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The lower critical field Hcl for highly impure alloys ( l « ~ 0 ) is found. It is given by 
formulas (34) and (30), where He is the thermodynamic critical field. Corrections to the 
depth of penetration of a weak magnetic field into a superconducting alloy are also computed. 

INTRODUCTION 

0 NE of the features of the behavior of supercon
ducting alloys in a magnetic field is the appreciable 
range of their transition from the superconducting 
into the normal state. Accordingly, the alloys are 
characterized by the presence of two critical 
fields-upper Hc2 at which the first occurrence 
of the superconducting phase is possible, and 
so-called lower critical field Hct• corresponding 
to the start of penetration of the magnetic field 
into the superconductor. 

Within the framework of the phenomenological 
Ginzburg-Landau theory, i.e., near the critical 
temperature of the superconducting transition, the 
resultant state was investigated in detail by Abri
kosovCtJ. In particular, he obtained expressions 
for the critical fields Hc 1 and Hc2: 

Hct = Hc(ln X+ 0.08) / -y2x, Hc2=Hd2x, 

where He-thermodynamic critical field and 
K -parameter of the Ginzburg-Landau theory 

Abrikosov obtained his results for the lower 
critical field under the assumption that K » 1. 
Following the formulation of the BCS microscopic 
theory of superconductivityC 2J, Gor'kov showedC3J 
that the noted similarities in the behavior of super
conducting alloys in a magnetic field resulted from 
the change in the superconducting correlation of 
the conduction electrons scattered by the impuri
ties. It turned out then that the parameter K of the 
Ginzburg-Landau theory depends on the mean free 
path l. With decreasing mean free path, the super
conducting alloy loses the properties of a pure 
superconductor at a certain impurity concentration 
and acquires the characteristic properties observed 

experimentally in magnetic fields. For sufficiently 
large concentrations, K increases like 1/l and can 
become very large, as assumed also by Abri
kosovCt]. There is no doubt at present that the 
above picture describes well all the features of 
the behavior of alloys in a magnetic field. 

Later on Shapoval [ 4], likewise within the 
framework of the microscopic theory, investigated 
the upper critical field Hc2 for superconducting 
alloys over the entire temperature interval. 

In the present paper we obtain the lower 
critical field over the entire temperature interval, 
for a strongly contaminated alloy ( l « ~ 0, ~ 0 

= liv/2rrkTc-correlation parameter). The condi
tion l « ~ 0 is equivalent to the condition K » 1 
used in [t] for an analysis of the region near the 
lower critical field. The possibility of solving 
this problem is connected with the fact that in the 
essential region the equations of the superconduc
ting alloys are local, and the quantities character
izing the superconductor differ little from their 
values in the homogeneous problem in the absence 
of a field. 

We also calculate in this paper corrections 
quadratic in the field for the depth of penetration 
of a weak field. 

1. LOWER CRITICAL FIELD 

Like Abrikosov[tJ, we assume here that the 
transition from the superconducting state into the 
mixed state is a second-order phase transition. 
We assume also an analogous distribution of the 
currents in the field, i.e., we assume that the 
penetration of the field in the superconductor is 
in the form of thin filaments, separated from one 
another by large distances, so that they can be re
garded as independent. We shall consider hence
forth only one filament. 
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The field distribution in a superconducting 
alloy is determined with the aid of the equations 
for the Green's function and Maxwell's equation 

( 

iro- [iV x+eA (x)] 2/2m 

+ !l - ~ u (x - Xa) 
a· 

- Ll* (x) 

Ll (x) ) 

-iro-[iVx-eA(x)] 2j2m 

+ !l - ~ u (x - Xa) 
a 

( ~00 (x, x') 

X \3',,+ (x, x') 
-13'"' (x, x')) 
~-m (x', x) 

- c(x-x') 
- 0 ll(x~x'))' (1)* 

Ll (x) = gT ~ ~., (x, x), rot rot A (x) = - 4:rtj(x), (2) 
"' 

where A ( x) -vector potential, w = 27r ( n + Y2) T, 
u ( x - Xa) -potential of interaction with the im
purity atoms, g-constant of interaction of the 
electrons with one another, IL-chemical potential, 
and @l w ( x, x'), ~ w ( x, x' ) and ~ ~ ( x, x') -tern
perature Green's functions, defined, for example, 
in [S]. The current density j ( x) is connected with 
@l w ( x, x' ) by the relation 

j (x) = 2T ~ { ~~ (Vx'- Vx) @l., (x, x') 

