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Caustics are formed by the multiple reflection of rays from an elliptic mirror. The caustics 
can form ellipses or hyperbolas that are contained within the elliptical mirror and have the 
same foci. "Quantization" conditions that must be satisfied by the caustics and the rays are 
derived and the geometric meaning of these conditions is elucidated. This approach can be 
used to analyze the characteristic oscillations of certain open resonators; the oscillation re­
gions are bounded by caustics and thus exhibit low diffraction losses. These results are gen­
eralized to arbitrary two-dimensional wave fields bounded by caustics. A method of designing 
mirrors with specified caustics is given. 

MANY properties of open resonators follow as a 
consequence of geometric optics; for example, we 
can consider the formation of caustics that bound 
regions in which certain characteristic oscillations 
can occur. It is of interest to examine the relation 
between geometric optics and the theory of open 
resonators. We consider two -dimensional prob­
lems, in which case this relation is found to be a 
very natural one. The simplest example is the 
problem of elliptic mirrors, which we consider 
first; we then generalize the results to the case of 
mirrors and caustics of arbitrary form. 

1. GEOMETRIC OPTICS OF ELLIPTIC MIRRORS 

Consider the ellipse shown in Fig. 1; light rays 
lying in its plane can be reflected from this ellipse, 
which will be called the mirror ellipse. After a 
number of reflections a beam of light originally co­
inciding with the segment AB will cover some def­
inite part of the area within the elliptic mirror; 
part of this area will also remain uncovered by 
the beam. In Fig. 1 we draw an ellipse which is 

FIG. 1 

confocal with the mirror ellipse and tangent to the 
ray AB (this will be called the inner ellipse). The 
ray BC, which is the reflection of ray AB in the 
mirror ellipse, is also tangent to the inner ellipse. 
This is a consequence of a well known theorem in 
geometry ( cf. for example [iJ). It is obvious that 
in all subsequent reflections the ray will always be 
tangent to the inner ellipse. Thus, the inner ellipse 
represents an envelope for this family of rays, that 
is to say, the inner ellipse is a caustic. 

The considerations given above refer to the case 
in which the initial ray intersects the major axis 
of the ellipse to the right or left of the two foci. 
However, if the original ray intersects the major 
axis of the ellipse between the foci (Fig. 2) the 
caustics will be hyperbolas that are confocal with 
the mirror ellipse while the rays will cover the 
area between the branches of the hyperbola. The 
case of hyperbolic caustics can lead to certain 
complications. After being tangent to one branch 
of the hyperbola the light ray may experience sev­
eral reflections (rather than a single reflection) 
from the mirror ellipse before it becomes tangent 
to the other branch of the hyperbola. Thus, after 

FIG. 2 
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several reflections the ray itself is not tangent to 
the hyperbola; rather, its geometric extension out­
side the area bounded by the ellipse plays the role 
of the tangent. However, this complication does 
not introduce any fundamental difference in the 
problem. 

It will be evident that these constructions have 
direct significance for open resonators. In the 
case of hyperbolic caustics it is clear that a light 
ray propagating inside the ellipse will not go be­
yond the region bounded by the two branches of the 
hyperoola; hence, certain portions of the ellipse, 
for example the arcs R1N1P 1 and R 2N2P 2, can be 
removed. Thus, one obtains an open resonator in 
which two mirrors, segments of an ellipse, contain 
a system of rays bounded by caustics. In going 
from the geometric -optics description to the more 
accurate wave description it is found that the wave 
field as a whole does actually penetrate beyond the 
caustics; hence, the mirror cannot be formed by 
the caustic itself but must be extended (for exam­
ple the upper mirror must reach the points Q1 and 
Q2 ) in order to keep the radiation losses at a min­
imum. 

Elliptic caustics can be realized in an open 
resonator formed by the arc of a mirror ellipse 
if it is bounded at the ends by mirrors that lie 
along hyperbolas that are confocal with the mirror 
ellipse and extend from the mirror ellipse to the 
inner ellipse and somewhat beyond. In a resonator 
of this kind the caustic is a segment of an ellipse 
confocal with the mirror ellipse (Fig. 3). Elliptic 
caustics are analogous to circular caustics in a 
cylindrical resonator and the open resonator shown 
in Fig. 3 is an open sector of such a resonator 
(cf. [2J). 

