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The kinetic coefficients (electrical conductivity and thermal conductivity tensors) of a plasma 
in a magnetic field are investigated for the case of scattering of electrons by ions, photon re
laxation being due to Compton scattering by electrons or to electron absorption resulting 
from collisions with ions. It is shown that the "photon wind" may create a strong electron 
drag effect which affects the thermal emf appreciably. It is furthermore shown that scatter
ing of photons by the electrons which they drag along (mutual drag effect) also significantly 
influences the kinetic properties of the plasma by changing its transverse thermal conductiv
ity. Finally, it is shown that the familiar methods of elimination of the infrared divergence 
must be modified in the presence of an external radiation field. 

1. INTRODUCTION 

IN an earlier investigation[!] we studied the 
kinetic properties of a hot fully ionized nonrela
tivistic plasma with large radiation pressure, in 
which the Compton scattering of the electrons by 
the photons is more appreciable than their scat
tering by ions. 

This case occurs at sufficiently high tempera
ture and sufficiently low plasma density. If these 
conditions are not satisfied, a situation can arise 
wherein the electrons are essentially scattered by 
the ions, and the equilibrium between the photons 
and the electrons is established either via Compton 
scattering or via radiation processes involving ab
sorption and emission of protons upon collision of 
the electrons with the ions. In the present paper we 
study the kinetics of a plasma in which either the 
first or the second photon relaxation mechanism 
predominates. We confine ourselves to a plasma 
satisfying the condition 

(1.1) 

( Wpl-plasma frequency), which under the condi
tions of [ 1] is satisfied automatically. For example, 
at a temperature T = 10-10 erg ( ~ 106 deg) and at 
an electron density n ~ 1016 cm-3, Compton scat
tering predominates, while the radiation processes 
predominate at n ;::_, 10 18 cm-3 . 

Since photon relaxation is due either to Compton 
scattering or to radiation processes which lead to 
a considerably longer relaxation time than electron 
Coulomb scattering by ions, the mean free path of 
the photons is likewise much larger than that of the 

electrons. This means that the nonequilibrium ad
dition to their distribution function, and corre
spondingly the drift velocity, is considerably 
larger than for electrons, so that a "photon wind" 
is produced, capable of dragging the electrons 
along. Consequently, in spite of the smallness of 
the contribution of the Compton scattering and of 
the radiation processes to the electron relaxation, 
the dragging by the photons can be strong. The 
calculations show that its contribution to the 
thermal emf and to thermal magnetic effects 
(transverse thermal emf and thermal conductivity) 
may be comparable with the contribution connected 
with the main relaxation. The situation also 
changes in principle when the transverse thermal 
conductivity (perpendicular to H and V'T) is 
changed. Along with a transverse electron thermal 
conductivity, which experiences approximately the 
same changes as the thermal magnetic coefficients, 
there appears also a transverse photon thermal 
conductivity. 

If the dragging is taken into account, the elec
tron drift consists of a part due to the direct 
action of V'T, and a part due to the "photon wind" 
drag. In a magnetic field both parts of the electron 
drift have components transverse to the field. The 
scattering of the photons by the first part of the 
electron drift constitutes their dragging by the 
electrons, while photon scattering by the second 
part of the drift is a manifestation of the mutual 
entrainment of the electrons and photons. The 
mutual entrainment changes only the transverse 
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thermal conductivity of the photons, while the re
maining kinetic coefficients. change only under the 
influence of the simple drag. 

The Compton relaxation of the photons predom-
inates over their radiation relaxation if the photon 
concentration N ~ ( T /tic )3 exceeds the electron 
concentration. The longitudinal thermal emf then 
increases over the case without drag by a ratio 
N/n > 1, and the change in the transverse thermal 
conductivity and in the thermal emf is smaller 
than or of the order of unity, consisting of two 
parts: one due to the drag and proportional to 
( e 2/tic) -J mc2/T, and one due to the mutual en
trainment and proportional to ( e 2 /tic) 2mc 2 /T. 
(The change in the longitudinal thermal conduc
tivity of the electrons and the photons is negligible 
compared with the photon thermal conductivity.) 