- e2:(x) @l"' (x, x')} x'-..x (3) 

Equation (1) was written out in matrix form, 
with the aggregate of the Green's function forming 
a single matrix Green's function for the operator 
in the left side of (1) 

lr., X, X - • ;.., ( ') _ (@l"' (x, x') - ~., (x, x')) 
~., + (x, x') @l_., (x', x) 

Inasmuch as the problem has cylindrical sym
metry, we choose the direction of the filament 
along the z axis, and direct the vector potential 
A perpendicular to the radius vector. We exclude 
the phase dependence from among the quantities 
in (1), (2), and (3), assuming, as in [1], that it is 
of the form 

Ll (x) = Ll' (x) ei<P, @l., (x, x') = @l.,' (x, x') ei(<P-<P')/2, 

~., (x, x') = ~.,' (x, x') ei{<P+<P')/2, 

~"' + (x, x') = ~., +' (x, x') e-i(<P+<P')/2, ( 4) 

where cp -polar angle of the point with coordinate 
X. 

Substituting expressions (4) in (1), (2), and (3) 
we obtain a system of equations in which primed 
quantities will now be involved. Leaving off the 
primes, we obtain a system of equations that 

*rot= curl. 

differs from (1) -(3) only in the fact that A ( x) is 
replaced by 

Q(x) = A(x) - V'ljl / 2e. 

We shall have in mind this function in what follows. 
We shall show below that when K » 1, as in [t], 

the main contribution is made by the region of 
large distances from the center of the filament, 
where the field is small. Therefore, after exclud
ing from the Green's functions the phase dependence 
(4), we can solve (1)-(3) by expanding all the quanti
ties in terms of small deviations from their values 
in the absence of a field. In the expansion of 
Gw ( x, x') it is sufficient here to retain the terms 
that are linear in A ( x) = .6. ( x) - .6. ( .6. -value of 
the gap in the absence of the field) and quadratic 
in Q ( x). As will be shown below, such expansions 
are valid at distances r » 60/K ~ ( ~ 0 l) 11 2. 

For the current density in this region we haveC5J 

. Q (x) 1 [ 1 ]'/, 
J (x) = - 4mV ' ~0 = 2:rt Lla th (Llj2T) ' (5)* 

where (]' = Ne 2Ttrlm-residual resistance of 
normal alloy. 

The equation for Q ( x) = I Q ( x) I takes then 
the form 

Its solution under the boundary conditions 
Q(oo) = 0, Q(r « 60 ) = (2e)-1Vcp = (2er)-1 is 

Q (r) = 2e~o K 1 ( ;J , (7) 

where K1 ( x) -Bessel function of imaginary argu
ment. 

Substituting (7) in (1) we obtain a system of 
equations for the Green's functions, which we can 
rewrite in integral form by using the matrix nota
tion: 

G., (x, x') = G0"' (x, x') + ~ Goro (x, I) A (I) G"' (1, x') dl 

+ ~ Goro (x, I) Q (I) l't (I, x') dl, 

i(~ c c -g- = T ~ { "'(x, x)- 0., (x, x)}. (8) 

"' 
We have used here also the following·notation: 

A (x) = A (x) 1, A ('0 -1) 
I= .1 o • 

"" ie "' Q (x) =-Q (x) Dx aVx, m 

A ( 1 0 ) 
(j = 0 -1 , 

- Q (x). 
Dx- Q (x), (9) 

*th =tanh. 
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Gow ( x, x') -Green's function of the superconduc
ting alloy in the absence of a field. 

Equation (8) is solved by expanding Gw ( x, x') 
in a series in A ( x) and Q ( x). Each term of the 
expansion can be set here in correspondence with 
a definite graph, thus arriving at a diagram tech
nique. The difference between this technique and 
that used for superconductors lies in the fact that 
each line between x and x' is set in correspond
ence with a matrix Green's function Gow ( x, x' ), 
and two types of vertices are produced, one con
taining the matrix a and the other I. 

Expanding Gw ( x, x') with the required accu
racy, and using the definition of A ( x), we obtain 

A (x) {(' A , A A g = T ~ ~GOO> tx, 1) A (1) G0., (1, x) d1 
. 0> • 

+~Go., (x, I) Q (1) Go., (1, s) rj (s) G~ .. (s, x) dl ds}. (10) 

It is also necessary to average the quantities 
contained in this equation over the positions of the 
impurity atoms. The technique for this averaging 
was developed in [ 5•6] and reduces briefly to the 
following. 

