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The high-frequency properties of a ferromagnetic conductor located in a stationary magnetic 
field are investigated. Under these conditions a ferromagnetic conductor is characterized 
by a strong coupling between weakly decaying electromagnetic waves and the magnetic­
moment oscillations. The case of coupled helicons (a conductor with one type of carrier) 
and the case of coupled magnetohydrodynamic waves (a conductor with equal concentrations 
of two groups of carriers) are considered. The dependence of the spectrum and coupled­
wave attenuation, as well as the impedance tensor, on frequency, magnitude of the magnetic 
field, and its orientation relative to the symmetry axes is studied. 

WEAKLY decaying electromagnetic waves in 
conductors located in a strong magnetic field have 
been observed by a number of authors. [ 1- 10] At 
the present time helicons have been discovered in 
many metals[ 1-3] and in InSb. [4J Magnetohydro­
dynamic waves have been observed in bismuth 
having equal concentrations of electrons and holes. 
The theory of electromagnetic waves in metals in 
a magnetic field has been considered by various 
authors. [ 10- 13 ] The existence of weakly decaying 
waves leads to positive values of the effective 
dielectric constant in the region of frequencies 
less than cyclotron frequencies and causes a 
number of resonant effects. [1- 10 ] 

The weak attenuation of these excitations in the 
absence of spatial dispersion is caused by scatter­
ings of the carriers, and in the case of strong dis­
persion, as Kaner and SkobovC 12J showed, it is de­
termined by Landau decay and depends in an essen­
tial fashion on the orientation of the magnetic field 
relative to the symmetry axes of the crystal. The 
shape of the equal-energy surface of the conduction 
electrons also influences the spectrum and decay 
of the electromagnetic waves. [ 14] 

The electromagnetic properties of conductors 
that are connected with the existence of helicons 
and magnetohydrodynamic waves should manifest 
themselves during observation of ferromagnetic 
resonance. It is shown below that a strong inter­
action between the electromagnetic waves and the 
oscillations of the magnetic moment produces a 
significant change in the spectrum of the helicons 
and magnetohydrodynamic waves. Thereby, in the 
frequency region in which the effective magnetic 

permeability is positive, the conductor has a se­
lective transparency and displays resonant proper­
ties similar to those observed in ordinary metals. 
In other words, in a characteristic range of fre­
quencies a ferromagnetic conductor behaves like a 
dielectric. 

Stern and Callen[ts] have made a close investi­
gation of the propagation of a helicon in a uniaxial 
ferromagnetic along the applied magnetic field 
with a quadratic dependence of the electron energy 
on momentum and without taking dissipation into 
account.0 

In treating a ferromagnetic metal it is neces­
sary to consider spatial dispersion and anisotropy 
of the energy spectrum of the carriers. 

DISPERSION EQUATION 

We consider a homogeneous, unbounded ferro­
magnetic metal. The propagation of a plane mono­
chromatic electromagnetic wave of frequency w 
in the ferromagnetic is determined by the Maxwell 
equations: 

i(kh) = 4nc-1j, (ke] = wc-1b, (I)* 

(2) 

where e and h are the alternating electric and 
magnetic fields, j and b are respectively the cur­
rent density and magnetic induction, aik and J.l.ik 
are the conductivity and magnetic permeability 
tensors, and k is the wave vector. 

l)F. G. Bass had expressed the idea of coupled waves in 
ferromagnetic conductors independently of Stern and Callen.[•s] 

*[kh) = k X h 

216 



ELECTROMAGNETIC WAVES IN A METAL 217 

We choose axis 3 ( Z) along the constant mag­
netic field H, and axis 1 (X) directed perpendicu­
lar to the vectors k and H. The angle between k 
and H is 41. We also need a coordinate system X, 
Yl• ~, where ~ II k. 