When N/n :S 1, when radiative photon relaxa
tion predominates, the change in the kinetic coef
ficients does not exceed units in order of magni
tude; the longitudinal and transverse thermal emf's 
then change by an amount proportional to N/n, 
while the transverse thermal conductivity is 
changed by the drag in proportion to N/n, and by 
the mutual entrainment in proportion to ( N/n) 2. 

2. GENERAL EQUATIONS 

Let a hot nonrelativistic plasma be in a non
equilibrium state under the influence of an electric 
field E constant in time and in space, a chemical 
potential gradient Vi;, and a temperature gradient 
VT. We denote by np = n~ + fp and by Nq = N& 
+ gq the electron and the photon distributions rela
tive to the momenta p and q, where ~ and N&
equilibrium functions, and fp and gq-deviations 
from equilibrium. Then the system of kinetic 
equations for the electrons and the photons takes 
in the presence of a magnetic field H that is inde
pendent of the coordinates and of the time the 
form* 

v~mp + eEvpnp + e-1ev [H, vvnp] 

eq-1qv1Vq ~~ Sc' (nv, Nq) + S/ (np, lVq)· 

Here Si(np), Sr(np, Nq) and Sc(np, Nq)
collision integrals (electrons with the ions, colli
sions accompanied by absorption and emission of 
photons, and Compton scattering of electrons by 
photons, respectively) while S~(npNq) and 
S~ ( npNq) are analogous collision integrals for 
photons. 

We consider a plasma whose temperature T is 

*[HV] = H X v. 

much larger than the ionization energy of the ions, 
so that the radiation processes can be regarded in 
the Born approximation. Then, in feasible mag
netic fields, accurate to v / c ( v-electron velocity), 
the probabilities involved in the collision integrals, 
averaged in analogy with [t] over the photon polari
zations, are 

r 2 (2:rt1i )s e2 
We=+--,- (1 + cos2 (qq')) 6 (ep + eq- Bp•- eq'), 

'± qq 

W r r 02 e2n (2:rt1i)6 { 2 .• 2 B 12 • 2 B' 
p,p'q = 137 4:rt" q31':,.4 p Sill + p Sill 

- 2pp' sin B sin B' cos cp- 2p3 sin2 fJ cos fJ ( !; + ~e ) 

4 12 4 2 I 

+ pp q sin~ 0' cos B- p p _2_ sin2 B cos B' 
1':,.2 1':,.2 

' 2q 1 ) - 2p'3 sin2 B' cos B' (-.,-- - -
!':." me 

·4q 1 ) 
- 2p2p' sin 6 cos B sin B' cos cp ( ~2- + mc. 

4q 1 '} + 2pp'2 sin 6 sin 0' cos 6' cos cp ( t. 2 - me ) 

x 6 (ep- Bv·- eq). (2 .1) 

The value of W~',pq is obtained from W~,p'q 

by reversing the sign of the entire expression and 
by replacing q with -q. Here r 0 = e 2/mc2-

electromagnetic radius of the electron, p and p'
momenta of the electron before and after the colli
sion, ~ 2 = (p- p') 2, and e and 8' are the angles 
between q and p and between q and p'. 

The kinetic equations for the electrons and 
photons, linearized with respect to f and g, take 
then the form 

vvnv + eEvpnv + !.___ v [II, Vv/p] = \ d3qd3p'gq e ~ 

X {Wrp'q,pnp·- Wrp,p'qnp + vVrp',pqnp·- Wrpq,p'np} 

8:rt enp \' as fv + 3 mT .l pqgq q - 't; (ep)' (2. 2) 

eq 8:rt . 2 V 1 \T ) 8:rtr o 2e \' j , as ' .q vNq = - 3 'o engq + 1 q ( +" q 3mT .l p' P q P 

