
electrons and cold ions can support not only sound 
oscillations with linear dispersion but also short
wave ionic oscillations. The charge-density cor
relator in the region of "medium" frequencies 
[ q(Ti/M )1/l « w « q(Te /m )112 ] is given by an 
expression that takes the cold-wave oscillations 
into account and takes the form 

< p2)qro = 1 j4q2 (aq) 2 ( 1 + a2q2)-l {T ( q, qu) 1\ ( w _ Wq) 
+ T ( q, -qu) 1\ (w + wq)} (a2q2 ¢;;_ T. / T;), (30) 

where wq = qV s ( 1 + a2q 2 ) - 112 -frequency and 
T ( q, q • u) -effective oscillation temperature (we 
denote in this section the velocity of the two -tern
perature sound, which is equal to ( Te /M )112, by 
Vs, retaining the symbol s for the phase velocity 
of the oscillations, s(q) = wq/q). When q•u 
< wq. the effective temperature of the oscillations 
is determined by the formula [3 J T ( q, q • u) 
= TeO-q•u/wq)-1. When q•U > wq, the value 
of T increases sharply. In the region q • u > wq. 
the effective temperature changes smoothly with 
q •U. 

Using (1) and (30) we obtain an expression for 
the change in particle energy per unit time, due to 
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the excitation and absorption of ionic oscillations 
with wave vectors in the interval (q, q +dq): 

dP = (ez)2u a2qaffiq {n( )8(1-ffiq) 
dq :rtf1v2 1 + a2q2 q qv 

- : T (q, qu cos 8) b ( q- :q)} , 
where the function D is determined by (5) with 
s = s(q) = wq/q and ®(x) = (1 +sign x)/2. 

Substituting the expression (10) [or (11)-(14)] 
for the function D in (31), we readily see that for 
all values of the wave vector (except for the value 
satisfying the equation wq = qv) the value of dP/dq 
does not depend on the detailed behavior of the 
function T when q • u > wq. (In the case of wq 
= qv and v > u cos (}, when the second term in 
(31) can be disregarded, we can again determine 
dP/dq without knowing the exact dependence of T 
on q • u when q · u > Wq. ) 

Integrating (31) with respect to q, we can de
termine the variation of the particle energy per 
unit time P, due to its interaction with the plasma 
oscillations. In the case of oscillations with a non
linear dispersion law, in order to establish the ex
plicit form of the dependence of P on the particle 
velocity v it is necessary, generally speaking, to 
know the explicit form of the fuuctions ~ ( q) and 
A.( q). It is possible, nonetheless, to draw several 
conclusions concerning the value of P, conclusions 
which do not depend on the explicit form of the 
functions ~ and A.. 

First, the variation of the particle energy is 
large (proportional to 1/~ raised to a power not 
smaller than the first), if the condition sin2 (} 

» Ti (v- u )2 ( Mv2u2 ) - 1 is satisfied. This condi
tion is the condition for the existence of oscilla
tions whose wave vectors satisfy the relations 
q • v = wq and q • u > wq. 

Further, if the angle between the direction of 
particle motion and the flow direction is small, 
then intense interaction between the particle and 
the oscillations takes place only when v f'::! u. If 
the conditions v s lu- vI u - 2 < (} « ~v sU - 1 are sat
isfied, the particle energy loss is particularly 
large and proportional to ~ - 2, 

p = (ezQ)2 .!!!__ B2, B2 =a(" (aq)3 (1 + a2q2f1 £-2 dq. (32) 
v f1 j 

Finally, when v » u, it is easy to determine the 
sign of P. The function P is positive (this corre
sponds to a decrease in particle energy), if (} < rr /2, 
and negative (corresponding to an increase in its 
energy) if (} > rr/2. 

When v » V s and u » V s, the dependence of 
the change in the particle energy on the magnitude 
and direction of its velocity can be obtained in ex-

plicit form. If sin (} is not too small 
(8 » Vsl u -vI (uv )-1, rr -(} » Vs(u + v )(uv )-1 ), 

then, using (31) and (10), we obtain 

P = (ezQ) 2mVs(f.lv2)-1Bcot 8, (33) 

where B is a large quantity proportional to ~ - 1, 

B =a~ (aq)3 (1 + a2q2(1• (A.£fl dq. 

When sin(}« min { (~Vs/u) 112 , ~u/Vs}, we have 
in accordance with (11) 

P = ± (ezQ)2umv'hf.l-1 iu + vl-'lzB1, 

B 1 = 1j 2 a ~ (aq) 3 (1 + a2q2f 1 £-'1•J..-'1• dq, (34) 

where the upper (lower ) sign pertains to the case 
of small angles (} (close to rr). We see that the 
energy of a particle moving in the beam direction 
(or in the opposite direction) changes in propor
tion to ~-312 and is therefore especially large. If 
the particle is close to the beam velocity not only 
in direction but also in magnitude, then the energy 
loss [determined in this case by (32)] is propor
tional to ~ - 2• 

Let us stop to discuss also the case of a plasma 
through which a hot beam travels with velocity u 
larger than the thermal velocity of the plasma elec
trons. The charge-density correlator in such a 
plasma, at high frequencies ( w » q ( T e /m )1/ 2 ) 

and large wavelengths ( aq « 1) is of the form 

<!hq,. = 1/4q2{T(q, qu)6(ffi- Q) 

+ T(q, -qu)6(ffi + Q)}, (35) 

where T -effective temperature of the electronic 
Langmuir oscillations. When q · u < Q, the tem
perature T is determined by the temperature T1 

of the beam electrons [3], T ( q, q • u) 

= T 1(1-q·u/Q)-1• When q·u > Q, the effective 
temperature is determined by the level of the tur
bulent fluctuations and greatly exceeds T 1. 

Using (1) and (35), we find the energy transferred 
to the particle per unit time by the electronic Lang
muir oscillations with wave vectors lying in the in
terval ( q, q + dq ) : 

~!!_ = (ez) 2 u Q{D( )E> ( 1 - _g__) 
dq :rtf1V2 q q qv 

- : T (q, qu cos 8) b ( q- ~ )} , 

where the function D is determined by (5) with 
s = Q/q. 

(36) 

It is easy to see that all the deductions regard
ing the interaction between the particle and the 
ionic oscillations [except, of course, relations (33) 
and (34)] can be generalized to the case of elec
tronic oscillations, if we make the substitutions 
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Te-T1, wq-n, Ti-Te, and M-m. Inpar
ticular, the energy loss is especially large (pro
por:_tional to ~ - 2 ) if the conditions II - v /u I < e 
« ~ are satisfied. Then 

(37) 

In conclusion I thank A. I. Akhiezer and K. N. 
Stepanov for valuable discussions. 
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