Denoting scattering by impurity atoms on the 
diagrams for the Green's functions or for their 
products by means of a cross, we can show that 
each cross corresponds to a vertex 
u ( q) exp ( iq · Xa) ( u ( q) -Fourier component of the 
potential of electron-impurity interaction, xa
position of the impurity atom). Averaging over 
xa, we obtain if q "' 0 a zero value if this diagram 
does not contain one more scattering at the point 
Xa with q' = -q. Otherwise the result of the 
averaging is equal to nlu(q) 12, where n-concen
tration of the impurity atoms. The averaging of 
such a pair corresponds on the diagram to a 
dashed line joining two identical impurity atoms. 
It is shown in [5] that diagrams containing more 
than two scatterings from one impurity atom, or 
diagrams in which the dashed line encloses a ver
tex with momentum transfer ~ p0, need not be 
taken into account, since their contribution is 
smaller than the remaining contributions by a 
factor 1/p0 l « 1. 

It is possible to average A (x) and the products 
of the Green's functions in (10) separately, for 
whereas A ( x) varies slowly, the Green's func
tions oscillate over distances ~ 1/p0. Denoting 
the averaged products of the Green's function by 
K and L: 

K.,(x-l,l-x')=(G0.,(x,l)JGOO>(l, x')), 

t., (x- x') = ( ~)\(Go., (x, I) anzV zGo., (1, s) 

xon.V.G0.,(s, x')> dsdl (11) 

and recognizing that the distance over which the 
integrand in the second term of the right side of 
(10) changes is ~z « 6 0, we can write the equation 
for A ( x) in the form 

A (x) = T ~{~A (q) eiqxf<., (p, {1- q) ~~:)~ 
g 0> 

2 (' A dp } + Q (x) .\ L., (p) (2n)3 , 

where Kw ( p1, p2 ) and Lw ( p) are the Fourier 
components of the functions K and L: 

(12) 

We now proceed directly to determine the func
tions K and L. 

Figure 1 shows some diagrams obtained by 
averaging K (here Pt- p 2 = Pt- P2 = q). Summa
tion of diagrams of the type of Fig. 1a leads to a 
replacement of the Green's functions of the pure 
superconductor by the corresponding functions of 
the alloy, which differ from the former by an ex
ponential factor exp {-I x- x' //21}. In the mo
mentum representation this corresponds to re
placing ( w, ~) by ( WIJw• ~17w ), where 

Diagrams of the type of Fig. 1b must be taken 
into account, since the momentum transfer in the 
vertex is q « p0. Summation of these diagra:rns 
leads to an integral equation for K, the graphic 
form of which is given in Fig. 1c: 

K., (p], P2) = G., (pl) lG., (P2) 

...(__G., (PI) (2:)3 ~I u (PI- PI') \2 

X K., (PI', P2') dp1'G., (p2)· 

It is more convenient, however, to solve the 
equation not for K, but for the vertex function 
iiw ( p1, p2), connected with K by the relation 

a b A 
I 

(14) 

-x-J$--~-~-~-',<- --x x--
P,\, .. /~ p, ', , __ , ,/ ,_, JI: ..... __ _ 

c 

P, 

A· 
I< • = 

FIG. 1 
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ELECTRODYNAMICS OF SUPERCONDUCTING ALLOYS 211 

From (14) and (15) we obtain an equation for 

llw(Pt• P2): 

fi I n C ' 2 
01 (PI• P2) = + (2n)s .) I u (Pl- P1 ) I 

X COl (p/) IT., (pl', P2'} GOI (p2') dp1' • 

(15) 

(16) 

Its solution is sought for small q, i.e., at large 
qistances from the center of the filament, so that 
Ilw ( p 1, p 2 ) can be expanded in powers of q accu
rate to terms quadratic in q inclusive: 

ITOI(PI• P2) = fioOI(PI) + ft2..,(Pl)(qv)2 • 

If p1 ~ p 0, the dependence of llow and IT2w on the 
momentum can henceforth be neglected. 

