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The problem of the broadening of the Mossbauer line accompanying the temperature red 
shift is considered. The shape of the line is found and the value of the resulting width is 
determined in both ideal crystals and for cases where the radiating atom is an impurity. 
The restrictions on temperature in the case of supernarrow lines are examined. A rela­
tion is established between the probability of the effect when T = 0 and the temperature 
dependence of the Mossbauer line shift. 

1. INTRODUCTION 

IT is known that the change in the mass of the 
radiating atom in a crystal by the amount b.m 
= Ey/c 2 results in a shift of the Mossbauer emis­
sion line toward lower frequencies, and that this 
shift is temperature dependent.Lt,Z] This phenom­
enon, first observed in iron, [t] was seen later by 
many experimenters on a variety of compounds. 
The question arises whether, together with the 
line shift, there is a broadening of the line, which 
naturally also depends on the temperature. 

This problem was first treated in a paper of 
Snyder and Wick. [3J By relating the broadening to 
the fluctuation of the energy of the individual nu­
cleus in the crystal, which the authors determined 
by taking the energy of the whole crystal per nu­
cleus, Snyder and Wick concluded that in a regular 
crystal there will be no broadening on a macro­
scopic scale. Unfortunately their result is incor­
rect. Actually the temperature shift of the line is 
proportional to the average value of the operator 
P02 (where P0 is the momentum operator for the 
radiating nucleus). One can show directly that the 
fluctuation of this quantity in the crystal is large, 
with a dispersion 

[((:J\2)2) _ ((Po2))2]'/o 

which is comparable in order of magnitude with 
(P02), and does not vanish even for T == 0. Thus 
we arrive at a statement which is diametrically 
opposite to that of Snyder and Wick. 

But even having found the value of the disper­
sion over the whole temperature range, we still 
have not solved the problem. The reason for this 
is that in general it is incorrect to relate the line 
width with the statistical fluctuations of the cor­
responding quantities. 

In Sec. 2 we give a general treatment of the 
problem, which makes it possible to obtain the 
line shape in a consistent fashion. A detailed 
analysis is given of the broadening of the Moss­
bauer line due to the change in mass of the nu­
cleus resulting from radiation of the y quantum, 
which in particular enables us to analyze what 
limits are imposed on the possible widths of 
supernarrow lines. Some of the results of this 
section have been given previously. [4] 

In connection with the question treated here, 
we should call attention to the work of Silsbee, [5] 

who attempted an analysis of the problem of broad­
ening using the relatively crude method of moments. 

The problem of the line shift in an arbitrary 
crystal is treated in Sec. 3. It should be stated 
that in the papers of Pound and Rebka [tJ and 
Josephson [Z] the value of the shift was properly 
related to the crystal energy per atom, and the 
temperature derivative of the frequency to the 
specific heat. But this result is valid only for an 
ideal crystal. For polyatomic lattices and when 
the radiator is a foreign atom in a host lattice, 
the temperature red shift of the Mossbauer line 
already depends in a complicated way on the 
parameters of the crystal. This problem was 
treated for the whole temperature range in con­
ference reports by the author.C4, 6J Maradudin, 
and Flinn L7] independently analyzed the tempera­
ture shift in the classical domain. The results 
given in Sec. 3 coincide with those reported in [4, 6]. 

In this same section we give the connection 
between the probability of the Mossbauer effect 
at T = 0 and the temperature shift of the line as 
a function of T for a radiating atom in an arbi­
trary crystal. [6] Thus it becomes possible to re­
late W( T = 0) to a quantity whose experimental 
determination has a purely resonant character. 
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2. BROADENING OF THE MOSSBAUER LINE 

Let us consider an arbitrary crystal, and sup­
pose that the atom labelled 0 emits a y quantum. 
We first assume that the natural line width is 
negligibly small. (Taking account of the finite 
width under the usual assumptions is trivial. 
Below we shall give the appropriate final formu­
las.) For the probability that a y quantum of 
energy E is emitted in the decay, we have the 
usual expression 

Here the subscripts i and f' denote eigenfunctions 
referring respectively to the Hamiltonian H of the 
crystal before the decay and H' after the decay: 

Ji' = ii + V, V = (E"f2m0c2)P02/m0 ; (2.2) 

Ei and Ef' are the crystal energies before and 
after emission of the y quantum; E0 is the energy 
of the nuclear level; k is the wave vector of the 
y quantum; p is the density matrix corresponding 
to thermal equilibrium. 