2. QUANTIZATION CONDITIONS 

Thus, according to geometric optics any ellipse 
or hyperbola that is confocal with a mirror ellipse 
can play the role of a caustic. Actually, however, 
at a given frequency only those ellipses or hyper­
bolas that satisfy a "quantization" condition can 
actually be caustics. These conditions determine 
the resonance frequencies of the open resonator; 

In view of its two-dimensional nature one ex­
pects that the system will have two quantum num­
bers. It is evident that those quantities will be 
quantized which are invariant, i.e., quantities that 
are independent of the initial direction of the ray. 
The first condition, which can almost be written 
by inspection, is that the length of the closed caus­
tic must equal a whole number of wavelengths; the 
length of the caustic contiguous to the reflecting 
mirror must be a whole number of half wave­
lengths. The second condition is less obvious. It 
is known from geometry [i] that the difference be­
tween the total length of two tangents to an ellipse 
S1B + S2B and the length of elliptic arc S1S2 is a 
constant if the tangents intersect on a confocal 
ellipse (see Fig. 1 ) . It is then reasonable to set 
this difference also equal to an integral number 
of wavelengths. 

The application of the first condition to the el­
liptic caustic (Fig. 1) leads to the formula 

2" 

y ~ V ch2 so- sin2 £ d£ = 2mn, (1)* 
0 

where ~ and t are elliptical coordinates; these 
are related to the Cartesian coordinates x and z 
by the expressions 

x = d ch s sin £, z = d sh ~ cos s, (2)t 

where d is half the distance between the foci while 
the parameter v is 

'Y = kd, 

where k = w/c = 27T/i\. is the wave number corre­
sponding to the angular frequency w or the wave­
length i\.. 

In order to express the second condition in ana­
lytic form we calculate the difference between the 
total length of the two tangents S1B and BS2 and 
the elliptic arc S1S2• To calculate this difference 
we determine the difference of the phase advances 
kds 1 - kds 2• It follows from Eq. (2) that the phase 
change along the tangents is 

whereas the phase change along the inner ellipse 
t = to is 

kds2 = v ( d£ / d~) 1' ch2~0 - sin2 £ d~, 

where the derivative ( dUdt) is computed along 
the tangent S1B. Thus 

*ch =cosh. 
tsh = sinh. 
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kds1- kds2 = v{l'(ch2 \;- sin2 s) [1 + (ds I d\;) 2] 

- ( ds I d\;) "fch2\;o - sin2 s} d\;. (3) 

The equation for the tangent to an ellipse pass­
ing through ~ 0 and to has the following form in 
elliptical coordinates: 

A ch \; sin s + B sh \; cos s = C, A = sh \;o sin so, 

B = ch \;o cos so, C = sh \;o ch \;o. 

Differentiation with respect to t yields 

ds B ch \; cos s + A sh \; sin s 
df = B sh \; sin s - A ch s cos s 

(4) 

(5) 

This relation is easily transformed by means of 
the identities 

B ch ~ cos s + A sh s sin s 

= l' ( ch2 so - sin2 so) ( ch2 \;o - sin2 s)' 

B 'h ~ sin \; -A ch \; cos 6 

~' 
r ~ Jfch2 so- sin2 sds = mn, (8) 

~. 

while the second quantization condition (7) remains 
unchanged. 

In the case of hyperbolic caustics the first quan­
tization condition 

~ 

r ~ V ch2 s - sin2 sod\; = nn (n=1,2, ... ) (9) 
-~ 

means that the length of the caustic contiguous to 
the mirror is equal to a whole number of half 
wavelengths. The second quantization condition 

a. 
r~ Vsin2 so-sin2 sds = mn 

-~. 

(m = 0, 1, 2, ... ) (10) 

is equivalent to the statement that the length of the 
curve P 1S1BS2P 2 (cf. Fig. 2) is equal to a whole 

= y(ch2 \;o- sin2 so) (ch2 \;- ch2 \;o). 

In order to prove the first identity we square 
both sides of Eq. (4): 

(6) number of half wavelengths. The equation t = ± t 
defines the position of the elliptic mirrors while 
the equation ~ = ± ~ 0 defines the position of the 
hyperbolic caustics. 

A2 ch2 \; sin2 s + 2AB ch s sh \;sins cos s 

+ B2 sh2 \; cos2 s = C2. 

Carrying out an obvious transformation we find 

(B ch \;cos s +Ash\; sin s) 2 = C2 - A 2 sin2 s + B 2 cos2 s. 

Substituting the values of A, B, C, on the right side 
and taking the square root of both sides we obtain 
the first identity (6). The second identity is proved 
in the same way. 

Substituting these identities in Eq. (5) we have 

d6/ ds = l' ( ch2 so- sin2 s) I ( ch2 s- ch2 so). 

Correspondingly, Eq. (3) becomes 

kdsl -- kds2 = vl'ch2 \;- ch2 \;0 d\;. 