Writing out ( 16) in terms of the components, we 
can deduce from the form of the resultant equations 
that each of the functions flow and IT 2w will contain 
only two independent quantities 

IT0.., = ( II~.~ m~ ) 
- rr<2l rr<I> , ow - ow 

A ( II(l) II(2) ) II- 2"' 201 

201 - 11<2> rr<I> . 
- 2W - 2Cil 

An analogous statement holds for the structure of 
the vertex functions, which will be introduced be
low. 

After integrating (16) over the angles, we ar
rive at the following equations: 

II~= 2!-r ~{II~~ [@JOI (p) @J.., (p} + ~"' (p) ~01 (p) I 

+2m~ @}01 (p) ~01 (p)} d~, 

II~~= -1 + 2~-r ~ {- 2m~@J., (p) ~01 (p) 

+II~~ [@J.., (p) @J--<» (p)- ~01 (p) ~ .. (p)]} d~ 

[ ~ = v ( p - Po) ], the solution of which is of the 
form 

(17) 

II(l) _ iro/1 <2> 1 ro 112 ( 18) 
o., - 2-res ' IloOI = - 1 - n-re arctg 8 + 2ea't" , * 

where E = ...; w2 + t- 2, and w-Debye frequency. 
Calculation of rr 2w yields (we are interested 

in the component rrm> 

The ratio of the part of llw ( p 1, p 2) that is 
quadratic in q to llow is of the order of l~ 0q 2, 
and is small in the region in which we seek the 

*arctg = tan -•. 

b a A 

G 
--~-~-\---+-l-' ... _........ .... __ , 

;. • r 
c • x--•---:x 

• . . . 
r r r !: 

d - ~ • " } 
' .... , / 

/ 

' / 

' / ----
FIG. 2 

solution [r » (l~ 0 )V 2 or q « (l~ 0 )11 2 ], so that 
we shall henceforth neglect this part. 

Diagrams of the type of Fig. 2a, b appear in the 
calculation of L. Diagrams of the type of Fig. 2a 
lead to a replacement of the simple vertex 
-en. pa/m by r w ( p) -the vertex function of 
first order in &, while diagrams of the type of 
Fig. 2b lead to a vertex function of second order 
in rr, i.e., iw (p). Lw (p) is expressed with the 
aid of these functions in the following fashion: 

t .. <P> = c .. <P> r .. <P> G., (p) r .. <P> G., <P> 

+ G., (p) :2., (p) c., (p). (20) 

To find the values of rw(P) and ~w(P) it is 
necessary to solve the corresponding equations, 
which can be readily obtained with the aid of the 
diagram technique (Figs. 2c, d). Analytic expres
sions for these equations and their solution are 
given in the appendix. The vertex function 
i; w ( p) is connected with Lw ( p) by the relation 

±., (p) = (;n)3 ~I u (p -p~) l2 l., (p') dp'. (21) 

Using this relation, and also (16) and (15), we 
obtain the following formulas: 

1 • A p ml" A A 

{2n)3 ~ K., (p, p} dp = ~- (II0.., -I), 

1 (' L p0 ml", 
(2n)s.) ., (p) dp = -n-l:o"'' 

from which, substituting (18) and (7) in (12), we 
obtain 

A (x) __ A (x) _A (x) p0mll2 ,~ _!_ 
g - g 2n T 7,J ea 

(22) 

_p0mll(eQv)2 "'-1-[1- ~(1 + _1_)], (23) 
6n T ..::::.J e3Tjtr e2 2Tjtr 

"' 
and for a strongly contaminated alloy ( l « ~ 0) we 
obtain finally 

A (x) = - 2't"1r [eQ (x) v] 2 T ~ ; 2 ;3/1T ~ e~ • (24) 

In the region of distances r « 60, we have 
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Q = 1/2er and by using this value we obtain an 
estimate A ( x) ~ l~ 0r-2Ll. It is therefore clear 
that A ( x) changes noticeably only over distances 
~ ~ as assumed beforehand. 

To calculate the energy of the filament we use 
the thermodynamic relation 

8Q = - I I ~ (x) 12 dx 
ag ~ g2 

(25) 

or 

g 

Q = Qn + ~ dx ~ [ ~ (x) 12 d : . 
0 

This formula contains the absolute value of the 
gap, i.e., its phase dependence drops out. We pro
ceed from integration with respect to g to integra
tion with respect to Ll, using the definition of Ll 

~ T 
g = (2n)s ~ ~ ~"' (p) dp. 