We go over to the time formalism. We then 
find for (2.1): 

W (E) = 2~ I dt ei (E'-E)t 

-00 

X ~ P; (i 1 eiHte-iku,e-ilh 1 /') (/' 1 eiku,! i) (2 .3) 
i, !' 

(throughout, n = 1 ). According to the well known 
transformations, 

t 
' .... . 

e-iwt = e-il1t-i<V> ts (t), S(t) = T exp {- ~ V (tt)dt1}, 
0 

v (t) = eiiit (V -<V>) e-iiit (2.4) 

where we have used the notation 

(2 .5) 

We make a unitary transformation from the eigen­
functions of the Hamiltonian H'( f') to the eigen­
functions of the Hamiltonian H (f). We then find 

1 00 

W (E) = - \' dt ei (E'-E-(V)) t 
2l't .l 

-00 

x ~ P; (i I e-iku, (t)S (t) I/) (/I eiku, (o) I i) 
t, f 

or 

w (E) = il't r dt ei (E'-E-(V)) t Sp {pe-iku, (t)S (t) eiku, (0)}. (2. 6) 
-oo 

We are interested in the shape of the line at 
distances E - ( E0 - (V)) of the order of its 

width, and consequently in the value of the inte­
grand in (2 .6) at large times t 0 of the order of the 
reciprocal width. We make the obvious assumption 
that the total width r 0 (including the natural width) 
is small compared with all the energy parameters 
of the phonon system. (Among such parameters 
are the characteristic frequency w0 of the spec­
trum, the width of narrow optical branches ~opt• 
and the widths of local levels ~d• in a crystal 
containing an isolated impurity atom, which arise 
from anharmonicity and concentration broadening.) 
Then the average of the product of operators in 
(2.6) which are separated by a time interval of 
order t 0 splits into a product of averages. 

On the other hand, considering the negligible 
phase space corresponding to an energy interval 
of order r 0, we can keep only the diagonal ele­
ments under the trace in the expression 

Sp(pe-iku,(t)s (t)). (2.7) 

But 

(i I e-ikuo (t) I i) = (i I e-iku, (o) I i), 

and for a time of order t 0, expression (2.7) in 
turn splits into a product of averages. The final 
expression for W ( E) thus has the following form: 

W(E) =_!_I ei<E'-E-<V>)IJ (eiku,) 12(S(t)) (2.8) 
2l't. 

-00 

[cf. the notation (2.5)}. The factor 

wo = 1 (eiku0 ) 12 (2 .9) 

is simply the probability for the Mossbauer effect, 
and this quantity is independent of the time. Thus 
the line shape is completely determined by ( S ( t )) . 

Let us express V in terms of normal coordi­
nates. If in place of umi (where m labels the 
atoms) we introduce 

and make the standard unitary orthogonal trans­
formation from the displacements of the individ­
ual atoms to the normal coordinates Clf3: 

q13 = ~ Li (~, n)wni, 
n 

then 

a "" i a 7fi = £.JL (~. O) -a-, 
Wo f3 qi3 

v = ~ D(3fl.P(lP(l," (2.11) 
(l.(l. 

Here Pf3 is the momentum operator of the normal 
oscillator {3 and 

(2.11') 

In the harmonic approximation the line shift is then 
given by the following expression: 
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(V) = ~ Dill3 w13 (n13 + 1/2) 
{l 

(2 .12) 

(where n13 are the average values of the occupa­
tion numbers). 