Setting the determinant of the system of Eqs. (1) 
and (2) equal to zero leads to the dispersion equa­
tion of the natural electromagnetic oscillations of 
the unbounded metal, which can be written in in­
variant form: 

1l2k;k;eihle jmn'l']hmTJznO" pqkpkq 

- 4niroc-2 [ ( O";jk;k;) T]h!O"h! - k;a;;T]z;O"zmkm] 

~ (4:n:roc-2) 2la;;l = 0. (3) 

Here eikZ is a completely antisymmetric unit 
tensor, Ylij = !Lif1 is the reciprocal magnetic per­
meability tensor. 

The applied magnetic field will be assumed 
strong, which means 

k,v~roc, (4) 

where we= I e I B/m*c is the cyclotron frequency, 
the magnetic induction B = H + 47TM0, M0 is the 
saturation magnetic moment, kz = k I cos 41 I, v is 
the carrier velocity, of the order of the Fermi 
velocity VF, and m* is the effective mass of the 
carriers. 

In the considered case of a strong magnetic 
field it is possible to neglect the magnetic anisot­
ropy energy and to assume that the total magnetic 
moment is parallel to the field H. The condition 
(4) also allows us to neglect in the tensor 1-lik of 
the spatial dispersion, which is important only at 
wavelengths small compared with interatomic 
spacings. 

where R = cpF/ I e I B; PF is the Fermi limiting 
momentum. 

As is seen from Eq. (8), the Hermitian part of 
the tensor D"ik• which pertains to the dissipation 
of energy, contains besides a collision term a 
component associated with the calculation of 
spatial dispersion. Under the conditions (6) it 
will be the most important term in calculating the 
attenuation of the wave. 

The elements of the tensor !Lik in the system 
123 have the usual form (see, for example, [ 16 ] ) : 

111 = 1 + 4:n:vMoQ(Q2- ro2 + 2il.,ro) I (Q2 - ro2)2, 

112 = 4nvMoro(Q2 - ro2 + 2iA,ro) I (Q2 - ro2)2, (5) 

where y = g' I e I /2mc ( g' is the spectroscopic 
factor, m is the mass of a free electron), Q = yH 
is the ferromagnetic resonance frequency, A. is the 
relaxation constant. 

HELICONS ( n1 ;rt n2) 

1. Helicons are propagated in conductors with 
one group of carriers in the region of frequencies 
less than the cyclotron frequency. [ 11- 14] Following 
Kaner and Skobov, [ 12] we consider the case of 
strong spatial dispersion 

lv- iwl~k,v, 

where v is the effective electron collision fre­
quency. 

If the attenuation of the wave is to be small it 
is also necessary that the frequency w substan­
tially exceed the inverse relaxation time of the 
magnetic moment 

(6) 

(7) 

Under the conditions (4) and (6), for an isotropic 
electronic dispersion law in the case of a single 
group of carriers, the asymptote of the tensor 
Uik in the 123 system calculated in [ 12] has the 
form 

(8)* 

(111s22 + s32) ( 0"22s22 + 0"3aSa2) k~- 4niro::-2{s22[111 ( 0"110"22 + 0"122) 

+ l11ihla220"a3] + sa2[11i(O"u0"33 + 0"1a2 + 0"220"aa) 

+ 21120"120"33] + 2s2s3[1110"12- 1120"22]a13}k2 

- (4:n:ro I c2)21 a;hlll1iR.I = o, s = k I k. (9) 

Substituting Eqs. (5) and (8) into (9) and omitting 
the dissipative terms, it is not difficult to obtain 
the expression for the spectrum of the wave and 
its dependence on the frequency, the magnitude of 

In the 123 system, Eq. (3) takes the form the applied magnetic field, and the angle 41: -------------------------------------------
4:n:rMoro± (QQ1-ro2)'1• [Ql (Q cos2 <I>+ Ql sin2 <D)- ro2 ]'1'! cos <I> r1 

(10) 

*tg =tan 
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FIG. 1 
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Direct calculations show that k: < 0 for all 
values of w. 

The dependence of kJ on w is represented 
schematically in Fig. 1. The dashed lines indicate 
the dependence of k2 on w for helicons and spin 
waves, neglecting the interaction between them. 
A particularly strong interaction is caused by the 
fact that the coupling parameter 47ryM 0/0 is, gen­
erally speaking, not small. 

