
SOVIET PHYSICS JETP VOLUME 20, NUMBER 1 JANUARY, 1965 

ON THE COULOMB GREEN'S FUNCTION 

V. G. GORSHKOV 

A. F. Ioffe Physico-technical Institute, Academy of Sciences, U.S.S.R. 

Submitted to JETP editor February 14, 1964 

J. Exptl. Theoret. Phys. (U.S.S.R.) 47, 352-359 (July, 1964) 

A representation of the Green's function for the Dirac equation, which is a generalization of 
the Furry-Sommerfeld-Maue approximation, is derived. A closed form for the nonrelativistic 
Green's function in momentum space is found. 

1. INTRODUCTION 

KNOWLEDGE of the Green's function of a Dirac 
particle in the Coulomb field of the nucleus, which 
plays a role of a propagation function, is required 
in many problems of quantum electrodynamics 
(internal bremsstrahlung, radiative capture of 
electrons and muons by nuclei, etc). If a retarded 
(advanced) Green's function is available, we can 
obtain for the outgoing (incoming) wave function of 
a particle an expression with an asymptotic repre­
sentation in the form of a plane and divergent 
(convergent) wave. No closed-form expression 
has yet been found for the relativistic outgoing 
Coulomb wave function and the Green's function. 
It is likewise not clear whether a closed form ex­
ists for these functions at all. 

The existence of an analytic expression for the 
non-relativistic outgoing Coulomb function has 
stimulated the search for a closed form of the 
corresponding Green's function. Recently 
Hostler [ tJ obtained, by summation of a partial­

wave Green's function expansion, a closed form 
constituting a product of two Whittaker functions 
for the nonrelativistic Coulomb Green's function 
in coordinate space. 

In the present paper we obtain a representation 
for the relativistic Green's function of a Dirac 
particle in the form of a series that is a general­
ization of the Furry-Sommerfeld-Maue (FSM) ap­
proximation. The analysis will be in complete 
analogy with the corresponding procedure for the 
relativistic outgoing function [2]. The representa­
tion is based on the-existence of a closed expres­
sion for the nonrelativistic Coulomb Green's func­
tion in the momentum space. In this connection, 
we obtain in the third section of the article, using 
the method developed in [2] for summing perturba­
tion-theory series, a closed form for the nonrela­
tivistic Green's function in momentum space. 

A transition to the coordinate representation, 

made in the last section of the article, yields the 
result of Hostler[!] for the nonrelativistic Green's 
function. 

2. COULOMB GREEN'S FUNCTION OF THE 
DIRAC EQUATION 

The Green's function Gc of the Dirac equation 
in a Coulomb field -a ZV is given by 1l 

fr = y.V, (1) 

where G is the Green's function of the Dirac equa­
tion in the absence of a field, and is diagonal in 
momentum space: 

<k2IGik1) = G(k1)cS(k2- k1}, 

-1 ik- m 
G (k) = -.h-- = k2 p2 ie ' 

~k+m - -
k = kr + iEr4· (2) 

In (1) and (2), Z-charge of the nucleus, a-fine­
structure constant, E and p-energy and momentum 
of the particle, and the sign of the infinitesimally 
small increment E determines the rule for circuit­
ing around the Green's-function poles. When E > 0 
we obtain the retarded Green's function, and when 
E < 0 the advanced function. By retaining the func­
tional dependence on E we can also obtain the cir­
cuiting rules for the many-particle Green's func­
tion in a Coulomb field (see Sec. 3). 

We introduce further the Moller operator cp in 
accordance with the definition 

Gc = qJG, qJ = 1 - aZGVqJ. (3) 

Following the procedure used in [2], we repre­
sent cp in the form of a sum 

cp = cpo + <D, (4) 

where cp 0 satisfies the nonrelativistic equation 2) 

l)The analysis in the present section is applicable to 
any electrostatic potential V. 

2)The usual nonrelativistic equation is obtained by re­
placing E with m. The function G0 (5) differs from the non­
relativistic free Green's function by a factor 2E. 
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-2E co (k) = k2 2 .• -p -l8 
(5) 

Substituting (4) in (3), and using (5) and the identity 

Cy4 = ( 1- 2r~c-1 ) co 

x ( C (k) y4 = ( 1- r~ c-1 (k)) C0 (k)) , (6) 

we obtain the following expression for <J> 3): 

(7) 

With the aid of (4), (6), and (7), we can represent 
expression (3) for the Green's function Gc in the 
form 

@30 = cpoc = cpoco ( 1- I~ c-1) Y4 

= ceo ( 1 - I~ c-1 )r4, 

@)I= Y4 (1 _ c-IcpoC) 
2E 

(S) 

(Sa) 

Y4 {1 c-1 Co+ 1 c-1 C oc-1 } = 2E - r 4. c 2E r 4 c r 4 , (Sb) 

(Sc) 

Using (2) and (Sc) we can readily rewrite (Sa) and 
(Sb) in momentum space. 