+ ~ d3pd3p' gqnp (Wrp,p'q- wrpq,p·) 

+ ~ d3pd3p'jp {W~, p'q (1 + Nq)- Wrvq.p'Nq}· (2.3) 

Here and in what follows the equilibrium func-
tions n~ and N& will be written without the zero 
superscript. The integral sign denotes the opera
tion 

( the factor 2 is due to the spin of the electrons or 
the polarization of the photons). For Sc ( gq, np), 
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s~ ( gq, np), and S~ (fpNq) we have substituted 
their values (1.4) and (1.5) from [ 1]. We have left 
out from the electron equation the terms 
Sr (fp. Nq) and Sc (fp, Nq), which correspond to 
scattering of electrons by ions with emission or 
absorption of equilibrium photons and Compton 
scattering by equilibrium photons. 

The ratio of the Compton terms Sc ( fp, Nq) to 
the Coulomb term Si ( fp) is of the order of 
(T/mc 2)&f2(T/tic)3n-1 and forT< 1.5 
x 1o-12n21 11z4/ 11 the condition under which it can be 
neglected is satisfied. ( For example, for n ~ 1022 

cm- 3 this condition is satisfied for T ~ 108 deg.) 
As to the term Sr (fp. Nq ), it is always smaller 
after elimination of the infrared divergence than 
the Coulomb term in the nonrelativistic case. As 
in [ 1], we approximate Si ( fp) by the express ion 
fp/Ei ( p), where 

( Ep-electron energy p 2/2m, A-Coulomb loga
rithm). This expression is the first term in the 
expansion of the Landau collision integral in 
powers of m/M. 

To calculate the integrals Sr, we replace the 
variable p' by the variable ~ = p - p'. Then 

W r - r o ~ e2n (2:n:1i)6 {A . 2 , 6 ;, 2 ) 
p,.1.q - 137 4:n:2 gada u sm a+ q cos a ( - 1ros a 

+~cos a (2cos2 a- 1) + 2Pd (1 - cos2 a)} 
me me 

(2.4) 

where a -angle between~ and q. 
The external perturbation is determined by the 

series of vectors Av. such as E, VT, Ex Q, VT 
x Q, etc. ( Q = eHTi/mc-dimensionless Larmor 
frequency). It is convenient to represent the de
viations from equilibrium, due to the perturbation 
Av, in the form 

gqv = q~v (q), (2.5) 

where lf!v(Ep) and i/Jv(q) are parallel to the per
turbation vectors Av, with coefficients that depend 
only on Ep and q. Using the properties of the 
equilibrium distribution functions np and Nq, we 
obtain, after integrating over ll. and over the 
angles of the vector q, 

Sr(gq, np) = 15 ~~ 37 r02 cn~cosp4v 
v 

p'/2tne 

X { ~ 'i'v (q) ( exp f -1) 
0 

X [ ln p + Y p2 
- 2mcq (me; + 3 ) 

p - Y p2 - 2mcq P 

+ v 1 - 2~~q ] dq + r 'i'v ( q) ( 1 - exp (- e:, ) ) 

X [ln V p2 + 2meq + p 
Y p2 + 2meq- p 

-vr1 + 2;~q J dq. 
(2.6) 

On the other hand, integrating with respect to 
ll. and over the angles of the vector p, we obtain 
for cq/T > 1 

Sr' (g01, np) = - g(q) , 
't'r q 

3. 137 x----
(e"qtT -1) 16 Y2:rt2 

X ( f r (1 + Nq)· (2. 7) 

Here N = ( T /tic )3 differs only by a numerical 
factor from the number of photons per unit volume 
and Tr ( q) is the photon relaxation time due to ab
sorption and emission by the nonequilibrium elec
trons colliding with the ions. 

Analogously 

S , ( J\T) __ 1_6_ r02cn "" . ,. /p, q -15.137 qa 7"osqq'v 

X r npp2 Y p2 - 2mcq dp {[ln p + ~p2 - 2mcq 
· p- r p2 -2mcq 

V2mcq 

X ( m;2q + 3) + V 1- 2~~q ] ~v (ep) 

+ [ ln p + Y p2- 2mcq ( 7 m~q - 3) 
p - Y p 2 - 2mcq P . 