"' 
We have 

C (~) = - Pomf12 T ~ _!___. (26) 
2n .LJ 8 3 

"' 
For the filament energy, defined as E' = F - F80 

( Fs0-free energy of the superconductor in the 
absence of the field), we obtain per unit length 

- r r ~2 (x) ~2 
8 = 2n} d~ ~ rdr ~- C(~) d~. (27) 

0 

In the integral (27), the integration region can 
be broken up into three parts ( 0, 60/K ), ( 60/K, 6 0), 

and ( 6 0, oo). The greatest contribution to the inte
gration is made by the second, logarithmic region. 
The essential distances are in this case 60/K « r 
« a0, with ~ ( x) = ~ +A ( x), A ( x) « ~. 
Q = 1/2er, and 

a s, 
e=4n~d~ ~ rdrA(r)C(~). (28) 

0 B0/X 

The contribution from the first region, as can be 
seen from (27), is of the order of R~o5/ K 2 and will 
not be taken into account in our approximation. 
The third region gives a small contribution, owing 
to the exponential decrease of A. 

Using the expression (24) for A and the defi
nition of the function C (~ ), we have 

and we obtain after summation over w: 

ncr d { ~} A (r) C (~) = 32e2r2 d~ ~ th 2T • (29) 

Substituting (29) in (28) and introducing the 
temperature function K ( T), defined by 

x(Tc) =X, (30) 

we obtain with logarithmic accuracy, after inte
grating (28), 

(31) 

Knowing the energy of the filament, we can 
write down the expression for the lower critical 
field. At the start of the transition, the phonons 
barely interact with one another, and their contri
bution to the free energy is equal to n~. where n
filament density. The free energy of a cylinder 
situated in a longitudinal field R is written in the 
form 

- HB H 2 \' 
F = Fso + n8- 4n +Sit , B = n ~ rotzAdS. (32) 

So long as the field does not penetrate into the 
superconductor, the free energy of the cylinder 
is equal to F = Fso + R2/8rr. We see therefore 
that the start of the transition is determined by 
the vanishing of the quantity nE'- RB/471", i.e., the 
lower critical field Ret is equal to 

Hc1 = 4:n:m/B. (33) 

On the other hand, by choosing the contour of 
integration in the integral for the magnetic induc
tion B at infinity, where Q = 0 and A= 1/2er, we 
obtain 

rh :n:n 
B = n ';)A (I) dl =e. 

We finally have for the lower critical field Ret 

(34) 

A plot of K ( T) against the temperature is 
shown in Fig. 3. It must be noted that the curve 
showing the variation of the moment with the field 
will have the same singularity as in the paper of 
AbrikosovDJ. The result obtained for Ret coin
cides in form exactly with the result of Abrikosov, 

'}(,(T)/1' 

0 0.5 
T/Ji: 

FIG. 3 

1,0 
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differing from it only in the definition of the tem
perature dependent K ( T). 

Calculation of the next nonlogarithmic terms in 
(34) is quite difficult, since it calls for a solution 
of the theoretical equations in the region where 
the equations cease to be local. 

Comparison of (34) with experiment is difficult, 
owing to the lack of measurements for supercon
ducting alloys with sufficiently large K. As shown 
in Fig. 4, the temperature variation of Hc 1 is in 
qualitative agreement with the available dataC 7•8J. 
From the quantitative point of view, on the other 
hand, formula (34), when applied to alloys with 
small K, yields, as in CtJ, too low a value for the 
lower critical field. 

2. DEPENDENCE OF THE DEPTH OF PENE
TRATION ON THE FIELD 

We proceed to calculate the corrections to the 
depth of penetration of a weak constant magnetic 
field into a superconducting alloy. The field is 
chosen smaller than the lower critical field, i.e., 
no filaments are produced. It is easy to see that 
in order to calculate the correction quadratic in 
the field to the depth of penetration, it is necessary 
to know the current density accurate to terms 
cubic in A inclusive. Using the connection be
tween the current density and the Green's function 
(3), we have 

j (x) = m ~;n)3 1' ~ ~ p@3"' (p, x) dp- : A (x) N, (35) 

where @3 w ( p, x) -Fourier component of the 
Green's function averaged over the positions of 
the atoms: 

@3"' (x, x') = (2!)3 ~ @3"' (p, x) eiP (x-x') dp. 