Now let us determine the quantity 
t 

(S (t)) = Sp {pT exp [- ~ V (t1) dt1]} • (2 .13) 
0 

At first we leave out of consideration those cases 
where there are local frequencies in the vibration 
spectrum. We expand the exponential in (2.13) in 
series. Using (2.4), the second term of the expan­
sion vanishes. In the harmonic approximation the 
third term is 

t t, 

2J D 13,13p 13,!l, ~ dt1 ~ dt2 

~.~.~~ 0 0 

x <<P{l, (t1) P13, (tl)- wjl, (n:{3, + 1/2) 6{l,Jl,) <rjl, (t2) P{l, (t2) 

- w{l, (n:Jl, + 1/2) 6(l,Jl.)>. 

A (t) _ il-I{ltA -d'l{lt p!l - e pile , 

where Hf3 is the Hamiltonian for the normal 
oscillator {3. Obviously in this expression the 
only nonzero terms are those in which the indices 
are equal in pairs. Only operators referring to 
different times should have their indices paired. 

Remembering that the commutator 

(2 .14) 

we find, after integration, for values of t of the 
order of t 0, 

Here we have introduced the notation 

Q~~ = hw!l + kwy (2.16) 

(where the bar denotes a temperature average of 
the occupation numbers). Let us consider the 
next even term in V in the expansion, which we 
write as 
1 t t t t 

4T 2J D!l,!l,Dfl,!l.D!l,!3.D!3,!l,T ~ dt1 ~ dt2 ~ dt3 ~ dt4 

il>?"'{l,, {l,,c{l, 0 0 0 0 
{l,,C{l,,{l,,c(l, 

X (P{l, (ti) P{J, (ti) P{l, (t2) P13, (t2) P13 , (ta) P13, (ta) P13, (t4) Pfl, {t4)). 

(2 .17) 

First let us consider a pairing of indices such that 
each pair of indices at one time is paired off with 
the corresponding pair of indices at the other 
time. There are twelve of these. It is not difficult 
to show using (2.14) that we then get one half the 

square of (2.15). Similarly, if we take the 
(2m+ 1 )-st term in the expansion of the exponen­
tial in (2.13), choosing the terms with the same 
pairing of indices leads to an expression which is 
the m'th power of (2.15), divided by m! 

If we analyze other pairings of indices in (2.17), 
we find that the corresponding terms increase 
with time no faster than the first power of t. But 
if we consider that each factor Df3 1f3 2 contains the 

small parameter Ey/m 0c 2, it is clear that these 
terms give a negligible correction to (2 .15) and 
can be dropped. A completely similar situation 
exists for the odd terms of any order. Thus in 
the (2m + 1 )-st term of the expansion, after 
selecting the terms with pairing described above, 
the remaining terms increase with time no faster 
than m - 1 and are actually small corrections to 
the terms of lower order. It is easily shown that 
the even terms (odd in V) in the expansion of the 
exponential in (2 .13) of order 2m increase with 
time no faster than tm- 1, but contain the factor 
( Ey/m 0c 2 )2m- 1• They can also be neglected, re­
membering that the main terms in the (2m - 1 )-st 
term of the expansion are proportional to tm- 1 x 
( Ey/moc2 )2m-2. 

It is not difficult to show that the sum of the 
remaining terms gives the following expression. 

(S(t)) = exp{-1/zrt!tl + iV1t}, 

where (cf. (2.15)) 

r1=JC~ ~ (DfJy)2WfJWy(nll+ 1/2+ 1/2h) 
(J,y h=:':1, k=:':l 

while V 1 is gotten from (2.19) by replacing 

o ( Q~) by 1/rrn~~- The final expression for 

W (E) starting from (2.8) is 

(2.18) 

(2 .19) 

" (r+r~) 
W (E) = Wo 2n [(E0 - E- (V) + Vt)2 + (l' + r I) 2/4] 

(2 .20) 

We have given this relation in the form which 
would be gotten if the natural width r were taken 
into account right from the start. The quantity V 1 

in (2 .20) determines a small correction of order 
Ey/m 0c 2 to the Mossbauer line shift 12.12), while 
r 1 is the resulting line width. This last is ob­
viously the quantity of principal interest. 