The functions (7a) and (Sb) are proportional to 
a Z, since 6(k2 - k1) is cancelled out by the first 
term of the expansion of ( k2 I cp 0 I k 1) in powers of 
a Z. By integrating Eq. ( S) for the function @3, we 
can represent the Green's function Gc in the form 
of a series in powers of aZ, in perfect analogy 
with the procedure used for the wave function in [2] 

The first two terms of the expansion, ~ 0 + @) 1 , 

represent the Green's function in the FSM approxi­
mation. Indeed, when k 1 is replaced by p, the 
Moller operator cp goes over in momentum space 
into an outgoing wave function (footnote 3). The 
first two terms of the expansion of cp in a Z, 
cp 0 + cp 1, go over here into the FSM function [2], a 
feature of which is that terms of order (aZ) 2/7 2 

have been discarded in the expansion of the exact 

3 )All the corresponding expressions for the wave function 
are obtained by making the substitution kt= p and by pre­
multiplying the Dirac spinor up. For example, by making the 
indicated operations in (7a) and by taking into account the 
Dirac equation (fp + m)up = 0, we obtain the second term of 
the FSM function (formula (26) of[ 2]). 

function in terms of the orbital angular momentum 
l [ 3]. The parameters of the expansion of the FSM 
approximation come from the expansion of the 
quantities yz = {(j + 1/2)2 - a 2z2}1/2 , which do not 
depend on p or r. By going over to momentum 
space in each partial wave we can return to the 
expression for the Green's function by replacing 
the corresponding p by k 1 (footnote 3), without 
changing the form of y z. It follows therefore that 
the FSM approximation has the same meaning for 
the Green's function as for the wave function. 

We note further that we have not used the 
squared Dirac equation, and therefore the FSM 
approximation has been written out by us in explicit 
form, in contrast with the results of Hostler [1], 

where it is necessary to act further on the function 
by some operator. 

We see from (S) that in order to obtain the rela­
tivistic Green's function in the FSM approximation 
and to determine the corrections to this approxi­
mation it is necessary to have a closed expression 
for the nonrelativistic Moller function cp 0• The next 
section is devoted to a determination of this func­
tion in momentum space. 

3. MOMENTUM REPRESENTATION OF NON­
RELATIVISTIC FUNCTIONS 

In this section we shall consider only nonrela­
tivistic functions, identified in the preceding sec­
tion by a zero superscript. In order not to clutter 
up the notation, this superscript will be left out if 
used in this sense. 

We introduce first some definitions. The Yukawa 
potential will be denoted by the symbol Vm (i-im­
aginary unit). In momentum and coordinate space, 
the operator of the Yukawa potential takes the form 

(9) 

When 11 = 0 we obtain the Coulomb potential V0• We 
note one important identity 

The Coulomb Moller function of interest to us 
is the solution of equation 

cp = 1 - aZCVocp. (11) 

We introduce the function Tiry = Viry<P• satisfying 
the equation 

(12) 
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From the definition of Tir) and from the identity 
(10) we obtain the following two representations 
for cp: 

rp = 1-aZGTo, 
iJ 

rp = - iJ'f] T i~ "'--•O• (13) 

Expanding (12) in powers of aZ, we obtain 
00 

n=O 
(14) 

The summation of the series (14) is in perfect 
analogy with the procedure in [2], with the aid of an 
identity valid for arbitrary a and k: 

1 
. I dy 

-- aZ (s I V;,,GVpa I k) = l~ j A (s IV pA+i~ I B), (15) 

A= +{(1- n2y) (1- y) + a2y}';,, B = ky, 

~ = aZE I p, p = + (p2 + ic,)'l'. 

n = kl p, 

(15a) 

(15b) 

The expression for Tm is obtained from (15) by 
putting s = k2, a = 0, and k = k1. The integration 
variables y, A, and B will be tagged in this case by 
a subscript 1. We now put a = A1 and k = B1; we 
then obtain in the right side of (15) 

Y = Y2, 

(16) 

Making a change of variables y 1 = x 1 and 
Y1Y2 = x2 ( dxdx1 = dy2 ), and pre-multiplying both 
sides of (15) by x 1, we obtain 

- aZx1 (s I V;~GV pA, I Bt) = i~ t dxA2 x 2 (s IV pA,+i~ I B2), J X2 2 
0 

n1 = kt I p. 

