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The Mandelstam representation is proved for a sixth -order ladder diagram. General suffi­
cient conditions for the validity of the representation are established. 

J. After the work of Landau [1] and of Polkinghorne 
and Screaton [2 J it was made clear that the singu­
larities of the contributions of Feynman diagrams 
are located on analytical surfaces-the Landau 
surfaces. It is still unclear, however, how points 
of the Landau surface can be singular points of the 
contribution on the "physical" sheet. This question 
has come to be of primary importance in connec­
tion with the proof of the Mandelstam representa­
tion in perturbation theory, and the following prob­
lem has arisen: what are the criteria which will 
indicate which points of the Landau surface can 
be singular points of a contribution on the ''phys­
ical" sheet, and whether the Mandelstam repre­
sentation is valid for an arbitrary diagram? 

In the proofs of the Mandelstam representation 
for particular diagrams and classes of diagrams 
given by a number of authors, original methods 
have been proposed for investigating the analyti­
cal properties of the contributions of Feynman 
diagrams. We may mention the papers of Mandel­
starn, [3] Tar ski, C4J Vladimirov, [ 5] Gribov and 
Dyatlov, [S] and Rudik and Simonov. C7J Without 
belittling the significance of these papers, we note 
that they fail to some extent to utilize the fact that 
the singularities of the contributions are located 
on the Landau analytical surfaces (the paper of 
Tar ski C4J is an exception), and do not establish 
any general criterion for the validity of the Man­
delstam representation. 

In a paper by Eden and othersC8J the proposi­
tion is developed that the Mandelstam represen­
tation is valid if the Landau curves have no iso­
lated singularities in a definite region. This cri­
terion is presented in [B] without proof, and for 
the proof reference is made to another paper by 
Eden, [s] in which there are several incorrect 
statements and inaccuracies. It seems to us that 
this criterion is not true in the general case, and 
a contribution can have complex singularities even 
when there are no isolated singular points. 

In recent papers by the present writer [10] a 
continuity theorem has been used to obtain a gen­
eral criterion for the validity of the Mandelstam 
representation. It was found that from the behav­
ior of the Landau curves (i.e., from the intersec­
tions of the Landau surfaces with the real plane) 
one can determine whether the Mandelstam repre­
sentation is valid. Roughly speaking, this criterion 
states that the Mandelstam representation holds 
for the contribution of an arbitrary diagram if the 
real points of intersection of the Landau surfaces 
with definite planes do not go over into complex 
points (whether this situation is possible is com­
pletely determined by the behavior of the Landau 
curves ) . In the present paper this criterion is 
made more precise, and the Mandelstam repre­
sentation is proved for a sixth-order ladder dia­
gram (particles of equal masses m = 1 are con­
sidered). 

2. The contribution F ( s, t) of the sixth -order 
ladder diagram (see figure, diagram a) is a holo­
morphic function in the region B ( s, t I s < 4, t < 9 ) , 
and also in a region D which contains: 1) all points 
( s, t) with Im s and Im t of the same sign, and 
2) all those points with Im s and Im t of opposite 
signs that lie on the analytic surfaces 

as + bt = c, a > 0, b > 0, a2 + b2 = 1 (1) 

with[10 ] c < 4a + 9b. In addition to this, the func-
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tion F ( s, t) can be analytically continued to any 
point of the space C2 of the two complex variables 
s, t, with the possible exceptions of points located 
on the Landau surfaces: 

bj > 0, which converge to an analytic plane Er: 
ars + brt =cr. where 

lim ai = ar, 
J-->00 

lim bi = br, 
j--+CO 

lim Cj = CJ. 
J-->00 

t=s- 4[4(1+-2 ) 3-3(1+-2 )-1], 2 s-4 s-4, 
(2) We mark out on the planes Ej, Er finite regions 

Gj, Gr such that 

t 2 - 5t + 4 
s = 4 t2 - St + 4 ' (3) 

t = 1 + 2 [ 1 + cos (a + ~ ) r 
r ( :n: \ J sin (a + nj3) 

-2(1-f-cosa)l1-f-cos a-f- 3 ) sina , 

s = 1 -i 211 + ros al 2 - 2 (1 -f- coso:) 

X [ 1 + cos (a + ~ ) J sin (~n_; :rt/3) , (4) 

t2 - 6t + 9 
t = 4 t2 - 1 Ot + 9 ' (5) 

s = 4, s = 9, t = 9. (6) 

The surfaces (2)- (5) give the singularities of 
the diagrams a, b, c, d, respectively. Equation (2) 
was obtained in a paper by Okun' and Rudik, [tt J 
and Eq. (4) in a paper by Kolkunov, Okun', and 
Rudik. [12 ] Equations (3) and (5) can be obtained 
by an elementary calculation. 

