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It is shown that one of the reasons that a resonant system of two-level molecules cannot be 
described by ordinary perturbation theory is the appearance of multi-photon radiative 
transitions. The first terms of the corresponding perturbation theory series are calculated 
and the limit of applicability of the usual formula for the probability of "single-photon" 
radiation of molecules in the system is demonstrated. 

ALEKSEEV, Vdovin and Galitskil, [1J calculated, 
with the help of an elegant method, the density 
fluctuations of photons in a resonant system of 
two-level molecules. In the calculation, the 
Hamiltonian was used in the form suggested by 
Dicke. [2] It was shown that the radiation of the 
molecules cannot generally be described by the 
usual perturbation theory, since, in addition to the 
inapplicability of perturbation theory in the case 
of strong resonance fields, the "collective" effect 
of the interaction of the radiating molecules with 
one another through the radiation field also ap
pears. 

The effect can be described by means of a 
perturbation theory series in which each com
ponent gives a radiative transition with account 
of the interaction mentioned above. 

A criterion will be derived below for the ap
plicability of the ordinary formula for the proba
bility of a "single-photon" transition in the sys
tem under consideration. The quantity obtained 
here coincides in the case of inversion in the sys
tem with the corresponding expression obtained 
in the cited reference [1] 

(1) 

where I N_ 0 I is the initial overpopulation and W 
is the probability of spontaneous dipole emission 
of an isolated molecule per unit time. 

We shall compute only the first terms of this 
series, to make clear the qualitative features of 
the phenomena. Investigation of the entire series 
is not carried out in this work. We shall assume 
below that a radiative transition of frequency w0 

takes place only between two nondegenerate states 
of the molecules. We shall assume the density of 
molecules to be so small that overlap of the elec
tron wave functions can be neglected. Finally, the 
translational motion of the molecules is also 
neglected. If we neglect the damping of the system, 

it is simplest to use for the calculation of the 
transition probabilities the time shift operator;[3J 
here and below we shall denote this operator by 
the letter S, to distinguish it from the symbol 
for the T product, which is encountered below. 

We shall write the (Schrodinger) Hamiltonian 
of the system in the form [1, 2] 

H = ~1i;o a/+ ~ 1iwlf.clf.:>.+ Clf.:>. 

3 k,A=l,2 

(2) 

where g = ( 27fn )112 e/m; the first two terms form 
the Hamiltonian H0 of the unperturbed system of 
n molecules and of the free radiation field, and 
the last term is the interaction Hamiltonian Hint. 
The energies of the excited and ground states of the 
molecule are measured from the midpoint of the 
distance between the levels. The radiation field is 
represented in the form of a plane wave expansion 
which satisfies the usual periodic boundary condi
tions in the volume V. The operators AkA. and 
AkA. are described by the expressions 

" 
Alf.). + = ~ (ek).S*) exp (- ikRi) cr/, 

i 
n 

AkA= ~ (~).~) exp (ikRi) cri-; 
i 

(3) 

Here ekA. is the polarization vector, ~ is the 
transition matrix element for the isolated mole
cule (summation is over the electrons taking part 
in the transition), and Rj is the coordinate of the 
center of mass of molecule j. 

Equations (2) and (3) contain the operators ut, 
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a.y and a.y acting on the molecule j in the space 
of occupation numbers of n+ excited molecules 
and n_ molecules in the ground state. 

The corresponding state of the molecular sys
tem can be described by a normalized function of 
the form 

n+ n_ 
F (n+, n_) = IT !Jl;-+ IT !Jli"-

;- i" 

::= !jln+ ( • • • j' • · ·) !jln_ ( • • • j" • · •) , (4) 

where 'Pf' and 'Pf" describe (in the occupation 
number space) the states of molecules j' and j ". 
The functions (4), which correspond to the differ
ent energies of the molecular system, and which 
also differ in the permutations of molecules be
tween the groups n + and n_ for one and the same 
energy, form a system of orthogonal basis func
tions of the unperturbed Hamiltonian of the system 
of molecules. 