(17) 

The expression for Ti17 2 can be obtained from 
(17) by replacing s with k2 and operating on both 
sides of the equation with the operator J/ dx1/x1 A1. 
Replacing further in (17) the indices 2 and 1 by n 
and n - 1, and operating on both sides of the equa­
tion with the operator 

1 Xn-2 

~ dxtfxtA1. . . ~ dxn-tiXn-1An-l• 
0 0 

we obtain for Tmn an expression in the form of the 
following recurrence relation (see the correspond­
ing procedure for the function B in [2]): 

A2 = (1- n12x) (1- x). 

(18a) 

Summing both sides of (18) over n from n = 1 to 
infinity, we obtain 

(19) 

The solution of the integral equation (19) can be 
obtained either by summing an iteration series, as 
in Sec. 2 of[2], or by a reduction to a differential 
equation via differentiation with respect to x. This 
solution is of the form 

1 1 

= <k21 v,~ I k1) + i~ ~ d~ (k2l VpA+i11 I ktx) exp {i~ ~ ~~J. 
0 X 

(20b) 

We now show that the solution (20) satisfies the 
fundamental equation (12). To this end we set up 
the expression aZ (k2 1 VmGT0 I k1) and use the 
identity obtained by differentiating both sides of 
(17) with respect to x: 

- aZ (k21 v,TlGT 0 I k1) 

1 iJ 
= - aZ ~ dx iJx (x (k2 1 V; 11GV pA I k1x)) exp 

1 

= i~ ~ d~ (k2 1 V pA+i11 l k1x) exp 
0 

1 

= (k2! T;11 ! k1)- (k2J V,TlJ k1), exp = exp {~ dxdx1A1}. 
X 

(21) 
The solution (20) can be transformed to a sim­

pler form by making the change of variable 

dx 2d~ 
xA = ~2 -1 · (22) 

Let us write out the expression (20b) for the case 
11 = o4l: 

1 { . r (~ + 1 )'~ 2 } (k2!To!kt)=q2 1+z~Jd~ ~~ 1 ~2 -A2 , 
1 

£ = aZE, A2 = 1 + (1- nt2) (1- nz2 )P2 I q2, 
p 

q = k2- kt, n; = k; I p. (23) 

4 )The integral ~resentation (23) is not valid for all val­
ues of the parameters ,; and Ll, so that it is more convenient 
to use the representation in the form of a contour integral 
along the cut[•]. We note that the change of variable 
z = (,; -1)/(,; + 1) leads to the integral representation ob­
tained by Brattsev and Trifonov [ •]. 
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Formula (23) can be represented in analytic form 
in terms of hypergeometric functions: 

<k2l To I k1) = ; 2 { 1 + 211). [ 2P1 ( 1, - i~; 1- i~;! + ~) 

- 2p1 ( 1' - i~; 1 - i~; ! + ! ) ]} . (24) 

Using the recurrence relations for the hypergeo­
metric functions, we can obtain many other repre­
sentations, on which we can not dwell here. 

We obtain the needed expression for the Moller 
function by substituting (24) in (13a) and using the 
definition (5) of G(k). 

As can be seen from (23) and (24), the function 
T 0, and consequently also the functions qy and Gc, 
contain a dependence on only two parameters, 
~ (15b) and !!:.. (23). This circumstance can be very 
helpful in the calculation and tabulation of the func­
tions. This property disappears on going over to 
coordinate space. However, it is precisely the 
momentum space which is most frequently used in 
applications. 

The function (24) contains an infrared singularity 
when !!:.. - 0, corresponding to k2 or k1 - p. It is 
precisely at these points that the expression for qy 
corresponds to an outgoing wave function of a par­
ticle. When k2 and k1 tend top simultaneously, the 
function T goes over into the scattering amplitude. 
To explain the behavior of qy near these singulari­
ties it is necessary to introduce an infinitesimally 
small screening parameter. Such an analysis was 
made in [2] (for the wave function) and in the third 
section of[S] (for the amplitude). 