-V 1 - 2;~q ] ~v ( Ep - 2meq)}. (2.8) 

3. CASE WHEN ABSORPTION AND EMISSION OF 
PHOTONS PREVAILS OVER COMPTON 
SCATTERING 

In this section we consider the case when the 
bremsstrahlung absorption of photons prevails 
over their Compton scattering: 

~ '= ~ N -. I T (_!!!!___)';, (1 + Nq) <L (3.1) 
l'c 4 Y 2:n: n V mc2 T . 

This takes place when 

N In< serr (m~2 I T)'h, (3. 2) 

where 

- 4 }12:n: ( T ) 'I• -t 
Seff - ----r37 C%ff (1 + Nq) 

is a numerical pararr..eter determined by those 
photon momentum values qeff which are of impor-
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tance in the process under consideration. This 
parameter will be estimated later on. 

To obtain (3.2) we have neglected in (2.2) and 
(2. 3) the terms Sc ( gq, np), Sc ( gq, np) and 
S~ ( fp, Nq), for it is easy to see that the conditions 
for neglecting these terms are the same in both 
equations. Then 

3. 137 cq'l, qvT e2cqJT 

gq =- 16V2n2 r 02 n2T 2 fi 3 (mc)';, (ecqJT -1)3 

(3.3) 

Let us substitute gq in Sr ( gq. np); we can 
neglect here the second term in gq, connected with 
the dragging of the photons by the electrons, since 
it gives rise in (2.2) to terms comparable with the 
previously dis carded term Sr (fp, Nq). Then 

S ( n ) = - pvT c2 
r gq, p 10 V2n2p nT2 fi3 (mc)'1• 

{
P'/rmc e2cqJT [ P + V P2- 2mcq 

X \ q'l•dq T 2 ln ---:;-;r=,;==~=== 
0 (ecqf -1) p- V p2-2mcq 

' mcq ) 1 "ll ! 2mcq ] r 7 CcqjT 

X (3+7.--,-- Y 1-----v- + ~ qhdq (ecqf1'-1)2 

X [ln V p2 + 2mcq + p ( m~q - 3) 
VP2 + 2mcq- p Ji 

- {1 + 2;~q ]} ~" S,.I + S,2 • (3.4) 

To calculate the first of these integrals we take 
account of the fact that the values of q of signifi
cance in it are close to the upper limit p2/2mc. 
We shall need in what follows the values of fp for 
x = p 2/2mT ~ 4. Under these conditions the factor 
containing the exponentials can be set equal to 
unity. Then the substitution q = Tp2z/2cmT leads 
to 

S I ( ) 1 N PvT 4 
r gq, np = 20n:2 n mT npx a, 

I v--
~[ 1+ 1-z( z) v-J a= ln V 3+ -2 + 1-- z z'l•dz-:::::::0.7. o 1- 1-z (3.5) 

Let us proceed to calculate the second integral. 
We see that the values x ~ 1 will be significant in 
the corresponding solution of (2.2). We incur no 
error by putting under the integral sign x < cq/T, 
since the values of significance in the integral are 
cq/T ~ 4. Under this assumption, the integral can 
be readily evaluated 

S 2 _ pvT N ( _3_ __9 _ •;,) (3 .6) 
r - mT np n 2n2 + 4n'i• x · 

In most cases the term with S~, the main contri
bution to which is made by processes with photon 
absorption, turns out to be smaller than the term 

s~. in which processes with emission predominate. 
Substituting the resultant values of S~ and S~, 

which play in this equation the role of additional 
inhomogeneities, in the kinetic equation for the 
electrons (2.2), we can write the solution of this 
equation in the form 

cp (x) = x'!, { eE* - A (x)' vT 
· mT mT 

+ :; [(eE*- A (x) vT), Q] (1 + x3 Q 2r1 ; ~ } 
E• E T C 3 1 N 

= - -v -+---vT e T 2n2 e n ' 

