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It is shown that in the case of unstable particles the conditions for the anomalous singularity 
of a triangular diagram have a simple kinematical meaning. An expression for the amplitude 
of a triangular diagram is obtained, from which it is simple to single out the part containing 
the singularity. Under certain conditions the singularity occurs in the physical region of the 
variables. It is pointed out that an experimental study of this singularity in reactions involv­
ing the formation of resonances may permit the determination of the amplitudes of such proc­
esses as 1r1r ---.. nn, 1r A ---.. n A, etc. Moreover, the anomalous singularity may result in the ap­
pearance of "humps," which imitate weak resonances, in the effective-mass distributions. 
(Examples are the hump in the K~K~ pair effective-mass distribution near 1 BeV and the so­
called ABC-resonance, which indicates the possible existence of an excited nucleus with one 
nucleon replaced by the isobar N* -1238 MeV.) 

1. INTRODUCTORY REMARKS 

WE investigate here the anomalous [i] or, using 
Landau's terminology [2], the proper singularity of 
a triangular diagram, in the case when the particle 
masses may not satisfy the stability conditions. For 
the amplitudes of the production of several par­
ticles, the anomalous singularity was considered 
relatively recently in several papers [3 -fi J, but at­
tention was paid only to a root-type singularity. 
The purpose of the present work was to carry out 
the investigation in somewhat greater detail, to ex­
plain the meaning of the anomalous singularity in 
the case of unstable particles, especially to show 
that the anomalous singularity can be used to de­
termine the amplitudes of such processes as nn 
---.. nn, nA----- nA, etc., and also to interpret their­
regularity in the effective -mass distributions ob­
served in some reactions. 

As will be shown below, it is essential that one 
of the particles corresponding to the internal dia­
gram lines be unstable. To describe the unstable 
particle we propose that in first approximation it 
is sufficient to assume that the mass m in the 
corresponding propagation function has a constant 
negative imaginary increment - ir /2, where r -
total width. Generally speaking, r is a function 
of q2 (q -4-momentum of the particle) and of the 
particle masses. However, if we consider the am­
plitude near the proper singularity, for which q2 

= m 2, then r can be assumed constant if we deal 

with unstable particles for which the width is small 
compared with the energy released during the de­
cay. This condition will henceforth be assumed 
satisfied. 

We note that the amplitude has no singularities 
when r "' 0 and for real values of the external 
variables. If the vertices are regarded as constant 
and independent of r' then as r ----- 0 the amplitude 
corresponding to the triangular diagram has, gen­
erally speaking, a singularity of the form ln r. 
However, the decay vertex is in fact proportional 
to ff . We can therefore speak of the singularity 
only in some arbitrary sense, taking it to mean the 
singularity of the amplitude when the vertices are 
assumed independent of r, and r----- 0. With such 
an approach, the role of the width does not differ 
in fact from the role played by the increment E in 
the rules for going around the singularity, when m2 

is replaced by m 2 -iE. Therefore, when the stabil­
ity conditions are satisfied, an amplitude with un­
stable particles can be regarded as an analytic 
continuation of the amplitude in the usual sense. 

2. MEANING OF ANOMALOUS SINGULARITY IN 
THE CASE OF UNSTABLE PARTICLES 

Let us consider the diagram shown in Fig. 1. 
For symmetry, the external 4-momenta Pi are 
assumed directed inward (p1 + p2 + p3 = 0 ), and the 
4-momenta of the virtual particles qi are assumed 
to be directed clockwise. The vertex parts gi are 
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FIG. 1 

assumed constant, and all the particles are as­
sumed for simplicity to be scalar with nonzero 
masses. The necessary conditions for the proper 
singularity are, as is well known [2•6], of the form 

"'i.a;q; = 0, q;2 = m;2, i = 1, 2, 3. (1) 

It follows from these conditions that 1 + 2YtY2Ya 
2 2 2 0 . -Yt -y2 -y3 = • I.e., 

(2) 

where 

z; = P;2• p2 = Po2- p2. 

The indices i, j, and k are cyclic permutations 
of 1, 2, and 3. We are interested only in the singu­
larities for real values of the variables y. Then, 
as can be seen from (2), the singularity in question 
can appear either when all the YI < 1 or when all 
YI > 1. We recall that the condition YI > 1 signi­
fies that the stability condition is not satisfied in 
the i-th vertex: when Yi > 1 one of the internal 
particles (j -th or k-th) is unstable, and Yi < -1 
corresponds to instability of the external line. 