First we consider an ideal crystal lattice and 
assume that the j-th atom in the unit cell emits a 
y quantum. Then in accordance with (2.11'), (2.10) 
and, for example, [BJ, we have 

( R., )2 Vo2 'Q (' \ d3jd3f' .i 
rli = 2rt 2mjC2 (2rt)6 a~'~ J VJ 
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x (f, a)vl*(f,a)vdf',a')vl*(f'a')w(f, ot)w(f', ot') 

X [n (f', ot') + 1] n (f', a')<'\ [ W (f, ot) -- w (f', ot') ]. (2 .21) 

Here V 0 is the volume of the unit cell; v~ ( f, a) 
are the complex polarization vectors cor1espond­
ing to the wave vector f and branch number a; 
they satisfy the following orthonormality condition: 

~ vl(f, ot) v;;k* (f, a) = <'lik<'l;l· (2 .21') 
" 

Let us assume for simplicity that the position 
of the j-th atom is one of cubic symmetry. Then 
introducing the normalized function 

1 Vo ""\ I v; (f, ot) 1
2 dS (2 22) 

'l';(w) = 3 (2n)3 '7 j I Vw (f, a) I "' · 

(where the integration is taken over a surface of 
constant energy), we find 

( E )2(" - -
rlj=6n 2m;c2 jdw'l';2 {w)w2n(w)[n(w)+1J. (2.23) 

From (2.21) and (2.23) it follows that the tem­
perature red shift in an ideal crystal is accom·­
panied by a finite broadening. This broadening is 
always small compared to the shift (2.12), since 
(2.21) or (2.23) contains the square of the small 
parameter Ey/m0c 2• But r tj is not related to the 
value of r. Thus the ratio of these quanti ties is 
arbitrary, and this is what determines the change 
in the probability for the Mossbauer effect. 

Let us estimate the quantity rij (2.23). For 
T - 0, we have rij - 0, where it is easy to see 
that for T « wmax• 

r1; ~ P. (2 .24) 

In the classical limit, for T ~ Wmax 

(2 .24') 

First we consider a monatomic lattice and use 
the Debye approximation. Then in the classical 
limit 

r 1 =-n -- -T 54 ( Ey )2 T 
5 2mc2 El 

(2.25) 

(where we have used energy units for the temper­
ature). To evaluate (2.25) we take as an example 
the case of Ag107 ( Ey = 93.5 keV, r ~ 10- 17 eV ). 
At room temperature 

r 1 ~ 10-13 eV. (2.25') 

Consequently the resulting width is 104 times as 
large as the natural width of the nuclear line! 
Thus we see that even in the usual case of a regu­
lar lattice the temperature broadening of the line 
imposes sharp restrictions on the value of the 
temperature at which one can observe the Moss-

bauer effect for very narrow lines. This is of 
fundamental importance for all experiments on 
nuclei having such narrow lines, in particular for 
experiments of the type recently carried out by 
Bizina, Beda, Burgov, and Davydov [9] (using the 
isotope Ag107 ). 