The same expression is obtained for the tangent 
BS2• Hence the difference between the total length 
of the tangents and the length of the elliptical arc 
s1s2 is 

~ 

k (SIB + BS2- S1S2) == 2y ~ Jf ch2 \; - ch2 sod\;, ,, 
where t = t is the equation of the mirror ellipse. 
The second quantization condition becomes 

The quantization conditions introduced above 
can be used to compute both the position of the 
caustics (i.e., the parameters to or ~ 0 ) as well 
as the oscillation frequency (i.e., y, k, or w ). 
These conditions are analogous to the Bohr­
Sommerfeld conditions in quantum mechanics. In 
the next section we show that these conditions are 
essentially the same as those obtained by a more 
rigorous analysis. 

3. RIGOROUS DERIVATION OF THE QUANTIZA­
TION CONDITIONS 

In order to carry out a rigorous analysis of the 
wave field we start with the two-dimensional wave 
equation 

iJ2<D I fJx2 + fJ2<D I dz2 + k2<D = 0 (11) 

using the boundary conditions at the mirrors. In 
what follows we shall make use of the simplest 
boundary condition 

([) = 0. 

In elliptic coordinates (2) Eq. (11) becomes 

fJ2<D I fJs2 + fJ2<D I fJ\;2 + '\'2 ( ch2 \;- sin2 s) <D = 0 

(12) 

r ~ V ch2 s - ch2 sods = nn 
and allows separation of variables, i.e., we can 

(n = 1, 2, ... ). (7) obtain particular solutions of the form 
t;, 

If the elliptic caustic is only partially realized 
~ 1 < ~ < ~ 2 (cf. Fig. 3) the first quantization con­
dition (1) is modified as follows: 

<D = X(s)Z(\;). 

The functions X and Z are the solutions of the 
ordinary differential equations 
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d2X I d£2 + v2 (x- sin2 !;)X= 0, (13) 

d2Z I d~2 + v2 (ch2 ~- x)Z = 0. (14) 

When K < 1 we put K = sin2 ~ 0 and the coefficient 
of X in Eq. (13) vanishes at ~ = ~ 0 • When K > 1 
we put K = cosh2 to and correspondingly the coef­
ficients of Z in Eq. (14) vanish when t = t 0. It 
will become clear below that the equations ~ = ± ~ 0 
and t = to determine the shape and position of the 
caustics. 

Let us now consider the solution of Eq. (13) 
when K = cosh2 t 0• Since we assume that all di­
mensions of the mirror ellipse are much greater 
than the wavelength, Eq. (13) will contain the large 
parameter v » 1; this situation can be used to 
simplify the solution of the equation. We expand 
the solution in powers of the reciprocal of this 
large parameter, obtaining as a first approxima­
tion, 

X = const [y2 (ch2 ~ 0 - sin2 £)r'1• 

X exp [ + i ~ V~ ~0 - sin2 !;d!;]. (15) 

This is the semiclassical or WKB approximation. 
Evidently the solution (15) must be periodic in ~: 

X(!;) =X(!;+2n), 

which immediately leads to the quantization condi­
tion in (1). 

For the resonators shown in Fig. 3, the period­
icity condition is replaced by the boundary condi­
tions (12) at the mirrors ~ = ~ 1 and ~ = ~ 2 in which 
case the function X is taken in the form 

a 
X= const[y2 (ch2 ~0r- sin2 £)]-'!•sin [r ~ Vch2 ~0 - sin2 !; ds]. 

l'.t 

In this case the quantization condition in (8) is 
obtained. 

When K = cosh2 to and t > to we can solve Eq. 
(14) in similar fashion, obtaining 

t 

xsinJr) Vch2 ~- ch2 ~o d~+ cro]. (16) 
,, 

When t < to the solution is of the form 

where C0, Cto and C2 are constants. None of these 
solutions apply near t = to because at this point 
the large parameter y2 is multiplied by the small 
quantity cosh2 t - cosh2 t 0• Since the solution 
cannot grow exponentially as t diminishes, the 
constant C2 must be set equal to zero. Thus, Z 
is oscillatory when t > to and dies out exponen­
tially when t < t 0• The equation t = to defines 
the caustic. In order to connect the solution on 
both sides of the point t 0, i.e., to choose the phase 
constant cp 0 in Eq. (16), it is necessary to carry 
out a more complete analysis. 