In order for the singularity to appear on the 
"physical" sheet of the amplitude, it is necessary 
that the Cl!i obtained from (I) be positive [GJ. This 
leads to the inequalities 

y; < YiYk 

y; > YiYk 

for 
for 

y2 < 1, 

y2 > 1. (3) 

From these inequalities it follows that it is neces­
sary to take the minus sign in front of the root in 
(2) in the former case and the plus sign in the lat­
ter. In addition, it is easy to show that when y 2 < 1 
the anomalous singularity can appear either when 
all the Yi are negative, or when one of the Yi is 
positive and the two other are negative. For y2 > 1 
the singularity can appear only when one of the Yi 
is positive and the two others are negative t >. 

l)When y2 < 1 the conditions for the anomalous singularity 
can be formulated with the aid of a dual diagram (see[ 2]). In the 
the case of y2 > 1 it is impossible to construct a correspond­
ing diagram in Euclidean space, and it is therefore convenient 
to formulate these conditions algebraically. 

Let us consider the case y2 > 1, and let for 
concreteness y2 > 1 and Yt• Ya < -1. We change 
over to new variables putting q2 = - q2, qt = q!, 
and ~ = q3 (or q2 = q2, qt = -qi, and qa = -q3). 
Then all the Yi = (qjqk_)/mjmk will be larger than 
+1, and q?/m2 = 1, i.e., we obtain the relations 
characterizing the four-velocities of the free par­
ticles are obtained. Consequently, the anomalous 
singularity can occur when the particles are real 
in the intermediate state. We then have two pos­
sibilities, which differ only in the signs of qi and 
correspond to mutually reversible reactions. 

Let us consider the case when particles 1 and 2 
emerge from vertex 3 and, making the diagram 
more concrete (see Fig. 2 ), let us assume that 
one line corresponding to a particle with mass m! 
emerges from vertex 2, and two lines with masses 
m2 and m3 emerge from vertex 1. Particle 1' 
should emerge from vertex 2 if mt > rna and go 
into this vertex if fit < rna. Inasmuch as the latter 
possibility corresponds to a reaction in which three 
particles are converted into two, we shall assume 
that mt > ma, i.e., we shall consider a reaction in 
which two particles are converted into three. 

FIG. 2 

Let us discuss the meaning of the conditions (2) 
which connect the relative particle velocities and 
are therefore purely kinematic. We introduce var­
iables ~ik• defined by the formula cosh ~ik = Ylk• 
and compare relations (2) with the expression for 
the law of velocity addition in relativistic kine­
matics (see, for example [T ,a]):* 

ch ft;" = ch ft;i ch f}ik - sh f}ij sh f}ik cos a;k, 

where O!ik -angle between velocities of particles 
i and k in a system where particle j is at rest. 
Taking into account the choice of the signs preced­
ing the root in (2), we obtain cos 0! 23 = cos O!t2 = 1 
and cos O!ta = -1. Thus, if in the general case the 
three free particles correspond to a triangle on a 
sphere with imaginary radius, then the conditions 
for anomalous singularity stipulate that this tri­
angle degenerate into a "straight line." The equal­
ity ~t3 = ~t2 + ~23 must also be satisfied. The intui­
tive physical meaning of these conditions is readily 
understood: particle 3 should be emitted in the 

*ch = cosh, sh =sinh. 
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center-of-mass system of the reaction, in a direc­
tion opposite to that of the velocity of particle 1, 
and its velocity must be sufficiently high to "over­
take" particle 2. 

Thus, the anomalous singularity arises when 
the momenta of the intermediate particles are such 
that the triangle diagram describes a three -step 
reaction with free particles: first particles 1 and 2 
are produced, and then particle 1 breaks up into 
particles 3 and 1', where particle 3 moves back­
ward relative to the direction of the flight of 1 

(in the c.m.s.), "catches up" with particle 2, and 
we obtain either scattering or a reaction. Such 
multistage reactions were already considered be­
fore, but the role of the anomalous singularity was 
not noticed. For example, in connection with an 
analysis of the possibility of measuring the life­
time of the 2:0 particle, the author discussed the 
reaction K- + nucleus Z - 2:0 + nucleus ( Z - 1), 

when the produced 2: 0 particle breaks up into a A 
particle and a y quantum, latter producin~ with the 
nucleus (Z - 1) an electron-positron pair 9]. This 
process can be schematically described by a tri­
angular diagram, and its probability depends on the 
velocity of the 2: 0 particle and on its lifetime. The 
possibility of using three-step reactions for the de­
termination of the lifetime and the scattering cross 
sections of unstable particles was investigated in 
the non-relativistic case by Fox [ 10]. 