It must be pointed out that the surface (3) does 
not contain any point that would correspond to posi­
tive Feynman parameters. It turns out that the 
Landau equations for diagram b are soluble only 
for a 4 = - a 6, where ai is the parameter for the 
i-th line of diagram b. The fact that this diagram 
and even entire classes of diagrams that are in a 
certain sense related to it have no essential singu­
larities which would correspond to positive Feyn­
man parameters has been pointed out in papers by 
Eden, [13 ] Islam, [14 ] and Rudik and Simonov. [ 7] 

We wish to prove that the function F ( s, t), or 
more exactly that branch of it which is defined in 
a region B U D by means of Feynman integrals and 
is holomorphic in this region, and whose possible 
singularities are located on the surfaces (2)- (6), 
admits of analytic continuation to the region con­
sisting of the direct product of the s and t planes 
with the cuts Im s = 0, Res ~ 4 and Im t = 0, 
Ret ~ 9 excluded. When this is true we shall say 
that the function F ( s, t) is holomorphic on the 
"physical" sheet. 

For this purpose we use the theorem of conti­
nuity. We shall formulate this theorem [ 15 -1 7] in 
a way convenient for this use. We consider a se­
quence of analytic planes Ej: ajs + bjt = Cj, aj > 0, 

lim G1 = Gr, 
)-->eo 

The continuity theorem states that: If the regions 
Gj and their boundaries 8Gj belong to the region 
of holomorphy of the function F ( s, t) and the 
boundary 8Gr also belongs to the region of holo­
morphy, then the region Gr also belongs to the 
region of holomorphy. 

Previously [10] we considered a continuous layer 
of planes as + bt = c, with a and b fixed and the 
parameter c varying continuously, c < cr. In this 
case the statement of the continuity theorem was: 
If a function F ( s, t) is holomorphic in the regions 
G ( c ) for c < cr and at a single point of the region 
G ( cr), then it is holomorphic in the entire region 
G(cr). Here limG(c)=G(cr). Bymeansofthis 
theorem we established for c = c1 criteria for the 
holomorphy of the contributions on the "physical" 
sheet which allow us to prove the Mandelstam rep­
resentation for some comparatively complicated 
diagrams. As will be shown below, this latter type 
of continuity theorem is not adequate to prove for 
the ladder diagram a that the function F ( s, t ) is 
holomorphic on the "physical" sheet. One can 
prove this, however, by applying the more general 
continuity theorem. 

Let us consider the intersections of the planes 
(1) with c > 4a + 9b with the surfaces (2)-(5). It 
can be shown by elementary manipulations that 
there exists a number a 0, 0 < a 0 < 1, such that as 
the parameter c > 4a + 9b increases the real points 
of intersection of the surfaces (2)- (5) with the 
planes (1) do not become complex for 0 < a < a 0 

[wecallapoint (s,t) with IImsl >"0, IImtl >"0 
complex, and a point with Im s = 0, Im t = 0 real; 
for 0 < a < 1 only such points can lie on the planes 
(1)]. If, on the other hand, a 0 ~a< 1, then there 
exists a number c = c 0 (a, b) such that two points 
of intersection of the surface (4) with the planes 
(1) that are real for c = c 0 (a, b) become complex 
for c > c0 (a, b). This is a consequence of the fact 
that the curve (4) consists of two branches; one of 
them is located in the region s > 9, t > 9 and has 
negative slope and is convex downwards, and the 
other, located in the region 4 < s < 9, t < 9, has 
negative slope and is convex upward. A straight 
line as + bt = c 0 (a, b), a 0 ~ a < 1, touches this part 
of the branch. It can also be shown that for c > 4a 
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+ 9b all complex points of intersection are finite. 
As the parameter c > 4a + 9b increases, complex 
points of intersection can become real. We denote 
by c 1, c2, . • • those values of the parameter c at 
which complex points of intersection become real. 