We expand @3 w ( p, x) up to terms cubic in A 

X 

0 
0 f 

l-------2 

0 0.5 
T/TC 

1.0 

FIG. 4. Variation of the field Hc1 with the temperature. 
Alloy In + 2.5% Bi, K = 1.24: x -experiment, curve 2- the
ory; alloy Ta, 6Nb 64 , K = 3.02: 0- experiment, curve 1-
theory. 

inclusive. In calculating the current density it 
will be convenient to use a matrix notation. Ex
pressing the averaged products of the Green's 
functions by means of the relations 

~ ie (' A A A A A 

R., (x - x') = m.) (Go"' (x, I) IG0w (1, s) on.V.Gow (s, x') dl ds), 

we transform to Fourier components Rw ( p) and 
Su.;(p): 

fl., (x) = (2~)3 ~ fl., (p) eipx dp, 

~ 1 (' A • 

S., (x) = (2n) 3 .) Sw (p)e•Px dp. 

Separating from the current density the part 
linear in A(x), obtained in[ 5J, we get 

j (x) = jo (x) + m ~~n)3 1' ~{A (x) A (x) ~ pR~> (p) dp 

+ A3 (x) ~ pS~> (p) dp}. 

(37) 

(38) 

Here RD) and sL}>-components of the matrix 
quantities Rw and Sw, corresponding to the cor
rections to @3 w ( p, x): 

In (38) we made use of the fact that A ( x) and 
A ( x) vary significantly over distances ~o 0 in a 
weak field, whereas the largest region of variation 
of the corresponding kernels in (38) is ~o 0/K 
« 60• Because. of this, the electrodynamics of 
alloys is local in a weak field. 

Expanding Ru.; ( p) and Su.; ( p) in Legendre 
polynomials of p·n/p0 and substituting in (38), we 
find that contributions are made to the current 
density only by the first harmonic: 

j (x) = jo (x) + '3 ~~~2 T ~{A (x) A (x) ~ R~{'(p) d£ 

+A(x)[A(x)J~~s~l (p)ds}. 

A A A ("P) R., (p) = Rwo (p) + R.,1 (p) P1 Po + ... , 

A A A ("P) Sw (p) = Swo (p) + Swl (p) P1 Po + • • • • (39) 

The averaging over the positions of the impurity 
atoms leads to equations for Rw ( p) and Sw ( p) in 
the graphic form shown in Fig. 5. As before, it is 
more convenient to solve the equations for the 
vertex functions defined by the relations 

Zoo(P)= (2:)s ~l_u(p-p')I2 R.,(p')dp', (40) 
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800 (p) = (2:)3 ~I u (P- p') 12 800 (p') dp'. (41) 

The equation for Z w ( p) is obtained from ( 40) 
and from the corresponding equation for Rw ( p): 

Zoo (p) = (2:)3 ~I u (p- p') 12 {Goo(P') r ooGoo(P') ILGoo (p') 

+coo (p') ft"' Goo (p') r ooG., (p')} dp' 

n ,. " 1\. """ + (2n)3 ~I U (p- p') 12 Goo (p') Zoo (p') Goo (p') dp'. ( 42) 

Equation (42) is solved, as before, by expanding all 
the quantities in Legendre polynomials. As a re
sult we have for the first harmonic of the expan
sion of Zw 1: 

( 
Z (l) 

' OO! 
Zoor = , (2) 

-Zoot 

Z(2) 

o>l ) 

- z~i ' (43) 

The contribution of this term to the current density 
is equal to 

- 3
4 PomA(x)A(x)Lh'tr(ev)2 1'~w:. (44) 
n e 

"' 
Inasmuch as the equations used to find A ( x) are 
derived from the corresponding equations for the 
lower critical field by the substitution Q - A, we 
must take for A ( x) the previously obtained ex
pression with the corresponding suitable substitu
tion Q- A. 

It now remains to find the contribution from 
Sw ( p). The equation for §: is of the form 

8"' (p) = (2:)3 ~I u (p- p') 12 

X {GO) (p') r wCJoo (p') t .,G., (p') r .,G., (p') 

+ c"' (p') r "'Goo (p') "i:.wcoo (p') 

+ Goo (p') "J:."'c., (p') t .,G., (p')} dp' 

+ (~) 3 ~I u (p- p') 12 G"' (p') 8., (p') G., (p') dp'. ( 45) 

It is solved in analogy with the preceding ones. 
We note merely that, as can be rea~ily seen, the 
first harmonic of the expansion of 2: in Legendre 
polynomials of p · n/p0 receives contributions from 
the zeroth and second harmonics of i;w in the 
second and third terms of the free part of (45). 
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b • s 
~ 
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R __...._ A A 

rn 
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FIG. 5 

However, as shown by an estimate, it is necessary 
~::> take into account in (45) only the terms with 
~;wo· The discarded quantities are small in a 
ratio Z/~ 0 « 1. 