3. EXPRESSION FOR THE AMPLITUDE 

We separate now that part of the amplitude which 
corresponds to the diagram of Fig. 1, which con­
tains an anomalous singularity. The invariant am­
plitude U is of the form 2> U "'g1g2g31r2A, where 

A_ 1 da1da2da~o (1- ~a;) 
- J a1a1 + a2a2 + a3ot3- z1a2aa- z2a1ota :__ zaa1a2 

=~ 
Here 

da1da2da3o (1 -~a;) 
D 

a;= m;2 , D = ~ a;aj~ii• 
i, j 

~ii = ~ 1, = m;miYii for i =I= j, ~ii =a;. 

(4) 

We can obtain a more convenient integral rep­
resentation of A if we use the fact that l:i BA/ Bai 
can be expressed in terms of elementary functions 
([11 ], see also [12 ]): 

l)The normalization is such that the matrix element 

Tba = ll(2E;) -'I'Uual'i<4)(pb- Pa), 

where iT = S - 1, S - scattering matrix, Ej - energies of 
initial and final particles, and the constants gi - invariant 
amplitudes located at the vertices of the diagrams. 

± 8A = __ 1_~ P; In (~i+ VR;); 
i=l oa; 41D ; V R; ~; - V R; 

lD = dot I ~iiI = a1a2aa ( 1 + 2Y1Y2Y3 - Y12 - Yz2 - Y32), 

P; =olD I oa; = aiah- \;;2 + \;;(si + s~<) - aisi- a"\;", 

R; = \;;2 - aiall = aiah(y;2 - 1). (5) 

We shall also make use of the quantity 

'A=~ P; =- __!_ (~ z;2 - 2 ~ z;zj) . 
i 4 i i<j ' 

These quantities are related by 

(6) 

The anomalous singularity corresponds to the 
vanishing of <1>. It is easy to see that when YI > 1 
and when conditions (2) and (3) are satisfied, all 
Pi< 0 (A.< 0), i.e., Pi"' -~,JRi. 

If ti > 0 (i "' 1, 2, 3 ), then A has no singulari­
ties. We introduce the function 

A J = (' da1 da2 dCJ;aO (1 - ~01-;) 
a-+a+t J D + t · 

For ti > 0 and t ~ 0, it has likewise no singulari­
ties. Since 

~ 8A (a+ t) = dA (a+ t), 
i oa; dt 

we have 

If all aj - aj + t, then ti - ti + t, <I> - <I> + A.t, 
Ri- Ri- Zit, and Pi- Pi. We also take account 
of the fact that in order to go around the singulari­
ties in the analytic continuation in t it is necessary 
to replace aj by aj - iE ( E > 0). As a result we 
obtain 

+oo-ic 

A=_!_ \ ~-~ P; 
4 o-is (]) + At i (R;- z;t)';, 

I ( ~i + t + (R;- z;t)'1•) 
x n ~ . 

~i + t - (R;- z;t) ' 
(7) 

The "physical" branches of the multiply-valued 
functions in the right sides of (5) and (7) are deter­
mined by the requirement that when ti > 0 the 
function A must have no singularities, as can be 
seen from (4). The functions A and Li BA/ Bai have 
singularities at identical points. Therefore A has 
only singularities that correspond to singularities 
of the integral in (7) at t "' 0. [No singularities 
arise in connection with the pinching of the inte­
gration contour in the representation (7)]. It can 
be shown (see [11 J) that 
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~ P;_ln (~i + VR;) II ~ ln 1. 
i VR; ~;- VR; <I>~o 

Therefore for l:i > 0 it is necessary to take the 
branch of the logarithm for which ln ( 1 + iE) = 0 
as E- 0. In the analytic continuation in l:i, from 
l:i > mjmk to l:i < - mjmk, the argument of the 
logarithm in (7) receives an increment 27Ti when 
0 < t < Ri/zi. Therefore the "normal" imaginary 
part of A for Yi < -1 and Yj· Yk > 0 is equal to 