The radiation field is described by wave func
tionals satisfying the orthogonality and normaliza
tion conditions: 

(<D (Nk,'-n Nk,l-,, .. . ), <D (N~t''-,'' N~o''-!' .. . )) 

Thus, the functions 

'Y = F (n+, n_) <D (Nk,,_,, Nk,>.,, ... ) 

form the basis system of eigenfunctions of the 
Hamiltonian H0 of the unperturbed system. 

(5) 

(6) 

The transitions induced in the system by the 
interaction Hint can be described in the interac
tion representation in the form of a perturbation
theory series for the operator [3] 

S= ~s<m), (7) 
m 

which now, for real transitions with radiation (or 
absorption), in contrast to the case of a single 
isolated molecule, is not cut off at the term sCtl, 
but has a finite number of terms which are 
uniquely determined by the number n+ of excited 
molecules (or n_ molecules lying in the ground 
state). 

Transforming to the interaction representa
tion, it is easy to obtain the following expression 
for the operator Hint 

Hint (t) = g 2} ( wki v) .,, Ck).. + ~ (ek).. s) exp (ikRi) 
k, A=l, 2 1 

,_ 

Xck>. 2} (ek,_ f) exp (- ikRi) exp [i (wo- wk) t] o/. (8) 

Let us find the probability of emission of a 
single photon in the system. We consider the 
case in which there are no photons in the system 
at the initial moment, but in the final state, the 
molecule j' undergoes transition to the ground 
state with emission of a photon (k, A.). The 
initial and final wave functions of the system take 
the form 

Ji) = F(n+, n_)<Do, 

lf>=F(n+-1, n_+i)<Dt(k,/o), (9) 

where .P 0 is the amplitude of the vacuum state. 
Taking (2) and (9) into account, we arrive at the 

following expression for the transition matrix 
element: 

(1) g ( 1 )'!. <f!S Ji)=i/i: wkV (ek,_;)exp(ikRy)Fk(t), (10) 

where for brevity we have introduced the notation 

Fk (t) = exp [i.(wk- w0) t]- 1 
l (wk- wo) 

(lOa) 

The square of the modulus of (10), averaged over 
the directions ~ and summed over all oscillators 
of the field (the usual transition is made from 
summation in k to integration) gives the sought 
value 

(11) 

In the derivation of (11), the well known-represen
tation of the 6-function was used: 

.. ( ) _ 1. _1_ sin2 wt (lla) 
U W - Ill 2 • 

t~co :rt W t 

Up to now, in introducing the phases 
exp ( ik · Rj), we have tacitly assumed that the wave
length of the radiation is smaller than the dimen
sions of the system. As will be seen below, the 
value of the wavelength begins to have a significant 
effect on the properties of the system only in the 
case of spontaneous emission, in which the order 
of the transitions is greater than unity. 

Multiplying (11) by the number n+ of excited 
molecules, we get the probability of emission of 
the photon in the entire system: 

Y V Y 4 e2~wo n+ V (12) 
W = ~ i' n+ ~~ 3 fim2c3 V t. 

Expressions ( 11) and ( 12) describe the radiation of 
isolated molecules and cannot depend on the vol
ume of the system V and the wavelength. The de
pendence on the wavelength in the case of single 
photon transitions arises if we begin to consider 
"mixed" states of the system, the classification 
of which can be carried out according to the 
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scheme proposed by Dicke.C2J 
We now find the probability of emission of two 

coherent photons of the type ( k, A) with transi
tion of the molecules j' and j" to the ground 
state. The wave function of the final state of the 
system has the form 

If>= F(n+- 2, n- + 2)<D2(k, J,.). (13) 

With account of 12), !9), and (13), we get the follow
ing expression for the matrix element: 

<II sc2) I i) 

=- ~: ~;(Elk~.;)2 exp[ik(Ri'+Ri'')]Fk2 (t). (14) 

Taking the square of the modulus of (14), we get 
the factor w- 4 sin4 wt. It is not difficult to show 
by successive integration by parts that 

r sin4 rot d 2 
j~ro=3l't. 