For large values of y, an approximate repre­
sentation_ of the function Z over the entire range 
0 ~ t ~ t (including the point t 0 ) is 

Z =Co[ -t I v2 (ch2 ~- ch2 ~o)] ''•v(t), (18) 

where the variables t and t satisfy the relations 

l; 

%<- t)'f, = r ~ Vch2 ~- ch2 ~o d~ for ~ > ~o. 
l;, 

l;, 

2fat'!. = r ~ v ch2 ~0- ch2 ~ d~ for ~ < ~o. (19) 
l; 

where v(t) is the Airy function, which falls off 
exponentially as t --.... oo • When t --.... - oo this func­
tion can be given by the asymptotic expression 

v(t) = (-t)-'i•sin (2/3 (-t)''•+nl4]. (20) 

There is also a second Airy function u ( t) which 
increases exponentially when t --.... oo • This solution 
is discarded for the same reason that we have writ­
ten C2 = 0 in Eq. (17). The properties of the Airy 
function are given by Fock [3•4]. The derivation of 
Eqs. (18) and (19) can also be found in [3J. 

If t > t 0, and we consider points far away from 
the caustic so that -t » 1, using Eq. (20), we can 
write Eq. (18) in the form 

l; 

x sin [ r ~ V ch 2 ~ - ch 2 ~ 0 d~ + nf 4] . (21) 

'· 
Thus, the constant cp 0 = rr/4 in Eq. (16). If the so­
lution in (21) is to satisfy the boundary condition 
at t = t the following condition must be satisfied: 

r ~ J/ch2 ~- ch2 ~od~ = (n - 114)'Jt. (22) 
;;, 

The condition (22) differs from (7) in that it con­
tains n - Y4 rather than n. The significance of 
both expressions is the same, but (22) takes ac-

(1 7) count of the fact that the geometric -optics analy­
sis [Eq. (16)) does not apply near the caustic t = t 0• 
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If one considers only those rays for which t > to 
(far from the caustic) in accordance with Eq. (20) 
it is necessary to take account of the fact that the 
phase of a ray going away from the caustic differs 
by rr/2 from that computed on the basis of geo­
metric optics using the phase of the incoming ray. 
This is the so-called "phase jump" at a caustic 
( cf. for example [5 J) and it means that n is re­
placed by n - Y4 in the quantization condition (22). 

Now let K = sin2 ~ 0 • We first consider Eq. (14). 
Since the coefficient of Z does not vanish at any 
point the semiclassical approximation applies over 
the whole range of variation of t so that 

If the parameter ~ 0 is small Eqs. (9) and (26) 

reduce to the approximate expression derived by 
one of the authors [SJ for cylindrical mirrors. In 
this case sin ~ can be replaced by ~ and Eq. (26) 
assumes the form 

~ 1 
r ~ V£o2- £2 d£ = ( m + 2) ~ (m=0,1,2, ... ) 

or 

(27) 

Making the analogous approximations in Eq. (9) 

we find 

~ £ 2 

r~chq1- 2 c~2 s)ds = n ~ 
0 

(23) or 

The quantization condition (9) is obtained from the 
boundary condition (12) at the mirrors t = ± f; for 
odd values of n the cosine is used in Eq. (23) while 
even values of n require the sine. 

The function X (with K = sin2 ~ 0 ) can no longer 
be given by the semiclassical approximation 

~ 

X= [ 2(. 2£ C . 2£)]'/ c~s [r~Vsin2 ~-sin2 £od£] r sm 0 - sm • sm 0 

(24) 
since the difference sin2 ~ - sin2 ~ 0 vanishes when 
~ = ± ~ 0 , i.e., on the hyperbolic caustics. The use 
of the sine or cosine is determined by the symme­
try of the problem since the characteristic func­
tions must be either even or odd functions of ~. 

Using the Airy function we obtain the following 
expression for the function X for the range 0 :s ~ 

< ~0 

C' 
X= lr2(sin2£o-sin2£)j'i• 

a, 
X sin [ r ~ Jl sin2 So- sin2 £ d£ + ~ J' 

a 

this coincides with Eq. (24) when 

(m=0,1,2, ... ), 

(25) 

(26) 

where odd values of m correspond to the cosine in 
· Eq. (24) and even values of m to the sine. This 
condition differs from (10) in that m is replaced 
by m + Y2; as before, this as associated with the 
phase jump at the caustic, i.e., the difference 
arises because geometric optics does not apply 
near the caustic. 

'\' sh [- 1I2'V£o2 arc sin th \; = mt I 2. (28)* 

Introducing the notation 

l = dsh \; 

and 

a= arc sin th ~=arc sin l'l I r0, 

where r 0 = d sinh2 f/cosh f is the radius of curva­
ture of the mirrors at the point ~ = 0, and 2l is 
the distance between mirrors, using the relation 
in (27) we can write Eq. (28) in the form 

2kl = nn + (2m+ 1)a, (29) 

in accordance with [6]. 