R·lz· 
1 C ' dt 2rtP; 

lm A lv;<-1 = 4 ~ <D + 'A.t (R,- z;t)'1•. 
0 

Assume now that Yt and y3 < -1, while y2 > 1. 
Then 

;tiPa R,~lz, dt + A +-,- . 'I o• 
2 0 (<D + 'A.t) (Ra- Zat) 2 

_ 1 ;:o dt ~ P; 
Ao - -4 \ <D 'A. LJ 'I .l + t . (R-- zt) 2 

0 t 1 t 

( 
~i + t + (R;- Z;t)'12 ) x ln ,1, • 
~;-f--t-(R;-z;t) (o} 

(8) 

The subscript (0) denotes that it is necessary to 
take the branch for which In ( 1 + iE) = 0. The term 
A0 is real and has no singularity at <I> = 0 and if 
conditions (3) are satisfied. 

We assume that particle 1 is unstable, and take 
into account the width r t only in the terms with 
the singularity, replacing at by at - iyt ( Yt = mtr t• 
<I> -<I>- iytPt). Then 

A=- Vrti (ln M + icp) + Ao, 
-'A. 

'11- [ (<D2 + Y12P1 2)z1z~ ]'I• 
' - (-P1 + V -'A.Y Rd(-Pa+ V -'A.VRa)2 '(9) 

cp = arg (-<I>+ iytPt ), -7T < cp < 0, since Pt < 0 in 
the region of interest to us. We see that the singu­
larity at <I>- 0, r t- 0 is logarithmic and is the 
more sharply pronounced the smaller r t· How­
ever, the amplitude U itself is proportional to 
fft. 

For the reaction with three particles in the final 
state (Fig. 2) it is convenient to fix the energy of 
the incident particle (i.e., y3 ) and to consider the 
distribution with respect to Yt ( Zt ). The value of 
y2 for this diagram is fixed in the case of two­
particle decay of particle 1. In this case the 
anomalous singularity should be observed for 

Yt<+> = Y2Ya + [ (y22 - 1) (ya2 - 1) J'i'. 

Using this formula, we can easily find the positions 
of the singularities for concrete reactions (see the 
examples below). If yf+> = -1 (the anomalous and 
threshold singularities coincide), then the singu­
larity remains logarithmic. When y2 ~ 1 coinci­
dence is possible only with one of the threshold 
singularities. On the other hand, if y2 = 1, then 
the singularity for Yt = -1 and y3 = -1 is of the 
form 1/~, i\.- 0. This interesting case was 
already considered in several papers [a-5]. To ob­
serve a root singularity it is necessary, generally 
speaking, to investigate reactions with four par­
ticles in the final state, since it is necessary to 
satisfy the requirements Yt = -1, y2 = +1, and 
y3 = -1 simultaneously, which is difficult for re­
actions with three particles in the final state, for 
usually y 2 differs from + 1. An exception is the 
cp meson (y2 = +1.03 ). 

4. DETERMINATION OF THE AMPLITUDES 
FROM THE ANOMALOUS SINGULARITY 

The amplitudes gi depend in the general case 
on qi. However, if they have no singular points 
near values of qi satisfying the conditions (1) with 
ai > 0, then they can be regarded as constant near 
these values, and the contribution of the singularity 
will be given as before by formula (9). Inasmuch 
as the virtual particles become real near the sin­
gularities, the expression for the singular part of 
the amplitude will contain gi for physical values 
of the variables. It is thus necessary to replace 
g1 by the corresponding scattering amplitude. Sep­
aration of the contribution of the anomalous singu­
larity actually corresponds to the realization, for 
example, of such a process as scattering of a free 
pion by a free pion. We note that nothing is changed 
in the preceding arguments if the gi are regarded 
as functions of the form gi ( Zi). Then formula (9) 
is valid also away from the singularity, and we 
can use for the amplitude gt the formula from the 
theory with effective radius. 