3. After these preparatory remarks we proceed 
to the proof that the function F ( s, t) has no com­
plex singular points on the "physical" sheet. Pos­
sible complex singular points of the function F ( s, t) 
on the "physical" sheet can lie only on the inter­
sections of the surfaces (2)-(5) with the plane (1) 
for c > 4a + 9b. We shall show that the existence 
of complex singular points on the ''physical'' sheet 
contradicts the continuity theorem. 

Let us consider the planes (1) for a fixed value 
of a in the interval 0 < a < a 0• On these planes we 
mark out a region G1 containing all complex points 
with Im s > 0, Im t < 0. On the planes (1) with 4a 
+ 9b ~ 5! < c 1 we take finite simply connected re­
gions G( c) c G1 which depend continuously on the 
parameter c and contain all of those complex 
points of intersection of the plane (1) with the sur­
faces (2)-(5) for which Im s > 0, Im t < 0. We 
construct a region D' (a, c1 ) consisting of the union 
of the regions G1 for c < 4a + 9b and the regions 
G1 - G (c) together with some neighborhood of the 
boundaries BG(c) for c 1 > c?: 4a + 9b. There­
gion D'(a, c1 ) is simply connected, and for a suit­
able choice of the neighborhoods of the boundaries 
BG( c) it does not contain any singular points of the 
function F ( s, t). Therefore the function F ( s, t) is 
holomorphic in the region D' (a, c1 ) . The bounda­
ries BG ( c ) of the regions G ( c ) are contained in 
the region D'(a,c 1 ), and consequently in there­
gion of holomorphy of the function F ( s, t ):..._Also 
for c < 4a + 9b we can mark out regions G ( c ) 
c G1 which depend continuously on c and are 
suchthat limG(c)=G(4a+9b) for c-4a+9b. 
These regions are contained in the region of holo­
morphy of the function F ( s, t ) . Applying the con­
tinuity theorem, we find that also for c1 > c ?: 4a 
+ 9b the regions G ( c ) are contained in the region 
of holomorphy of the function F ( s, t), and the 
function F ( s, t ) will be holomorphic in the re­
gions G1 for c < c 1. We can now repeat the ar­
guments given above for c 1 ?: c > c 2, and so on. 

Thus for any fixed a in the interval 0 < a < a 0 

the function F ( s, t) is holomorphic in a region 
D (a, oo ) which consists of the union of the regions 
G1 for - oo < c < oo • The union of the regions 
D (a, oo) for 0 < a < a 0 is a simply connected re­
gion which we denote by Da, and the function 
F ( s, t) is holomorphic in the region Da o. If, on 
the other hand, the parameter a is in the interval 
a 0 ~a< 1, then for c > c 0(a, b) there arise new 

complex points of intersection of the surface (4) 
with the plane (1), which were real for c = c 0( a, b). 
Therefore for c > c 0 (a, b ) it is in general impos­
sible to construct simply connected regions G ( c ) 
which depend continuously on the parameter c and 
contain all of the complex points of intersection, 
and which together with their boundaries are con­
tained in the regions G1, with the boundaries BG ( c ) 
not intersecting the surfaces (2)-(5). 

By the method just described we can only show 
that there are no complex singular points in the 
regions G1 for c ~ c 0 (a, b ) . [ The fact that the 
function F(s, t) is holomorphic in the region Da 
can be proved by using only the second variant of 
the continuity theorem. [to]] It turns out, however, 
that the complex points of intersection of the planes 
(1) with the surfaces (2)-(5) for a 0 ~a< 1 and 
c > c 0( a, b) are also not singular points of F ( s, t ). 