When if>= 0 the wave spectrum has a more 
simple form: 

(11) 

At small and large frequencies the spectrum ap­
proaches the spectrum of a helicon. 

At small w 

(12) 

for w»0 1 

k s ~ mroa1s (I <D l-1 -· 4nr M 0 ) + ~ Cs .COS (!) , (13) 

Substituting (10) into (4), we obtain the condition of 
nearness to the point of ferromagnetic resonance: 

ror- ro """- VF 2 n I e I c 4rtr Mo (14) 
ror ~C2"-B- cu "· 

Near the point w = 0 1 the inequality (6) ceases 
to be valid. The condition of nearness to this point 
has the form 

(15) 

In the general case if> ., 0, the part of the field 
of the coupled wave that is transverse relative to 
k is elliptically polarized. The coefficient of ellip­
ticity is determined from the expression 

(16) 

When if> = 0 the wave becomes circularly polarized. 
The attenuation of the coupled wave for if> ., 0 is 

due principally to spatial dispersion and has the 
form ( k = k0 + ik") 

k" 3 kR sin2 <D 
-=-n . 
ko 32 ( cos2 <D + (Q12 - ro2) (QQ1 - ro2r 1 sin 2 <1>)'1• ( 17) 

For if> = 0 the spatial dispersion in (8) is absent 
and the attenuation of the coupled wave is deter­
mined by the relaxation times of the conduction 
electrons and of the magnetic moment 

k" 1 v 4 i)f ____ + nr1 0 ro A. 
ko - 2 Ole (Q- ro) (Q1 - ro) · 

(18) 

Consider the case of a positive Hall constant. 
If the current carriers are "holes," the spectrum 
of the coupled wave has an entirely different form. 
For simplicity we shall give the results for if> = 0. 
In this case the "plus" wave has the spectrum 

k 2 = 4rtrola121 Ql-ro (19) 
+ c2 w-Q' 

which is illustrated in Fig. 2. 

,, 
+ 

FIG. 2 

The values of the wave vector of the "minus" 
wave also become positive: 

k 2 = 4rtro I a12l w + Ql 
- c2 ro + Q 

(20) 

This spectrum is shown in Fig. 3. 

•-' 

FIG. 3 
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2. Account of the anisotropy of the Fermi sur­
face leads to a number of peculiarities in the prop­
agation of the helicons, in particular to a change in 
the dependence of the attenuation on magnetic 
field. [ 14] Similar results obtain also in the case 
of a ferromagnetic metal that has a singly­
connected convex Fermi surface. 

Use of the asymptotic tensor CTik calculated by 
Kaner and Skobov[ 14], with arbitrary dependence of 
the electron energy on momentum, for a different 
orientation of the magnetic field relative to the 
symmetry axes, yields the following results. 

Let H be parallel to the symmetry axis. Then 
the corrections to the wave spectrum ( 10) due to 
spatial dispersion of the conduction electrons are 
found to be less than the attenuation determined by 
the expression 

k" 1 B ( QQ1 - c:o2 )'1• 

ko = 4 n \e I c Aw12 \Q1 (Q cos2 <D + Q 1 sin2 <D)- c:o2 

~kR; 

A= (2ne)21 m"l 
n3 k v' - , 

Z Z Vz=O 

w1 = (c / eB) kv (P2- P2). (21) 

The bar indicates the average over the trajectory 
in momentum space. 

Note that this case of orientation of the field 
along the symmetry axis is analogous to the case 
of an isotropic spectrum. 

As already mentioned, when <I> = 0 the Landau 
damping vanishes and the attenuation of the coupled 
wave is determined by the values of v and A.. 

If the direction of H is not along the symmetry 
axis, it can be shown that the attenuation of the 
coupled wave undergoes a resonance ( k" /k0 ) max 
~ I ( v - iw )/kzv I similar to that which takes 
place in the case of the helicon and due to the 
interaction with the decaying longitudinal wave. [ 14 ] 

The role of the magnetic permeability then reduces 
to an insignificant change in the factor preceding 
the resonance term. 