In order to determine gt from experiment, it is 
necessary to have definite information concerning 
g2 and g3• Let us consider the simplest case, when 
the gi can be regarded as constants and the reac­
tion is described only by the diagrams of Figs. 2 
and 3. This assumption may not be very far from 
reality, for there are cases when the reaction is 
well described by the diagram of Fig. 3 (see [ta,t4J). 
If the mass of the resonance is set equal to mt 
- ir t /2, then this diagram gives the Breit-Wigner 
formula, with which the effective-mass distribu­
tions of particles 1' and 3 were indeed compared. 
The diagram of Fig. 2 then plays the role of a cor-
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FIG. 3 

rection that takes into account the interaction of 
particles 2 and 3 and can be quite appreciable near 
the threshold of production of particles 1 and 2. 
Let us assume that the vertex 1 corresponds to 
elastic scattering. Then, taking into account dia­
grams of Figs. 2 and 3, the differential cross sec­
tion for the formation of particles 1', 2, and 3 can 
be represented in the form 

de~ I ffi1126 (~ s;- So- ~b;) dsld2dsa' (10) 

where 

ki -4-momenta of the particles in the final state, 
bi = kf -squares of the masses of these particles, 
and s 0 -square of total energy in the c.m.s., 

ffi1 = g2g3 [- s2 - a: + iy1 

___ff!_ (A _ ni In M + ~)]. + 16n2 o V- 'A. V- 'A. 
(11) 

The values of M, r.p, A., and A0 for a given total 
energy depend only on the variable s 1• The vari­
ables Si vary inside the Dalitz -diagram region 
bounded by the curve 

s1s2s3 - ~ s; (b;so + bibk) 

+ 2s0 (b1b2 + b2ba + b1ba) + 2blb2 ba = 0, 

s1 + s2 + s3 = s0 + ~ b;. (12) 

In this case it is convenient to consider a Dalitz 
diagram in the variables s 1 and s 2 (Fig. 4). An 
anomalous singularity appears on the line s 1 = s 10 , 

and passes through the left point of intersection of 
the line s 2 = a 1 with the boundary (12). To demon­
strate this, it is convenient to write the equation of 
the boundary in terms of the variables 

· b2 + ba - S1 S2 + ba - b1 S2 + b2 - So 
'I'JI = 2 V b2b3 ' 1'] 2 = 2 V s2b3 'I'] a = 211 s2b2 

Then Eq. (12) assumes the form 

1 + 21']11']2'1']3 - 1']12 - T]22 - T]a2 = 0, 

i.e., it coincides with (2) when b2 = a 2, b3 = a3, 

b1 = z2, s 2 = al> and s 0 = z3• 

A general expression for I \m 12 can be obtained 
from (11). A readily-analyzed formula is obtained 
if the amplitude g1 is small and real. Then, neg-

7 
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FIG. 4. Dalitz diagram and position of singularities 
for the reaction K-p ~Arr+rr- at PK.lab = 520 MeV /c (see 
the text). 

lecting the terms with gi, we have 

I \m l2 = I g2g~ 12 
2 {1- g1r1ln M. 

(s2- a1) + Y1 8n V -'A. 

+ 8~2 (a1- s 2) ( Ao + V-eep 1.)} . (13) 

If we select only the events that fall in a region 
that is symmetrical about the line s 2 = a 1 (shaded 
in Fig. 4 ), then the last term in (13) makes no con­
tribution to the distribution of the number of events 
as a function of s 1, while the second term contains 
only one unknown quantity g1. Thus, if the reaction 
can be described by the diagrams of Figs. 2 and 3, 
then the amplitude g1 can in principle be readily 
determined. We note that in this case the sign of 
the amplitude is also determined. Thus, for g1 > 0 
(attraction forces ) the contribution of the second 
term in (13) is positive (ln M < 0 near the singu­
larity if the width r 1 is not very large.) 

The Dalitz diagram on Fig. 4 is drawn for the 
reaction K-p- Arr+rr- for a total energy 570 MeV 
(PK.lab = 520 MeV/c). It is assumed that this re­
action proceeds principally via formation of the 
resonance Y( -1385 MeV. (For simplicity the 
diagram of Fig. 4 shows only the contribution of 
resonance with a charge of one polarity.) The dia­
gram of Fig. 2, corresponding to rrrr scattering, 
has in this case a singularity at s 1 = 4.14 m~. 

If the rrrr scattering length is 1/mrr, then 

( - g1r1ln M) 
8nV -'A. max 

1 2' for r 1 = 35 MeV, 
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FIG. 5 

i.e., the contribution of the triangular diagram is 
appreciable (g1 = 8 (m2 +rna )c, c -scattering 
length). The dependence of the terms 
- (-A.)-112 ln M on cp and s 1 is shown in Fig.4. 

Examples of processes from which information 
on rr A. scattering can be obtained are given in 
Fig. 5. 