To prove this, we proceed in the following way. 
We consider regions G1 located on the planes (1) 
for a 0 ~a< a 0 + E < 1, c 0(a,b) < c < c 0(a,b) + o, 
where the numbers E, o are chosen so that in the 
interval c 0(a, b) < c < c 0(a, b) + o and for a 0 <a 
< a 0 + E the complex points of intersection do not 
become real. We mark out finite simply connected 
regions G ( c, a) c G1 which depend continuously 
on the parameters a and c and contain all of the 
complex points of intersection with Im s > 0, 
Im t < 0. [For c > c 0( a, b) this construction can 
be carried out.] We now adjoin to the region Da 
the regions G1 - G ( c, a) together with neighbor­
hoods of the boundaries BG( c, a). The resulting 
region will be simply connected, and with a suit­
able choice of the neighborhoods of the boundaries 
BG ( c, a) will not contain any singular points of 
the function F ( s, t). Consequently, the function 
F ( s, t) is holomorphic in this region. It is clear 
from the construction that the boundaries ElG( c, a) 
are contained in this region-that is, they are con­
tained in the region of holomorphy. For a < a 0 we 
mark out regions G( c, a) c Gt which depend con­
tinuously on the parameters a and c and are such 
that lim G( c, a) = G( c, a 0 ) for a- a 0. The regions 
G ( c, a) for a < a 0 are contained in the region of 
holomorphy of the function F ( s, t). Applying the 
continuity theorem, we find that the regions G(c, a) 
for a0 ~a<a0 +E and c 0(a,b)<c<c0(a,b)+o 
are contained in the region of holomorphy of the 
function F(s, t). 

Thus the function F ( s, t) will be holomorphic 
in the regions G1 also for a 0 :S a < a 0 + E and 
c < c 0(a, b)+ o. For c > c 0(a, b)+ o the real 
points of intersection do not become complex, and 
we can carry out the same arguments as for a 
< a 0• The final result is that the function F ( s, t) 
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is holomorphic in the regions D (a, oo ) for a 0 ~ a 
< a 0 + E. Adjoining these regions to the region 
Da we get a simply connected region Da + E in which 
the function F(s, t) is holomorphic. Continuing this 
process, we prove that the function F(s, t) is holo­
morphic in a region D1 which contains all complex 
points with Im s > 0, Im t < 0. 

By precisely similar agruments we show that 
the function F ( s, t) is holomorphic in a region D2 

which contains all complex points with Im s < 0, 
Im t > 0. The function F ( s, t) was holomorphic 
in a region BUD. It admits of analytic continu­
ation to the regions D1 and D2• Therefore the 
function F ( s, t ) is holomorphic everywhere with 
the exception of points that are located on the 
hypersurfaces s = c > 4, t = c > 9; i.e., it is holo­
morphic on the "physical" sheet and has a Man­
delstam representation (under the condition that 
it behave suitably at infinity). 

4. An attentive reader has probably not failed 
to note the fact that our arguments are of a very 
general nature and can also be transferred to other 
cases without any essential changes. In fact, by 
using the continuity theorem, one can prove the 
following general result. Suppose we are given 
the contribution F( s, t) of an arbitrary diagram, 
and let the function F ( s, t) be holomorphic in the 
real region B ( s, t I s < ni, t < n~); then complex 
singular points of the function F ( s, t) can exist on 
the "physical" sheet only if there exists a function 
c 0( a, b) > nia + n~b which is defined and continuous 
for all a in the interval 0 < a < 1, and if also there 
are real points of intersection of all planes as + bt 
= c 0(a, b) with the Landau surfaces which for c 
> c 0 (a, b) become complex points of intersection. 
Geometrically this means that complex singular 
points of the function F ( s, t) can appear only if 
outside the region B there is a part of a Landau 
branch which is convex upward and has negative 
slope, and is such that: 1) its tangents are straight 
lines as + bt = c 0 (a, b); 2) the parameter a runs 
through all values in the interval 0 < a < 1; and 
3) c 0( a, b) > nia + n~b, or else in the region s > ni, 
t > n~ there is an isolated singular point or another 
singular point which "generates" complex points 
of intersection. (This geometrical interpretation 
is of course incomplete.) 

In previous papers [10 ] a theorem has been 

proved, according to which the function F ( s, t) is 
holomorphic in the ''physical'' sheet provided that 
real points of intersection do not become complex 
for c > nia + n~b and all 0 < a < 1. From the re­
sults of the present paper it follows that the func­
tion F ( s, t) will be holomorphic op. the ''physical'' 
sheet also in cases in which for c > nia + n~b and 
some values of a in the interval 0 < a < 1 real 
points of intersection become complex; all that is 
important is that real points of intersection should 
not become complex for all a in the interval 0 < a 
<1. 
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