3. The existence of a weakly damped coupled 
wave leads to transparency of the metal in a par­
ticular frequency region. This fact is manifest in 
the reality of the elements of the impedance tensor, 
which is defined by 

Za~ = oea (0) I i)J~, a, ~ = x, 'I], '.(22) 

where J{3 is the total current in the volume of the 
metal. 

Let the ferromagnetic metal fill the half-space 
t > 0 and let H lie in the plane X= 0. 

Going over to the elliptically polarized wave, 

we write the system of Maxwell's equations after 
eliminating the variable magnetic field in the form 

a2e± 1 a~z + ltnc:oc-2 (~:,. ± y ~xx~~'J)) crxoe± = o. (23) 

Here 

~ ~ '/ 
a = i (!l'J)'J) I llxx) ' 

is the coefficient of ellipticity determined from 
Eq. (16). The tensor lla{3 has the form 

1 

i4nyM0 c:o cos <D) 
QQl- c:o2 • 

(24) 
In order to obtain Eq. (23) the dissipative terms 
were omitted. 

We introduce the surface impedance tensor for 
elliptically polarized waves by means of the 
formulas 

(25) 

The elements of this tensor are related to the ele­
ments of Za(3 by the following relations: 

1 1- a 2 

z± = 2 (Zxx + z'J)'J)) ± ~ ZX'J)> 

, 1 1 + a 2 

Z = ""2 (Zxx - Z.,'J)) - za Zx 11 • (26) 

Expressing by means of Maxwell's equations the 
electric field on the boundary via the total current 
in the volume of the metal and using the definition 
(25), we obtain after uncomplicated calculations 

(27) 

(28) 

(29) 

In Eqs. (27)-(29), we have omitted for sim­
plicity small quantities of the order kR associated 
with spatial dispersion. 

Thus, the impedance element Z_ is real in the 
approximation used, owing to the penetration of 
the wave with "minus" polarization into the metal. 
The element Z+ is imaginary, corresponding to 
reflection of the wave with "plus" polarization 
from the surface of the ferromagnet. 

With the aid of (27) -(29) it is not difficult to ob­
tain the explicit dependence of the impedance ten­
sor on the frequency, the magnetic field strength, 
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and the angle <I>. In the general case this depend­
ence is rather complicated. Limiting ourselves 
for simplicity to the case <I> = 0, we find 

4:rt v . (Ql- w (30) z_ = c w~l WWc I cos CD I v Q - w ' 

Z . 4:rt 1 V I rh I • (Ql + w (31) 
+ = - l C W~ WWc COS "" v Q + W , 

where w0 = (47re 2n/m)11 2 is the plasma frequency. 
The small complex corrections omitted in (30) 

and (31) are proportional to the inverse relaxation 
times of the conduction electrons and of the mag­
netic moment. The formulas reflect the frequency 
dependence of the spectrum shown in Fig. 1. 

Note that according to (30) ReZ_ goes to infinity 
when w is close to Q and to zero when w is close 
to Q 1. This makes the observation of ferromag­
netic resonance very convenient. 

MAGNETOHYDRODYNAMIC WAVES ( n1 = n2 ) 

Kaner and Skobov have shown[ 12] that magneto­
hydrodynamic waves can propagate in metals with 
equal concentrations of electrons and "holes" 
( n 1 = n2) at frequencies vs « w « Wcs ( s = 1, 2). 

Now the role of spatial dispersion turns out to 
be important. In the case of weak spatial disper­
sion there is propagation of Alfven and fast mag­
netic-sound waves, and for strong dispersion, 
Alfven and slow magnetic sound waves. In the 
latter case, however, Landau damping becomes 
significant, and the existence of magnetohydro­
dynamic waves is possible only with a magnetic 
field parallel to a symmetry axis of high order. 

Equality of the concentrations of carriers of 
different sign is characteristic of a number of 
ferromagnetic metals, in particular iron. In this 
section we consider the coupling of magnetohydro­
dynamic waves with the oscillations of the magnetic 
moment. 