5. "FALSE" RESONANCES 

As can be seen from Fig. 4, an anomalous sin­
gularity can lead to the appearance of a "hump" 
in the distribution relative to the effective-mass 
of the two particles. The position and the very 
existence of this hump depend on the total energy 
(or Ya ). Inasmuch as y2 ~ 2 for most resonances, 
the singularity appears as a rule, by virtue of in­
equalities (3), near y1 = -1, i.e., at an effective 
mass ~ (m2 +rna). If the information on the re­
action is insufficient, such singularities can be 
interpreted as weak resonances. We present ex­
amples of reactions in which the role of the anom­
alous singularity is appreciable. 

1. In the reaction rr-p - KKN at Prr .lab ~ 1. 95 
Be VIc, a relatively large number was observed of 
cases of K~K~ pairs with effective mass near 1 
Be V [15]. Inasmuch as a noticeable role in the pro­
duction of KK pairs at this energy is played by the 
resonance Y -1520 MeV, the diagram of Fig. 6a, 
which has a singularity at an KK effective mass 
equal to 1 Be V (for Prr lab = 1. 95 Be VIc), should 
be significant. The maximum value of 
-2(y1mkcl~)ln Mat r 1 = 16 MeV is in this 
case cmKI4, i.e., when the scattering length is 
c ~ 1lmrr the contribution of the triangular dia­
gram is comparable with the contribution of the 
pole diagram of Fig. 3 ( m K -mass of K meson). 
At higher energy, the contribution of the diagram 

with emission of one or several pions may be ap­
preciable (Fig. 6b). 

The diagram with cp -meson production (Fig. 6c) 
is interesting because a root singularity of the 
form 11~ is important in it. The ~ontribution 
of this diagram is maximal when K, K, and n have 
a low c.m.s. kinetic energy, i.e., the effective mass 
of the K mesons is close to the mass of the cp 
meson. However, unlike the cp meson, the appear­
~nce of K~K~ is possible here as a result of the 
Kn scattering. 

Thus, the experimentally observed increase in 
the number of K~-meson pairs with effective mass 
near 1 Be V can be partially due to the diagrams 
considered here. 

2. In the reaction p + d - Hea + 2rr a hump is 
observed in the Hea momentum distribution cor­
responding to an effective pion mass ~ 300-310 
Mev[16J. If we assume that the production of nu­
clei of the type NNN* (N -nucleon, N* -1238-
Me V isobar ) , which decay into He3 ( H3 ) + rr (Fig. 
7a), is important in this reaction, then the experi­
mentally observed anomaly (the so -called ABC 
resonance ) can be due to the singularity of the tri­
angular diagram which takes into account the rrrr 
scattering (Fig. 7b). At an NNN* nucleus mass of 
mHe3 + 300 MeV and at an initial proton kinetic 
energy of 743 MeV, the singularity appears at s 1 
= 4.8 m 2, i.e., at mrrrr ~ 310 MeV. At lower pro­
ton energies the singularity already corresponds 
to complex values of s 1, amounting physically to 
a "smearing" of the hump. This agrees with the 
data of Abashian et al. [ 16 ] A similar interpreta­
tion of the ABC anomaly was proposed recently by 
Anisovich and Dakhno [17], and reactions with nuclei 
containing resonances, which are of independent in­
terest, were considered by Grishin and Podgoret­
ski1 [18 ]. 

Figure 8 shows the results of calculations by 
formula (13) without account of the term A0, which 
contains no singularities, for a proton kinetic en­
ergy 743 MeV. The width r 1 is set equal to 100 
MeV, and the rrrr-scattering length is 1lmrr. The 
same figure shows the contribution of the terms 
quadratic in g1 with a singularity. The terms with 
A0 plus possible constants, which are not taken into 

a b 

FIG. 6 
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a 

FIG. 7 

account by the diagrams of Figs. 7a and b, add to 
the distribution over s 1 a contribution that behaves 
in analogy with the phase-volume curve. 

The foregoing examples show how important it 
is to take into account triangular diagrams in re­
actions with resonance production. It is of inter­
est to consider also reactions in which two reso­
nances can be produced. In this case the square 
diagram describing the scattering of the decay 
products has a singularity of the form 1//s- s 0 • 

The author is sincerely grateful to M. A. Mar­
kov, V. I. Ogievetski!, I. V. Polubarinov, and M. I. 
Podgoretski1 for a discussion and useful remarks, 
and to S. A. Bunyatov, S. S. Gershte!n, and L. I. 
Lapidus for a discussion of questions connected 
with ABC resonance. 
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