It should be emphasized that the approximate 
formulas written above apply only if the wave­
lengths are small. This means that the quantiza­
tion numbers m and n must be large (either one 
or both). Equation (2 9) applies for large n and 
reasonably small m. 

As shown in [6] there is a rough analogy be­
tween the quantum mechanics of the harmonic 
oscillator and the wave optics of cylindrical mir­
rors when ~ 0 « 1. Equation (27) corresponds to 
the "half-integral" quantization of the oscillator 
energy in contrast with the "integral" quantiza­
tion that follows from Eq. (10). 

4. MIRROR AND CAUSTICS 

A number of general conclusions can be drawn 
from the preceding sections if one takes account 
of the following considerations. Assume that we 
are given a closed convex curve in a plane (Fig. 4). 
from a point A two tangents are extended to this 
curve. Next, consider the geometric location of 

*th =tanh. 
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FIG. 4 

the point A for which the perimeter of the figure 
AS1S0S2A is a constant; this curve may be called 
a hi-involute. It can be shown that the tangents 
S1A and S2A make equal angles at A with the nor­
mal to the hi-involute. 

The inverse statement also holds. If the normal 
to a curve forms at each point equal angles with the 
tangents to some other curve S0S1S2 the perimeter 
of the figure AS1S0S2A is a constant regardless of 
the position of A. 

If the hi-involute is a mirror then the original 
curve is a caustic, that is to say, the original curve 
is the envelope of the family of rays reflected from 
the hi-involute. As we have already seen in the 
case of the elliptic mirror, only those caustics can 
be realized which satisfy the quantization condi­
tions. 

There are also quantization conditions that apply 
in the general case. The first quantization condi­
tion requires that the perimeter of the closed caus­
tic must be equal to a whole number of wavelengths; 
the perimeter of the caustic contiguous to the mir­
ror must also be equal to a whole number of half 
wavelengths. The second quantization condition, 
when modified by the general corrections obtained 
in Sec. 3, states that in the case of a single closed 
caustic (Fig. 4) the perimeter of the figure AS1S0S2A 
must consist of a whole number of wavelengths 
minus a quarter wavelength. However, if the caus­
tic consists of two branches (as in Figs. 2 and 5) 
the length of the curve P 1S1BS2P must be equal to 
an odd number of quarter wavelengths. The first 
condition follows from the fact that at sufficiently 
short wavelengths the phase velocity along the 
caustic is c. The second condition follows from 
the requirement that the field must be single­
valued; in this formulation it is assumed that the 
caustic has finite curvature (and that the radius 
of curvature is appreciably greater than the wave­
length). 

The considerations given above offer a method 
for graphical construction of mirrors with speci-

I 
FIG. 5 

fied caustics. This problem is encountered, for 
example, in the design of quantum oscillators. 

Suppose that the caustics are to be two circles 
(Fig. 5). Using this example we shall show how 
the method of construction must be modified when 
the ray experiences more than one reflection from 
a given mirror in going from one caustic to an­
other. We first stretch a flexible wire along 
0 1S1BS20 2• Then, inserting a pencil at point B 
and holding the wire taut we trace out the curve 
between points C1 and C2• These points lie on 
the common tangents to the two specified circles. 
The small segments of the mirror C1D1 and C2D2 

are constructed in a different way; specifically, 
the wire is stretched from one of the circles. For 
example, to plot the segment C1D1 the wire must 
be stretched along SQFP01. Then we trace out 
the segment C1D1 from the condition that the dif­
ference of the lines SQF and FP01 is a constant. 
In the present case, in which the caustics are 
circles, the segment C1D1 is a straight line. In 
the last construction we use the fact that the plot­
ted curve bisects the angle between the wires 
(or the tangents ) . 

CONCLUSION 

We have shown in this work that oscillations in 
open resonators bounded by caustics can be ana­
lyzed in terms of geometric optics. This approach 
is highly instructive and allows us to compute the 
characteristic frequency and field distribution for 
a given mode, but obviously does not give diffrac­
tion losses. However, these losses are unimpor-
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tant for these modes because in all practical cases 
the diffraction losses are smaller than the losses 
due to nonideal reflection from the mirrors. The 
method given in Sec. 4 for designing mirrors for 
specified caustics can be used to design kinematic 
mechanisms for the fabrication and polishing of 
mirrors. 

The authors wish to thank E. L. Kosarev for 
valuable comments, especially for the discussion 
of the geometric constructions. 
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