1. We consider the case of weak spatial disper­
sion, when the frequency of the wave is limited by 
the following inequality: 

(32) 

Neglecting collisions of the carriers, we write 
the total tensor erik in the form [ 12] 

- iwa12 I We 

- iwa21 We 

aa2 

a1a ) 
-aa2 . 

iwcw-1a3 

(33) 

Here we= I e I B/( m 1 + I m 2 1) c, and the dimension­
less elements of the matrix aik depend only on the 
shape of the equal-energy surface and the orienta­
tion of the magnetic field. 

The solution of the dispersion equation (3) in 
this case has the form 

(34) 

where va = H/[ 47rm ( m 1 + I m 2 1) ]1f 2, the tensor 
'iia{3 is determined by the expression (24), and the 
matrix Aaf3 is related to aa{3 in the following 
way[12]: 

A-( a1+a1a2laa (a12+a1aaa2/a3)jcos<Dr1)· 
~ll- (a12 + a1aaa2 I a3 ) I cos <D l-1 (a 2 + a2a2 I a3 ) cos2 <D ' 

in calculating Aaf3 it is supposed that I cos <I> I 
>> w/wc· 

(35) 

For an isotropic dependence of the energy of 
the carriers on the momentum or for a magnetic 
field parallel to the symmetry axis Axx = A1717 x 
cos 2 <I> = 1, Ax17 = 0, and the spectrum of the 
coupled waves takes the form 

2 -211) 
k± 2 = w 2 c~s 2 {(Q12- w2) sin2 <D + 2 (QQl- w2) cos2 ID 

Va Wr - W 

Neglecting interaction, the wave bearing the 
''minus" sign in (36) becomes the Alfven wave, and 
the one with the "plus" sign the fast magnetic­
sound wave. Calculations show that the spectrum 
of the coupled fast wave is analogous to the spec­
trum of the coupled helicon pictured in Fig. 1. 
With the Alfven wave the dependence of the wave 
vector on frequency has a non-resonant character, 
similar to that shown in Fig. 3 for the case when 
the carriers are "holes.'' 

When <I> = 0, Eq. (36) for the spectrum simpli­
fies to 

(37) 

The coupled magnetohydrodynamic waves have in 
the case (36), generally speaking, elliptical polari­
zation. For <I> = 0 the part of the field transverse 
to k is circularly polarized, and the electric field 
vectors in the ±-waves rotate in opposite directions. 

In the particular case <I> = iT /2 the asymptotic 
expression for the tensor has the form (in the X, 
17• !; system) 

a1a 
iwcw-1a3 

aa2 

(38) 

Here the fast magnetic-sound wave propagates as 
in an ordinary metal, [12] without interacting with 



ELECTROMAGNETIC WAVES IN A METAL 221 

the magnetic-moment oscillations. The wave cor­
responding to the choice of a ''minus'' sign in the 
solution of the dispersion equation is not the analog 
of an Alfven wave in this case and has the following 
spectrum: 

2( 2)1""\2 2 k 2 __ roo a23 "~1 - ro 
- -- 2 a3 + - 2 QQ · c a2 ro - • 1 

(39) 

The wave vector is real in a relatively narrow 
interval of frequency Q < w < (QQ 1)11 2. The trans­
verse part of the field in this wave is parallel to 
H. 

In ordinary metals, as Kaner and Skobov[14J 
have pointed out, the condition (32) kz Vs « w can 
be fulfilled only in fields of the order of 106 Oe, 
whereas in semiconductors and metals with not too 
high a concentration it is perfectly feasible. 

2. The possibility of propagation of magneto­
hydrodynamic waves in metals with n 1 = n 2 in the 
case of strong spatial dispersion 

(40) 

exists in fields that are not too high and satisfy the 
condition [12] 

(41) 

As already mentioned, for the existence of mag­
netohydrodynamic waves it is necessary here that 
the magnetic field be parallel to the symmetry axis 
of the crystal. 