We note that because of the large coefficient 
appearing in the expression for the low tempera­
ture limit, 

__ 288n7 (~)2(~)a 
r 1 -- 7 2mc2 8 T' 

(2 .26) 

the critical temperature is shifted to quite low 
values, even though r 1 ~ T7• 

Now let us consider a crystal with optical 
branches. If the widths of the optical branches 
are of the same order as the acoustical branch 
widths, all the results are qualitatively unchanged. 
If however the spectrum of vibrations contains a 
narrow optical band with a characteristic width 
~opt and if the radiating atom preferentially 
oscillates at these optical frequencies, i.e., if the 
values of I Vj ( f, a) 12 for the corresponding 
values of a are large in the integrand of (2.22), 
the situation is essentially changed. (Under these 
conditions, as a rule the probability for the Moss­
bauer effect is quite large; for more details 
cf. [to, 1tJ.) In fact, taking account of the normali­
zation of the function lJ! j ( w) (2 .22), we find for 
the classical limit, from (2 .2 3), 

( E )2 T r 1;= 6n~ -2 ~ 2 -A-T 
m1c '-'opt 

(where {3 is a numerical coefficient of order 
unity). 

(2.27) 

Thus the broadening is increased by a factor 
®/~opt· We note that at low temperatures, r tj 
will behave similarly to (2.26), but with a much 
smaller numerical coefficient. 

We now proceed to treat the case where the 
crystal spectrum contains local frequencies, and 
we shall assume as before that while the width 
~y of these levels is small, nevertheless ~Y 
» r. We shall then have to go to formula (2.13) 
and analyze the whole transition from (2.13) to 
(2.18) and (2.19), now taking account of the local 
levels. 

The finite width of the local levels enables us 
to perform an integration over all transitions to 
which there correspond different values of the 
energy within ~y. and in this sense we have a 
situation similar to a band in the quasicontinuous 
spectrum. On the other hand, the total probability 
for emission or absorption of a quantum of the 
vibration wy, corresponding to a local frequency, 
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has the same value when 6y/ wy « 1 as in the 
case of zero width. 

Taking these remarks into account and as­
suming a Lorentz shape (with half-width equal to 
6y) for the spectral density over the region of 
smearing of the local level, we easily find the 
contribution to (2 .15) because of the presence of 
the local frequencies in the spectrum (we give 
only the real part): 

- 2111 ~· (D~.,)2 I <n., IP., In.,+ 1) 12 \ <n., I P., In.,- 1) \2 

"( "( (2.15') 

(where we sum over local frequencies). All the 
other arguments remain valid, and we arrive at 
(2.18) and (2.20), but we have to add to r 1 in (2.19) 
the term 

(2 .28) 

We consider an arbitrary crystal with isolated 
impurity atoms and assume, as usual, that the 
change in the force constants is negligible. Sup­
pose an impurity atom of mass m 0 replaces the 
t-th atom of the unit cell. Then using the results 
of [12 - 14] one can find the explicit expression for 
D1313 in (2.11): 

E ( d ln ro~ 2 )'''( d ln roll2 
)''• D~~. = 2m> jdl3. (1 - Bt) det det ' ' (2 .29) 

where Et = 1 - m 0/mt (the notation is the same 
as in[10 f2] ). 

Suppose first that the mass of the impurity 
atom is greater than the mass of the atoms of 
the host lattice, i.e., Et < 0, and consequently 
there are no free local frequencies. We restrict 
our treatment to crystals whose symmetry is no 
lower than rhombic. Then the unit vectors j/3 
will be along the principal axes of the crystal. 
We use the explicit form of d ln w~/dEt to deter­
mine (2.29). Then changing from summation to 
integration in (2.19) (cf. [12 - 14J), we find 

( E., )2· r 1 = 4n 2m c2 ~ 
o a=x. y. z 

., 2 
omax. 

x ~ dro2·ro3 (G1(a>(ro2))2[n(ro)+1Jn(ro). 
0 

Here the function 

G/a) (ro2) = (1 - Bt) g/a> (ro2) 

is normalized by the condition 
00 

~ G1(a)(ro2)dro2 = 1, 
0 

(2.30) 

(2.31') 

(a) 2 Vo ~ \ I v,a (f, ct.) 12 dS 
gt (ro ) = (2n)s 7 .l I Vroo2 (f, ct) \ .,. (2.32) 