7 N 
A2 = 2oon2 --n· 

Substituting (3.7) in (3.3), we obtain gq and 
calculate the currents and the energy fluxes: 

(3. 7) 

j = e ~ ~ fv aap = c;E*- avT + c;' [E~ Q] +a' [VT~ Q]; 

W = (' 2p2 _P_ fvdap + (' c2qgqdaq = aT E*- BvT 
~ m m J e ' 

y_'T [E* Q] f.l' [VT ,Q] +----+'"' --, e Q Q 

In the particular cases of weak and strong 
magnetic fields [when x3rl 2 can be neglected com
pared with unity or, to the contrary, in the denom
inator of (3. 7)], introduction of the dimensionless 
variable y = cq/T along with the variable x trans
forms the integrals into numbers, and the calcula
tion can be readily carried out. 

In the case of weak fields we obtain 
4c>o 

ao =-e-' a2 = 

r.l - 6c>oT (1 + ~) · r.l -(6·103 +22~ \A c>oT 
t-'O - e2 n , t-'2 -- n ) 2 e2 ' 

~0' = ( 300 + 10 ~ ) c>o~T , 

~ 2 ' = ( 2-105 +1,2-10'~~ J A2 c>o~T, (3.8) 
\ n . e 

where the zero subscript denotes the corresponding 
values without account of the dragging. The coef
ficients with subscript 3 do not play any role in the 
case of the weak field. 

Putting j = V' (!; /T )_ = 0, we obtain for V'T 
= aT /Bx and H = Hz the thermal emf and the 
energy fluxes 
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Ex= Ex0 (1 + 6,2N In), Ey = Ey0 (1 + 7,5N In), 

Wx = Wx"(1 + BN In+ 28(1V I n) 2), 

Wy = Wtl(1 + 7N In+ 10(N I n)2). (3. 9) 

As we calculate the dimensionless integrals we 
can verify that y = cqeff/T ~ 5. Substituting this 
value of y in (3.2), we obtain the maximum values 
of N/n, up to which proton absorption still prevails 
over proton Compton scattering, and the maximum 
corrections, which turn out to be of the order of 
10-2 ( mc2/T)1/ 2• 

Making the same calculations in the case of 
strong fields, we obtain 

(3.10) 

aT N ) r.~ aT ( 3 Vn 
~o = 7 (2+o.o3n·, t-'l =- 7' - 4-

+ 0.08 ~ ) A 17 ~2 = ae~ ( 120 + 21 : ) A2, ~o' 
aQT ( -v- N ) , _ _ aQT 

c= ~ 6.5 :n: + 0.5 n ' ~1 - e2 

( N ) oq)' a 480 .V ) A x 6 + o.3 n: At. ~2' = ~ (1o + -n 2· 

In the coefficients a and {3, the influence of the 
terms with A1 turns out to be more important 
than that of terms with A2, causing the sign of the 
correction of order N/n to be reversed, corre
sponding to a transition from "dragging" to "anti
dragging" of the electrons, wherein the equili
brium electrons emit photons in a direction oppo
site to VT and acquire a momentum in the direc
tion of VT. 

This deduction does not depend on the assumed 
neglect of the electron-electron collisions, for in 
the case of strong magnetic fields il » 1 the term 
with these collisions is smaller than the term with 
the electron-ion collisions, in a ratio Q-1. 