-co 

Thus the function 

3 sin4rot 
{J (ro) = -2 lim ---r-t3 :rt l-+00 ro 

is the usual Dirac o-function. Completely analo
gous to the o-function is the expression 

20 . sin6 rot 
{J (ro) = -11 lrm -----s-ta • 

:rt 1-+00 ro 

The latter representation of the o-function is en
countered in calculation of the probability of 
emission of three coherent photons. In the calcu
lation of radiative transitions of higher order, the 
introduction of exact o-functions becomes cumber
some, and one can use approximate expressions 
obtained from the equations used to define the 
o-function in the derivation of (11), namely: 

I. sin4 rot 1. 1 sin2rot t3 rm--4-= rm---2 - :rt , 
1--><X> ro 1-->c:o :rt ro t 

I. sin6rot 1. 1 sin~rot t5 rm---= rm----:rc 
t-->co ;OJ 6 t--><X> :rt ro2t 

and so forth. Averaging the square of the modulus 
of (14) over the directions ~ and summing over 
the field oscillators, we get 

2Y 8 g4 (~)~ 3 
Wi'i"=15:rt n4cav t. (15) 

We obtain the total probability of emission of two 
coherent photons by multiplying (15) by the num
ber of combinations of n+ elements taken two at 
a time: 

W2Y- C 2W~Y - __±__ g4 (~)2 t3 ..!i n+ - 1 V (15') 
- n+ i'J''- 15:rt n4c3 V V · 

The last formula can also be represented in the 

form 

2Y_~g2~roo !!:±...v 3:rcca(n+-1)t 4 g2~roo t 
W - 3:rt 1i2c3 V t 10ro02V 3Jt ft2C3 • 

(16) 
The second factor is regarded as the probability 
of "collision" between a photon emitted by one of 
the n + molecules and one of the ( n + - 1) re
maining molecules, with the subsequent radiation 
induced by the latter. One can define the 
"collision" time T: 

(17) 

where for (n+- 1)/V- 0 we have T- 00 , i.e., 
the "collisions" vanish for the isolated molecule. 

Finally, let us find the probability of coherent 
emission of three photons ( k, A ) . Again let there 
be no photons in the initial state; in the final state, 
the molecules j ', j" and j"' undergo transition to 
the ground state with emission of three coherent 
photons of the species ( k, A ) • 

The matrix element of transition is defined by 
the equation 

(3) . 1 
<tiS It>= 3!(i7i)a 

X T < f I~ Hint (t1) Hint (t2) Hint (ta) dt1 dt2 dta/ i) • 
0 

Obviously, only the components of Hint ( t) con
taining creation operators of photons contribute 
to the result. Since the matrix elements that 
correspond to the various intermediate (according 
to the indices of the molecules) states correspond 
to equivalent non-connective graphs, the matrix 
element must be multiplied by their number, 
which is equal to 3! The T product symbol can be 
omitted, and we finally obtain 

(31)'1• ( 1 )'/, 
(j' I sea) I i) = -: - ga (ekA ;)a --

(tli)a rokV 

x exp [ik (R;· + Rr + Rr)l Fka (t). 

The probability of emission, after carrying out 
all summations, takes the form 

way=_!!_ gs(p)s n+ n+-1n+-2Vto. (18) 
70:rc 1i6ro0c3 V V V 

The results (12), (15'), and (18) for coherent 
emission do not depend on the wavelength. This 
dependence, as was noted above, arises in the 
(spontaneous) emission of noncoherent photons. 
In the case of spontaneous emission of two non
coherent photons with wavelength much smaller 
than the dimensions of the system, we have for 
the matrix element of the transition with emission 
of the photons ( k, A) and ( k', A' ) (at the initial 
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instant there are no photons) 

<I I s<2> I i) = (ii~z ;: T (t \~Hint (tl) Hint (tz) dtl dtz I i) 
0 

g2 2! ( 1 ) '/, 
= (i!i)2 2T wkwk' vz (ek>. ;) (en·;) 

X [exp (ikRi) exp (ik'Ri') 

+ exp (ik' Ri) exp (ikRi')] F k (t) F k' (t). 