If m 0 is not very different from mt. the be­
havior of (2 .30) is quite similar to the case of the 
regular crystal. But the picture changes drastic­
ally if m 0 » m. It is known[12- 15J that in this case 
the spectral density of the square displacement of 
the impurity atom in a given direction, which is 
given by the function af>< w2 ) of (2.31), has a 
marked resonance character and is localized near 
the frequencies 

w.a = \et\-'l•(<w-2)t(a))-'f,~romax (2.33) 

[where ( ... )f<i) denotes averaging with the func­
tion (2.32)]. This enables us to integrate (2.30) 
explicitly. The result is 

r1 ~2 ( 2E., 2 ) 2 ~ roo~~~ <w-2)t(a> (n(w*a) + 1(n (ro*a). 
m0c a nd1 

(2.34) 

(where dt> is the numerical coefficient in the 
low frequency expansion 

g1(a) (ro2) = dt(3>y W2/roo!ax; 

Equation (2.34) is valid for all temperatures ex­
cept the narrow range T « w*li ). The expression 
(2.34) already has a value corresponding to the 
classical limit even at relatively low tempera­
tures T 2:. w*li' For a cubic, monatomic crystal, 
using the Debye approximation for the phonon 
spectrum of the host, we get 

36 ( E., )z T r 1 ~ -;:tl e I 2moc2 e T. (2 .35) 

Let us compare this result with the one for a 
regular lattice (2.25). If we are dealing with the 
same Mossbauer nucleus, it is easy to see that 
when I E I » 1 (2 .35) may be much greater than 
(2.25), and that in the impurity case r 1 increases 
steadily with increasing m 0/mt. We should make 
a special note that the transition to the dependence 
(2.35) occurs at temperatures T « e, and the 
region where the temperature dependence of (2.24) 
is valid is shifted quite markedly toward low tem­
peratures. Thus both the value of r 1 and the 
temperature behavior may differ markedly in the 
case of a heavy impurity atom from their appear­
ance in the case of a regular lattice. 

Suppose now that Et > 0. As is well known, 
there may be discrete frequencies in the per­
turbed vibration spectrum when m 0 < mt. In this 
case r 1 is given as before by (2.30), but we must 
now add to this expression the quantity r 1d of 
(2.28) with the values Dyy of (2.29), determined 
for the local levels. Using the results of [12 - 14J, 
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we find immediately 

r1d = (~)2 (1 _ 81) ~(dIn rod} ) 2 rod} 
2m0e v det . ~v 

(2.36) 

w2 

dIn ffidv2 - { 2 4 o~max g/a) (roo2) dwo2 }-1 
d - Bt ffidv ( 2 2)2 - 8t . (2 .36') 

Bt o ffidy - ffio 

Here w~v are the values of the discrete fre­
quencies which are the solutions of the equations 

,.2 
omax g (o) (w 2) dw 2 

1 2(' t 0 0 1 
- Btffi \ 2 2 = 

~ w -roo 
(2. 36") 

for the three values of u. 
Consider the limiting value of (2.36) when m 0 

« mt. For simplicity we limit ourselves to the 
case of a monatomic lattice with cubic symmetry. 
Then (2.36) becomes much simpler: 

,. E )2rod2 - -
r 1d:::: 3 ( zm> T [n (rod)+ 11 n (rod)· (2. 37) 

In the classical limit 

( E" )2 T rld~3 2moc2 TT. (2.37') 

From these results it follows that r 1d contains 
t. in the denominator, and not Wd or w0max. and 
therefore the broadening in this case may be much 
greater than r 1 for a regular lattice. Available 
estimates for the width of local levels make it 
reasonable to assume that r 1d may exceed (2 .23) 
by a factor 10 - 102• If we recall the estimate 
(2.25'), it follows that such a broadening ap­
proaches the natural width of lines like that in 
zn67. 

We note, in conclusion, that our results con­
tradict those of Snyder and Wick[3J and Silsbee, [5] 

who did not take into account the finite width of 
the discrete levels, which is practically always 
many times greater than the natural width of the 
Mi::issbauer line. 