Putting, as before, j = V ( 1; /T) = 0, we obtain 
the thermal emf and the energy fluxes: 

Ex= Ex0 (1 + O.BN In), Ey = Ey0 (1 + 1.3N In), 

Wx = Wx0 (1 + 14N In+ 0.22 (N I n)2), 

(3.11) 

In this case, calculation of the dimensionless 
integrals shows y to be of the order of 3, and this 
leads to maximal corrections of the same order, 
10-2 (mc2/T)1/ 2• 

The expressions (3.8)-(3.11) do not contain the 
term corresponding to the ordinary photon thermal 
conductivity and due to absorption and emission of 
photons by the equilibrium electrons. This term 
is equal to 

6.5-137 vT.' ( N )2 Wx=- 2 - - vT. 
ro 1U n 

(3.12) 

At large values of N/n, when the calculated 
corrections can be appreciable, the term (3.12) is 
much larger than those calculated earlier. There
fore only corrections to the thermal conductivity 
trans verse to the magnetic field can really be 
observed. 

4. CASE WHEN COMPTON SCATTERING 
PREDOMINATES 

In the opposite limiting case, when Tr/Tc > 1, 
which corresponds to N/n i::. ( mc2/T) 11 2 in Eq. 
(2.3) for the thermal photons, the most important 
processes are those of Compton scattering. If 
N/n :S ( mc2/T )512 A (the inverse case, N/n 
> ( mc2/T) 512 A was analyzed in the earlier paper 
[I] ) , then the mean free path of the electrons is 
limited by their scattering by ions, and the terms 
Sr(gq. np) and Sc(gq, np) play the role of addi
tional inhomogeneities. The term Sc ( gq, np) was 
calculated earlier [ t]: 

4:n:2 N PVT O (_1_) . (4 1) 
Sc(gq, np) =- 45n mT + \ "'' . 

The second term should be discarded, since it 
is of the same order as the already discarded 
term Sc (fp, Nq). 

The term Sr ( gq, np) was already calculated 
[formula (2.6) ]. Naturally, a change in the mech
anism of relaxation in the photon equation does not 
influence this term at all. Analogously, the char
acter of the relaxation in the electron equation 
does not influence the solution of the photon equa
tion, which has the same form as in the preceding 
paper [ t] ( formula ( 1. 5) ]. Substituting this ex
pression in Sr ( gq, np), we obtain the second addi"" 
tional inhomogeneity in the electron equation, pro
portional to ( e 2/tic) ( mc2 /T) 1/ 2 VT. These in
homogeneities introduce in the electron distribution 
function corrections proportional to N/n and 
(e2/tic)(mc2/T)11 2 respectively. Substitutingthis 
expression in 15q (1.5) CtJ, we obtain the correc
tions to the photon thermal conductivity (relative 
to the electron thermal conductivity). These cor
rections are proportional to N/n and to 
( e2/tic) ( mc2/T) 1/ 2 when as a result of dragging, 
and proportional to ( N/n) 2 and ( e2/tic) 2m c2 /T 
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as a result of mutual entrainment. However, if 
j = 0, the Compton scattering, as in the preceding 
paper[ t], contributes only to the longitudinal 
thermal emf 

eE~ = 4:rt2 N ~1, 
ar;ax !Is- n 

since the thermal conductivity increment due to the 
Compton effect is proportional to the current j. 
Carrying out calculations analogous to those in the 
preceding section, we obtain for dragging and 
mutual entrainment due to radiation processes, 
in the case of a weak magnetic field, a thermal 
conductivity 

w v = W0 ( 1 + 1. 5 .1 o-a { ; 2 + 1 o-s ;c2 
) 

and in the case of a strong field 

o ( _2 ~ / mc2 _ 5 mc2 ) 
Wv = Wu 1 + 10 V T + 10 y , 

where the index zero denotes the corresponding 
values of the thermal conductivity without dragging. 