Solving ( 45), we obtain for the first harmonic 
-· ~~wt= 

( 46) 

and the corresponding contribution to the current 
density is 

Spom (ev)4~2-r2A(x)[A(x)J2T~Ol2 • (47) 
9n: tr LJ e" 

"' 
Gathering together the obtained expressions, 

we obtain ultimately for the current density 

"(x) =- A(x) [1- 4[A (x)]2/(T)J (48) 
J 4:rtb~ Hcb~ ' 

where f ( T) -dimensionless temperature function: 

In writing down the current density in the form 
(48), we have used the following expression for the 
thermodynamic critical field 

2 ~2 
He= 8pomT ~ {2e- 2w- -}. 

"'>o 8 

Let us consider the case of a superconducting 
half-space occupying the region z > 0, and let us 
direct the external field H0 along the y axis and 
the vector potential A along the x axis. ThEn, 
substituting (48) in Maxwell's equation, we obtain 

d2A A [ 4A2 J 
dz2 = b~ 1- H~b~f (T) . (49) 

Solving (49) with boundary conditions H(z = 0) 
= H0 and A ( oo ) = 0, we obtain for A, accurate to 
terms cubic in H0, 

A (z) = - H oboe-zfS, + H~bo ( ~c ) 2 f ( 1') [ e-az;s. - 3e-z;s, ]. 

(50) 
The depth of penetration is determined from the 

formula 

from which, using (50), we obtain 

6 = 6o[1 + (HoI Hc)2f(T) ]. (51) 

The function f ( T) changes little with tempera-
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ture and assumes values f( Tc) = 0.125 and f( O) 
= 0.096 on the boundaries of the temperature inter
val. As T- Tc formula (51) goes over into the 
Ginzburg-Landau theory result. 

In conclusion I am grateful to L. P. Gor'kov 
for valuable advice and numerous discussions of 
the work. 

APPENDIX 

A The equations for the vertex functions r w and 
~w are written analytically in the following fashion: 

r., (p) = - : npa + (2:)3 ~ 1 u (p - p') 12 

XC., (p') ~"' (p') G., (p') dp'' (A.l) 

±., (p) = ( 2~)s ~I u (P- p') i2 G., (p') r"' (p') G., (p') t"' (p') 

• n I 
X G., (p') dp' + (2n)s j I u (p- p') j2 

X G., (p') ±., (p') G., (p') dp'. (A.2) 

r w ( p) and i: w ( p) depend essentially on the 
angle p · n/p0• After expanding these quantities in 
Legendre polynomials 

• • • (' np ) • ( np ) 1:w (p) = 1:ooo + 1:wl Pl Po + 1:.,2P2 Po + • • • • 
we substitute these expansions in (A.l) and (A.2). 

Using the theorem for the addition of Legendre 
polynomials 

where z = p · p'/p~. z 1 = p · n/p0, and z 2 = p' · n/p0 

are connected by the relation z = z 1z 2 

+ ( 1- z~)11 2 ( 1- z~)11 2 cos J, and integrating over 
the angles, we find that the only nonvanishing har
monics of the expansions are the first in r w and 
the zeroth and second in i:w· 

For these quantities we have a system of linear 
equations 

(A.3) 

which have the following solutions 

I' _ W1 
ool-

• ( r<t) 

- r!:l 

r .,1 = - ev I 1 + - 3-- , 
(1) ' ~2 ) 

\ 2e 'lltrT1 

• ( ~(1) ~(2) ) 
~ _ """'o """'o 
~wO- , 

- 1:!:J - }:;~~) 

with 

r!:l) 
(1) , - r.,1 

1 nmp0 (' 2 --.rz = (2:rt)2 .)I u (tt) J Pz(cos tt) dQ&, l = 1, 2; 

'I]! = 1 + 1j2 ET!, 'l]lr = 1 + 1j2 E't'tr• 

(A.5) 
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