Brief Communications

STUDY OF NEUTRAL PION GENERATION AT PARTICLE ENERGIES $5 \times 10^{12} - 10^{13}$ eV

Kh. P. BABAYAN, S. I. BRIKKER, N. L. GRIGOROV, A. V. PODGURSKAYA, A. I. SAVEL'EVA, and V. Ya. SHESTOPEROV

Institute of Nuclear Physics, Moscow State University; Physics Institute, State Atomic Energy Commission, Erevan

Submitted to JETP editor September 28, 1963

J. Exptl. Theoret. Phys. (U.S.S.R.) 47, 379-381 (July, 1964)

OUR studies of the formation of large ionization bursts^[1] and young air showers^[2,3] have shown that in both cases the mechanism for the generation of the electron-photon component is the same, and differs essentially from the mean interaction characteristics by having a large interaction inelasticity coefficient K and an anomalously large fraction K_{π^0} of the energy transferred to the π^0 mesons; the average values of K and K_{π^0} for these processes turned out to be $\overline{K} \ge 0.8$ and $\overline{K}_{\pi^0} = 0.6 -$ 0.8.

In order to clarify the mechanism of the large fluctuations, we used our previously developed [4-6]method of "controlled nuclear photoemulsions." The gist of the method consists in placing the nuclear photoemulsions, interleaved with lead filters, over an array containing a large number of ionization chambers. The array is shown schematically in Fig. 1. When the nuclear-active particle interacts in the generator (layer of graphite 20 g/cm² thick) located 150 cm above the nuclear emulsions, the π^0 -meson decay produces γ quanta which strike the lead filters with the emulsions, and which have time to move hundreds of microns apart. As a result, the electron-photon cascades produced in the lead by the γ quanta are recorded in the emulsions as individual lines.

With the aid of the ionization chambers in rows

3 and 4 we have located the passage of these cascades through the emulsion and determined their total energy, while ionization chambers in rows 1 and 2 have made it possible to determine the energy E_2 of all the secondary nuclear-active particles left after the first interaction, and to estimate the primary-particle energy $E_0 = \sum E_{\gamma}^i + E_2$.

The energy E_{γ}^{i} of the individual γ quanta generated in a given interaction was determined from the number of shower particles produced by the given γ quantum and registered by the emulsion. To this end, the showers found in the emulsion were traced with the aid of a projection microscope MBI-8, and the energy E_{γ} of the γ quantum producing the given shower was determined from the formula $E_{\gamma} = a/R$, where R — radius of the circle containing 40 particles (under a layer of 3 cm of lead) and a —a coefficient having a theoretical value $a = 1.0 \times 10^{13} \text{eV} \cdot \mu$; the experimental value obtained for a was found to be $(1.03 \pm 0.13) \times 10^{13} \text{eV} \cdot \mu$.

In this installation we used NIKFI-R emulsions 15 microns thick. The photographic plates with the emulsions were placed under the chambers—four rows between three 1-cm layers of lead.

During the course of the investigation, the ionization chambers yielded six showers with

FIG. 1. Diagram of array in two projections: 1-5) rows of ionization chambers (area of array 10 m²)

Event	E, 1018 eV	$\sum_{i} E_{\gamma}^{i}, i_{10^{18}} eV$	$= \sum_{i}^{K_{\pi^0}} E_{\gamma}^{i} / E_{\bullet}$	$n_{\pi^0}=n_{\gamma}/2$	$E_{\pi^0 max}/E_{\bullet}, \%$
1 2 3 4 5 6	$ \begin{array}{r} 6.0 \\ 5.9 \\ 10.0 \\ 8.9 \\ 2.9 \\ 11.7 \\ \end{array} $	$\begin{array}{c} 4.8 \\ 4.5 \\ 7.5 \\ 5.5 \\ 2.6 \\ 3.1 \end{array}$	$\begin{array}{c} 0.81 \\ 0.78 \\ 0.75 \\ 0.62 \\ 0.90 \\ 0.26 \end{array}$	5 5 3 3 3 10	48 25 61 59 49 4

 $\Sigma_i E_\gamma^i \geq 2 \times 10^{12} \ eV.$ For each shower we determined the fraction of the energy transferred to the neutral pions $K_{\pi 0} = \Sigma_i E_\gamma^i / E_0$, the number of neutral pions $n_{\pi 0}$, and the energy of the neutral pion with maximum energy $E_{\pi^0 max}$. The results obtained are listed in the table.