5. ELIMINATION OF THE INFRARED DIVER
GENCE IN THE PROBABILITIES OF THE 
RELAXATION PROCESSES CONNECTED 
WITH SCATTERING OF ELECTRONS BY IONS 

As is well known, perturbation-theory calcula
tion of the probabilities of the radiative processes 
in the absence of an external radiation field leads to 
a logarithmic infrared divergence, which is elim
inated by summation of all the diverging diagrams 
[ 2 •3]. On the other hand, simultaneous solution of 
Maxwell's equations and the electron equation of 
motion leads to renormalization of the photon fre
quency wq, which takes, with accuracy sufficient 
for our purposes, the form v.:q = ) w2 1 + (cq/ll)2 
( Wpl-plasma frequency). This reno~malization of 
the plasma photon spectrum leads to elimination of 
the logarithmic divergence and allows us to ne
glect the radiation processes for all electron den
sities that are of any physical interest (for exam
ple, even at the low density n = 1 em- 3 in inter
stellar clouds, the perturbation-theory series 
still contains a small parameter on the order of 
t;5). 

In our case, when there is an external radiation 
field, the divergence of the probability is no longer 
logarithmic but stronger (for equilibrium radia
tion-linear), and therefore renormalization of the 
spectrum is insufficient, but the use of the method 
developed in [ 2] again leads to elimination of the 
divergence. 

The integral for the elastic and radiative colli-

sions of the electrons with the ions can be de
scribed in the form 

where Wpp'-scattering probability, equal to the 
sum of the probabilities of the processes with 
emission or absorption of any number of photons. 
When calculating the amplitude of each of these 
processes, account should also be taken of an arbi
trary number of virtual photons. As shown in [ 2] 

[formula (2.10)], this introduces in all the ampli
tudes an equal correction factor, which can be 
taken outside the bracket. The two vertices on the 
diagram with one virtual photon give, in the pres
ence of a radiation field, a factor 1 + Nq if the 
emission precedes the absorption, and a factor 
Nq in the opposite case. Since both diagrams are 
equal, we obtain a correction factor 1 + 2Nq. 
Therefore the overall factor which takes into 
account the virtual photons has, after squaring, 
the form 

1 2 ( ' )2 ada } ex {- - ~ \' .f!J:_ - ~ (1 + 2N ) c_2 = e-A, 
p 4n2 fie .) pq p' q q nwq 

pq = mc2fiffiq- c2pq. (5.2) 

The probability of scattering the electron p with 
emission of n+ and absorption of n_ real photons 
ils equal, after discarding the non-divergent terms, 
to 

Jvn=n++n- = wopp' e-A (-.!__ ~)n\' IT c3nd3qi 
n+, n- n! 4n2 fie ~ i=l nulqi 

where the factor in the curly brackets, which 
causes the infrared divergence, is the same as 
for the virtual photons; W~p' -square of the elas
tic scattering amplitude. In this formula we have 
neglected for simplicity unity compared with Nq, 
which is equivalent to neglecting small logarithmic 
corrections. 

Let us substitute (5. 3) in ( 5 .1) and let us put fp 
== p · cp ( Ep). Then, neglecting the difference be
tween cp ( Ep) and cp ( Ep'), we obtain 

fp·- fp ~ AqJ(ep) = AqJ{cos Ap cos pqJ 

+ sin Ap sin PqJ cos Cl>). 

Integrating over <I>, we eliminate the second term 
and obtain 

Then 
oo 2nfPr 3 (aj4nt 

si (! p) = ~ -- ~ W 01p+<li,P d AA cos p;1e-A ~--, -
n=o P n. 
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n+ n_ 

+ i~l nWq;• - i~lJiWqi" ) 

Let us integrate with respect to cos ( p~) and 
sum over all the 2n processes in which n photons 
participate. The integrals over all the qi can be 
assumed to be taken to identical upper limits, 
since we are interested in photons having very low 
energies. Since each photon qi can be either 
emitted or absorbed, after such a summation the 

n+ n-
expressions 6 and 6 turn out to be equal 

i=t i=t 

and cancel each other, leaving 
:rrj m\ 

Si (jp) =- p~- J e-AWO!pt.:1!, p ~d3,1 

oo n 
X ~ (aj2n) [( c3d3q N (.f!J>:_ _ !?i__)2]n· 

n=O n! ~ nWq q pq p'q 

Since the sum over n in this expression is 
equal to e"-, the cross section divergence con
nected with the inelastic processes is eliminated. 
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