Here we have introduced the factor 2 ! which 
takes into account the number of combinations 
which differ only in a permutation of the indices 
of molecules j and j'. 

We obtain for the transition probability, after 
averaging over the electron motion and the 
phases: 

g4 n2t2 (P)2 1 sin2 [(wk-w0)t/2] 
Wit = 2 fi4 wkwk.V2 -9- n ( Wk - Wo)2 tj4 

1 sin2 [(wk'- w0 ) t/2] 
X n (wk'- Wo)2 tj4 . 

Since photons with different polarization vectors 
are taken, averaging over the directions ~ gives 

-----;l:;-;o2 1 €2 I ek'l.'~ I = 3., · 

We can write for the total probability of emission 
in the system 

wyy - ~ g2"[2Wo 2v ~ R2Pwo n+ -1 v (19) 
'fi.<;L- 3l't !i2c3 V t 3n 7i 2c3 V t, 

i.e., each molecule radiates independently. If the 
wavelength is much greater than the dimensions 
of the system [ exp (ik · Rj) ~ 1], we get for the 
transition matrix element 

21 2 ( 1 ) •;, 
<fiS<2>ji)=2 21 (fn)2 wkwk.v2 (ek~.;)(ek·>.·s)Fk(t)Fk'(t), 

so that in place of (19) we have a quantity that is 
twice as large: 

i.e., the probability of spontaneous emi-ssion of 
each molecule increases under the action of the 
radiation field of the neighbors. 

Assuming, for the sake of simplicity, that the 
number of excitations N0 is the same for all field 
oscillators, one can write down the formulas for 
coherent absorption of one, two, or more photons 
in the presence of the radiation field: 

and so forth. In place of (12), (15'), and (18) we 
get the expressions 

2 2Bi 
T'Vy =- ~_!!:±_ Vt(N + 1) 

3n li2c3 V 0 ' 

(No+ 1) (No+ 2) (No+ 3) 
3!V3 

(21) 

(22) 

We have calculated above the first large per
turbation-theory series terms that contribute to 
the corresponding order of the radiative transition. 
It is not difficult to establish the fact that, for 
example, in addition to the term sen, all odd 
pairs of the form sC2m + 1 l also make a contribu
tion to photon transition. This contribution is 
small in comparison with the contribution made 
by s(l) only when the observation time is short 
in comparison with the time of radiation of the 
single molecule. Thus the element s(3l gives the 
following probability of emission of a single pho
ton in the system (at the initial moment there 
were no photons): 

(23) 

and the corresponding contribution will be small 
if the following inequality is satisfied: 

Equations (21) and (22), being referred to unit 
volume, show that the probabilities of radiative 
transitions of a given order are proportional to 
the corresponding powers of the densities. If n+ 
» n_, that is, inversion has been effected in the 
system, then the system radiates strongly; con
versely, when n_ » n +• the system absorbs 
strongly. 

The condition for the applicability of the "one
photon" probability of radiative transitions from 
an initial state ( N0 = 0) is the inequality: 

wzy 2 g2~t2 n -1 (25) 
wy =T n2w0 +v < 1• 

and in the presence of photons in the system 

wzy 1 g2T2t2 n+ -1 
Wy = T !i2w0 (No+ 2) V < 1. . (25') 
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The inequality (25') is quickly violated as the 
density of photons increases. Taking for our 

estimates ~ 2 ~ 10- 38 and w 0 ~ 1015, we get the 
following inequality from (25): 

t2n+ IV~ 10-9, 

that is, if t ~ 10- 10 sec, then the maximum density 
of excited particles is ~ 10 11 cm 3; if t ~ 10- 8 sec, 
then the corresponding value is ~10 5 cm 3• Thus, 
in a system with sufficiently high molecular den
sities (both excited and in the ground state) many
photon transitions become most probable; the 
probability of these transitions increases rapidly 
upon satisfaction of an inequality which is the 
opposite of (25'), so that the system radiates in 

an extremely strongly bound state. 
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