The table shows that:

1. Most ionization bursts result from interactions in which the inelasticity coefficient K is close to unity and the neutral pions received in the mean about 80% of the primary-particle energy.

2. In these interactions the multiplicity of the generated neutral pions is $n_{\pi^0} \cong 4$, which is much lower than the average multiplicity at the corresponding primary-particle energy.

3. One π^0 meson receives in these interactions an average of approximately 50% of the primaryparticle energy.

The mean value of the perpendicular component of the γ -quantum momentum, averaged over all the showers (58 γ quanta), was found to be

FIG. 2. Dependence of the average energy ratio of the nucleon and pion produced by isobar decay on the isobar mass M_{isob} : 1 - for $\gamma = 2.9$ (γ - exponent of the differential energy spectrum of nuclear-active particle); 2 - for $\gamma = 2.7$. The shaded area shows the maximum possible experimental values of the ratio $\langle E_{nucl} / E_{\tau^{0}max}$.

 $(1.71 \pm 0.11) \times 10^8$ eV/c. The mean perpendicular pion momentum component, recalculated from this quantity, turned out to be $(3.2 \pm 0.2) \times 10^8$ eV/c, that is, the transverse component of the momentum of the generated pions remains unchanged up to primary-particle energies ~ 10^{13} eV.

To ascertain whether the appearance of an energetically singled-out π^0 meson is due to the decay of a baryon isobar, we determined the average ratio E_2 to $E_{\pi} o_{max}$. It was found that $\langle E_2 / E_{\pi} o_{max} \rangle$ = 0.5 ± 0.7. Since the energy of all the secondary nuclear-active particles is $E_2 = \Sigma E_{mes} + E_{nucl}$, where ΣE_{mes} —energy of all the mesons and E_{nucl} —energy of the fast nucleons, we should have for the averages

$$\langle E_{\mathrm{nucl}} / E_{\pi^{0}max} \rangle \leqslant \langle E_{2} / E_{\pi^{0}max} \rangle.$$

If the energetic π^0 meson were to result from isobar decay into a π^0 meson and a nucleon (with isotropic scattering in the proper coordinate system), then the ratio $\langle E_{nucl}/E_{\pi^0max} \rangle$ would depend on the isobar mass in the manner shown in Fig. 2. According to our data, this ratio is $\leq 0.5 \pm 0.1$, that is, the appearance of high-energy pions as the result of the decay of known baryon isobars has low probability.

We can therefore conclude that the large fluctuations in the value of K_{π^0} are due essentially to the transfer to one π^0 meson of approximately 50% of the primary-particle energy, and that this meson is apparently not the product of the decay of isobars with mass $M \leq 2M_{nucl}$.

¹ Babayan, Babecki, Boyadzhyan, Buja, Grigorov, Loskiewicz, Mamidzhanyan, Massalski, Oles, Tret'yakova, and Shestoperov, Izv. AN SSSR ser. fiz. **26**, 558 (1962), Columbia Tech. Transl. p. 558.

² Babayan, Boyadzhyan, Grigorov, Mamidzhaniyan, Tret'yakova, and Shestoperov, JETP 46, 1525 (1964), Soviet Phys. JETP 19, 1032 (1964).

³Babayan, Boyadzhyan, Mamidzhanyan, Grigorov, Tret'yakova, and Shestoperov, JETP 46, 110 (1964), Soviet Phys. JETP 19, 80 (1964).

⁴ Brikker, Grigorov, Kondrat'eva, Podgurskaya,

Savel'eva, Sobinyakov, and Shestoperov, Nuovo cimento Suppl. 8, 733, (1958).

⁵Grigorov, Kondrat'eva, Savel'eva, Sobinyakov, Podgurskaya, and Shestoperov, Trans. Intern. Conf. on Cosmic Rays, Moscow, **1**, 122 (1960).

⁶Grigorov, Podgurskaya, Shestoperov, and

Sobinyakov, Proceedings of Conference on Thick Emulsion Procedures, JINR, 1, 168 (1957).

Translated by J. G. Adashko 53