3. TEMPERATURE RED SHIFT OF THE 
MOSSBAUER LINE 

A. The shift of the Mossbauer line in first 
order in the parameter Ey/m 0c2 is given by 
(2.12). The magnitude of the shift at low temper­
atures depends strongly on the nature of the sys­
tem, but this dependence disappears completely 
at high temperatures. Thus when T > Wmax 
(cf. (2.11')) 

<V> = 2EyT2 ~Li(~, O)Li(~, 0) = 2E" 2 3T. (3.1) 
m 0e ~ m 0e 

[The last equality is a consequence of the ortho­
gonality of the transformation 12.10).] The result 
of (3.1) is well known (cf., for example, [7] ), and 
requires no special discussion. But we will be 
principally interested in the value of the shift of 
the Mi::issbauer line at low temperatures. 

Let us first consider a regular crystal with an 
arbitrary unit cell, and assume the radiator is the 
j--th atom in. the cell. Then using the appropriate 
value for L1 (j3, 0) in (2.11'), we find 

<lVj) = 2E\ -(2vo)a ~\'I vj{f, a) 12 w (f, a) 
mJe :n: a. j 

x [n(f, a)+ ~ Jd3f. (3.2) 

From (2.21') we easily get the following relation: 

~ (2~)3 ~ f vi (f, a) 12 daf = 1. 

It then follows from (3.2) that when T = 0 the 
shift is given by the average over phase space 
and the frequency branches of the frequency 
, .. .:> ( f, a), where the probability density is the 
quantity% I Vj (f, n) 12• Thus the greater the 
relative value of the amplitudes of oscillation in 
the high lying optical branches in the main part 
of the phase space, the greater the shift. In par­
ticular we can state that if we compare a mon­
atomic and a polyatomic crystal with similar 
characteristic acoustic frequencies and the same 
radiator, the shift of the Mossbauer line in the 
polyatomic crystal will always be the larger. 

The temperature dependence of the shift in the 
transition region is also fundamentally related to 
the character of the vibration of the j-th atom. If 
this atom vibrates preferentially in the acoustic 
branches, the characteristic temperature for the 
transition to the classical limit (3.1), as in the 
case of a monatomic crystal, is close to the 
Debye temperature ®. But if the high lying optical 
branches play an important part in the vibrations 
of the j-th atom, the increase of the shift with 
temperature is slowed down markedly, and the 
transition to the limit (3.1) occurs at much higher 
temperatures. 

It should be mentioned that the anomalous be­
havior of the probability for the Mossbauer effect 
in crystals having optical branches [1o] and the 
peculiarities in the temperature shift which were 
mentioned above have, of course, a common 
origin. Thus in all cases where, because of the 
optical branches, there is a large probability for 
the Mossbauer effect which decreases anomalously 
slowly with temperature, there will simultaneously 
be a large shift when T = 0 and a noticeably 
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gradual transition with temperature to the classi­
cal limit. 

The presence of the polarization vectors in the 
integrand in (3.8) has the consequence that in a 
polyatomic crystal, in contrast to the monatomic 
case, [1•2] the temperature shift and the lattice 
energy per unit volume !the derivative of the shift 
with respect to temperature and the specific heat) 
are no longer uniquely related to one another. 
This relation is reestablished for trivial reasons 
only in the classical limit. 

B. We shall now determine the temperature 
shift for isolated impurity atoms, replacing the 
t-th atom of the unit cell in an arbitrary crystal, 
assuming that the force constants remain un­
changed. Then taking account of (2.12), (2.11'), 
and (2.29) and making the usual change from sum­
mation to integration, we find 

EY ~dlnwll2 (- 1) 
(V) = -2 2 (1 - 8t) .LJ d WiJ nil + z 

m0e ll 8t , 

(3.3) 

The functions at·) ( w2 ) are defined in accordance 
with (2.31). 