We see from (24) that the functions T, qy, and Gc 
have poles at the points i~ = n, n = 1, 2, 3, ... , 
corresponding to bound states of the particle. The 
rules for circuiting these poles are set by the sign 
of the imaginary increment iE: (15b). Since the 
momentum p is encountered in (12) only in the free 
Green's function, in the form of the combination 
p 2 + iE:, it is necessary that p have in the final ex­
pression (24) the same meaning as in (15b). Putting 
E: = E:'(n- n0), E:' > 0, E:'- 0, we obtain the circuit­
ing rules corresponding to the many-particle 
Green's function with n0 non-interacting particles 
in a Coulomb field. 

4. COORDINATE REPRESENTATION 

To obtain the coordinate representation of the 
non-relativistic Moller function cp and Green's 
function Gc it is convenient to make use of (13b). 
With the aid of this formula, using the definition of 
_!he Green's function (3) and the expression for 
Ti 11 (20a), we obtain 

00 (~ 1)i~ 
Gc = qJG =- 0

8 Ti11 G = 2E~d~ r + 1 g, 
~ 1 ~ ' 

(25) 

where 
a a x 

(k21 g I k1> =- a'lj a~ p2- k12 <k21 VPA+i11 I k1 x), (26) 

A=~ (1- x), 

The function (26) is conveniently represented in 
the symmetrical form 

<k2l g I k1> = - ip (- a~J (- a~J :2 (k2 I Vz,-z,x I k1x> 

(28) 

= - ip (- a~J ( - a~J 
1 1 

x 2n2 a4 + 2 (kt k2- z1z2) a2 + (k12- z12)(k22-z22)' 

(28a) 

where 

Zz = p~ + i'l]z ('l]z ~ 0). (29) 

In these formulas 1J has been replaced by 1J 1, and it 
is easy to verify by direct differentiation that the 
derivative with respect to 71 2 in (28) is equivalent 
to the derivative with respect to t in (26). 

To go over into coordinate space in (28), we 
make use of an equation that follows from the 
definition (9): 

Applying this formula to (28) (k' = k2), we obtain 

<r2 1 g 1 k1> = _ ip ( _ a~J a~ eik,r.x ei<z,-z,x)r.. (31) 

To go over to coordinate space with respect to 
the variable k1, we make use of the Cauchy formula 

I (k2 + A ks + B) = ~ ~ I (t) dt 
2nz j t- t0 ' 

(32) 

where the closed contour goes around the point t 0• 

Applying formula (32) to (31), we obtain 

(r21 g I k1) = - ipeiz,r, (- _!__) 
a'l]1 

x 1 f e1 • 1 f dt X - -. • dt = ipe"•r• - -
a2 2nz t - zx {k1r 2 - z1r2) 2ni t 

X (- a~J 2rt2 <kl I Vz,+i>< I ix), X= r2a2 /2t. (33) 
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Applying again formula (30) to (33) (k' = k1) and 
reversing the order of integration, we obtain 

(34) 

wherein the condition for uniform convergence of 
the internal integral (with respect to k1), which is 
needed to permit reversal of the order of integra­
tion, imposes the following limitations on the con­
tour of integration with respect to t: 

Re(xr1+xri)<TJ1 for ltl>r1r2a2/TJ1. (35) 

Thus, the point t = 0 must be inside the integra­
tion contour, as well as the principal pole in the 
integral (33). Letting 1J z go to zero and using the 
definitions (29) and the integral representation of 
the Bessel function [a], we obtain ultimately 

ip . 1 ~ dt (r2 J g I r 1 ) = - e'Pi;(r,+r,) -. _ et e-a'u'/41 
4n 2nz t 

= ~ eip~v J0 (au), 

v = r1 + r2, u2 = 2(r1r2 + r1r2), a2 = p2 (~2 -1). (36) 

Substituting (36) in (25), we arrive at a formula that 
differs from the corresponding formula (1.13) of[t] 
by a factor 2E, in accordance with our definition 
(5) of the function G (see footnote 2). Another 
difference is that the integral along the real t 
axis is replaced by a contour integral along the 
cut, which can readily be reduced to a product of 
Whittaker functions [t]. 

The coordinate representation for the relativis­
tic functions (Sa) and (8b) is obtained by using (36) 
and (25) and by recalling that the relativistic 
operators a-t can be written in coordinate space in 
diagonal form 

(r2l G-1 1 r1) = - (iv4E + iVr1v + m)6(r2- r1). (37) 

The author is grateful to V. Efimov, V. Poli­
kanov, and L. A. Sliv for numerous and useful dis­
cussions. 
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