The electronic part of the conductivity tensor, 
by virtue of the assumptions made above, has the 
form (8); the "hole" part can be obtained by re­
placing the electronic characteristics by "hole" 
characteristics. As a result the total tensor CTik 
is found to be diagonal: 

nlelc(v-iro 3 2 ) 
Oxx = -s ---w;;-- + S rtkzR !g <D , 

Here v = ( v 1m 1 + v2m 2 )/ ( m 1 + I m 2 j) and 11- is the 
reduced mass. Since in the general case <I> ""- 0, 
as seen from Eq. (42), 

I Gyyl<l Gxxl<l Gzzl, 
the x and z components of the electric field in the 
coupled wave are negligibly small. Setting ex and 
ez equal to zero, we obtain from the system (1) 
and (2) a dispersion equation for the coupled Alfven 
wave: 

( 43) 

The slow magnetic-sound wave in this case has an 
imaginary wave vector. 

For <I> = 0, the spatial dispersion does not play 
any role, and both waves become weakly damped. 
Their spectrum coincides with the spectrum given 
by Eq. (34), in which it is necessary to set Aik 
= Oik· Their attenuation, as in the case of the 
wave (43), is due to the finite relaxation of the 
carriers and of the magnetic moment. 

We consider now the case of arbitrary direction 
of the magnetic field with respect to the symmetry 
axes, for which the most important components in 
the conductivity tensor are those due to Landau 
damping (see [14]). In these conditions Eq. (3) 
does not have real solutions, with the exception of 
an electromagnetic wave linearly polarized along 
H. Its dispersion equation can be obtained from 
the system (1), (2) by setting the field ea and the 
elements CTaz (a= x, y) equal to zero. The spec­
trum of this wave takes the form 

fik2 - ~~-w I .· 2rT ~-1 
- - (J) 1 2 nn Slll ~ ' 2Ll{ ' (J) - ,~,~1 

n \ dn 1';, M =~ 4rte2 'V ~ 
c .::..J de ' 

(44) 

where E is the Fermi energy. 
As the estimates presented in [14] show, the 

wave can exist in fields limited by the inequality 

(45) 

For metals ( n ~ 1022 ) this means H « 103 w114 . 

The possibility of propagation of this wave is es­
sentially connected with the anisotropy of the 
Fermi surface. For <I> = 0 the wave is also 
absent. As seen from (44) the wave vector is real 
over the entire allowable frequency range, except 
the interval Q < w < (~W 1 )11 2 . The impedance of 
the wave with linear polarization, determined by 
means of Eq. (22), has the form 

4rt I ft(J) . I (J)2 - Ql2 

Z1Jr, = (;2-~ 2M I Sill 2<D t (J)2 - QQ1 • 
(46) 

Thus, weakly damped electromagnetic waves of 
the coupled helicon or magnetohydrodynamic type 
can propagate in a wide class of ferromagnetic 
conductors. The existence of these waves should 
be manifest in the transparency of the ferromagnet 
in a particular frequency region and in the reso­
nant excitation of standing waves in a plate, simi­
lar to that which occurs in a number of experiments 
on the observation of undamped waves in ordinary 
metals and semiconductors. [t-1o] A characteristic 
feature is the asymmetric shape of the ferromag­
netic resonance line. 

Since the spectrum and attenuation of the 
coupled waves are extremely sensitive to the 
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shape of the equal-energy surface, their experi­
mental detection could give specific information 
about the energy spectrum of the carriers in ferro­
magnetic conductors. 

It is difficult to make numerical estimates be­
cause of the absence of experimental data on ferro­
magnets. The values of the pertinent quantities for 
iron presented by Stern and CallenC15] allow one to 
expect that magnetohydrodynamic waves can propa­
gate in iron under the conditions of (40). 

The author sincerely thanks E. A. Kaner for his 
interest and assistance and M. I. Kaganov for help­
ful consultations. The author deems it his duty to 
express acknowledgement to F. G. Bass for sug­
gesting the subject of this paper. 
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