The extension of the integration in (3.3) to in­
finity enables one to include discrete levels auto­
matically. This is easily seen by considering that 
the discrete levels are the roots of Eq. (2.36") 
and appear in the frequency region where 
gt)(w2) = 0. 

The value of the shift (3.3) is obviously com­
pletely determined by the functions aiu) ( w 2 ). The 
behavior of these functions is treated in detail 
in [12 - 14], so we shall limit ourselves to some 
brief remarks. 

Suppose m 0 > mt, Then the spectral density 
for the square amplitude of the impurity atom, 
G(u)( w2 ), is shifted toward low frequencies com­
p~red to gt) ( w2 ). As a result there is a reduc­
tion in the shift for T = 0 and a more rapid 
transition to the classical limit compared to the 
corresponding value for the t-th atom in the ideal 
lattice. In the limiting case of a very heavy im­
purity atom, when I Et I » 1, the sharp localiza­
tion of afu) ( w2 ) in the narrow frequency range 
(2.33) enables us to integrate (3.3) explicitly 

(V) = ~ ~ W*a cth W*a . (3.4)* 
2m0e 0 2 2T 

The transition to the classical limit now al­
ready occurs at low frequencies T ~ w*U' 

*cth = coth. 

When mo < mt the spectral density afu) ( w2 ) 

is shifted toward higher frequencies compared to 
gfu) ( w 2 ), and with the appearance of local fre­
quencies above Wmax there is a partial shift of 
the spectral density to these frequencies. Then 
the amount of the temperature shift is increased 
relative to the regular lattice, and the transition 
to the classical limit is displaced toward higher 
temperatures. 

We give the limiting value corresponding to 
the case where 1 - Et « 1: 

3 
Ey ~ Wdv h Wdv 

(V) = -2 2 .LI -2 ct 2T ' 
moe •=1 

(3.5) 

where Wdv is the solution of Eq. (2 .36"). For­
mula (3.5) demonstrates the large value of the 
shift and the slow increase with temperature. 
The transition to the classical limit occurs at 
temperatures determined by the frequencies of 
the local levels. 

C. There is an interesting relation between the 
temperature shift of the line and the probability 
W of the Mossbauer effect at T = 0. The general 
expression for W has the form 

W= e-z, (3.6) 

where, in accordance with the definition (2.10), 

z = R0 ~(qL(~. 0))2 [2nll + 1]. 
{l (J)Il 

( 3. 6') 

Here q is a unit vector along the direction of 
emergence of the y quantum;_ R0 = Et/2m 0c 2• 

We introduce the quantity Z, the average of 
(3.6') over three mutually perpendicular direc­
tions for the vector q: 

z = Ro ~(L(~. 0))2 [2nll + 1]. 
3 j3 (J){l 

(3.7) 

There is a general relation between Z ( T = 0) 
and ( V) which is valid for Mossbauer nuclei in 
any regular or irregular harmonic lattice. It is 
easy to show directly that 

- 4 "" dT 
Z (T = 0) = 'JifEY ~ [(V)T- (V)T=o] Ta • (3.8) 

0 

We note that the integrand behaves like 1/T2 at 
high temperatures and like T at low temperatures, 
so that there are no basic difficulties in perform­
ing the integration. 

The quantity Z ( T = 0) is directly related to 
the probability of the Mossbauer effect. In the 
case of a cubic crystal, Z is simply equal to Z. 
In an anisotropic crystal, if, as is often the case, 
Z ( T = 0) is small compared to unity, it is easy 
to show that in a polycrystalline sample 

W(T = 0) = exp{-Z(T = 0)}. 
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In the general case, in an anisotropic single 
crystal Z is related only to the average value of 
ln W, determined for three mutually perpendicular 
directions of emergence of the y quantum. 

We emphasize the interesting point that (3.8) 
actually relates the probability for the Mossbauer 
effect to the temperature red shift, which is a 
resonantly determined quantity. 
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