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It is shown that there exist two equally valid variants of calculating statistical averages 
which lead to two different but equivalent expressions. The first variant was utilized by 
Kaufman and Onsager [1]. A description is given of the method utilized in the second variant 
of the calculation which is more convenient for deriving the famous Onsager formula (formula 
(12) of the present text) for the spontaneous magnetic moment of an infinite Ising lattice. 

1. INTRODUCTION 

THE present paper is an extension of the work of 
Kaufman and Onsager [1] devoted to the calculation 
of thermodynamic averages for an infinite two­
dimensional Ising lattice. To facilitate reading and 
in order not to encumber the present article by 
references to earlier papers [1, 2] we have presen­
ted in the appendices a brief exposition of the ma­
terial which we require, and have focussed our 
attention on the new material contained in the 
present paper. 

In the papers of Kaufman and Onsager [ 1• 2] the 
calculation of the partition function z and of the 
averages (F) is carried out in accordance with the 
formulas 

Here V 1, V2 are two noncommutative 2n-rowed 
Hermitian matrices which depend on the tempera­
ture and whose form is given in Appendix 1, n is 
the number of columns and m is the number of 
rows in the lattice, and we are interested in this 
paper in the limiting case of an infinite lattice 
(n- «>, m- «>).All three matrices V1, V2, F 
are functions of the 2n Dirac matrices of dimen­
sionality 2n: P 1Q1 P 2Q2 ••• PnQn which satisfy the 
commutation relations 

The characteristic feature of the resultant 
situation consists of the fact that the system is 
<!_escribed by a non-Hermitian statistical operator 
Z = ( V1V2 )ill without having a corresponding ex­
pression for the Hamiltonian. Therefore, it is 
convenient to transform formula (1) in a certain 
manner. 

We introduce two Hermitian matrices 

(3) 

and write the statistical matrix Z in two equivalent 
forms 

Z = (V1V2)m = Vl'i'Tlmvl-•;,, 

i = (V1V2)m = V2-'hT2mV2'i'. 

It is obvious that the matrices T 1 and T 2 are 
similar, and that the partition function Z can be 
calculated in two equivalent forms: 

(4) 

(5) 

We meet an analogous situation also in the evalua­
tion of averages and obtain for them two equivalent 
expressions: 

<F> = Z-1 Sp FV1'i>T1mV1-''' 

= Z-1 Sp (V~-·;,py!'f,)T!m, (6a) 

(6b) 

In the literature there are given two formulas 
for the correlation of spins < Sk Sk + 1 ) in the same 
row. 

The first one was obtained by Onsager and 
Kaufman [ 1] and has the form 1 l 

(-1)"<S1S1+~<> = ch2 H*/',."- sh2 H*/',._"' (7)* 

where H* is the temperature parameter (cf., 
Appendix 1); b.k and b._k are two Toeplitz deter­
minants: 

186 

~~ (1) ~' (2} ... 2:' (k) 

2:' (0} 2:' (1) ... 2:' (k -1) 

2: (2- k) ...... 2:' (1) 

l)There is an error in sign in[•]. 
*sh = sinh, ch = cosh. 

2:' (-1) ..... 2:' (- k) 

2:' (0) ..... 2:' (1- k) 

............ ' 

2:' (k- 2) ...... 2:' (-1) 

(8) 
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and the matrix elements !: 1 ( k) are defined in the 
limit ( n - oo, m = oo} by the formula 

1 2" 

~~ (k) = 231 ~ cos (kw + {)' (w)) dw. (9) 

The second formula was obtained by Potts and 
Ward [ 3•4] and is derived with the aid of a technique 
which is different from that utilized in [ 1]. It has 
the form 

~* (0) ~* (1) ... ~· (k-1) 

(10) 

~* (1 - k) •..... ~* (0) 

1 2~ 
l:* (k) = 2;{ ~ cos (kw + {)* (w)) dw. (11) 

0 

A mathematical proof of the equivalence of the 
two formulas is given in an appendix to [(J. The 
functions 01 (w) and o*(w) appearing in formulas 
(9) and (11) are internal angles of a hyperbolic 
triangle and are expressed in terms of the sides 
2H* and 2H 1 by means of formulas (2.5) of hyper­
bolic trigonometry given in Appendix 2. 

The object of the present paper consists of 
showing that in choosing for our calculations either 
the matrix T1 or the matrix T2 we arrive either at 
formula (7) or at formula (10), so that the equiva­
lence of the two formulas becomes obvious and 
follows from formula (6). 

From (10) one can in a fairly elementary manner 
derive the famous Onsager formula [4] for the spon­
taneous magnetic moment of an infinite two-dimen­
sional Ising lattice (cf., Appendix 5): 

(111 I 111o) 2 =lim (S1S1+11.> 

= (1- sh-22H1 sh-22H)''• for T < Tcr, (12) 

(111 I M0 ) 2 = 0 forT> T cr. (13) 

2. REDUCTION OF THE MATRICES T1 AND T2 

TO DIAGONAL FORM 

In accordance with the basic formulas of the 
theory of Dirac matrices 

the matrix T 1 is a 2n-rowed representation of a 
certain rotation R (T1) (Lorentz transformation) in 
the 2n-dimensional space of the basis vectors 
( Pk, iQ z). It is obvious that this rotation R( T 1) 
can be represented as a product of n consecutive 
commuting rotations in the nonintersecting planes 

( P1, iQ1) ( P2, iQ2) •.. ( Pn• iQn) through certain 
hyperbolic angles 'Y 1• 'Y 2• •• · 'Y n · 

The 2n-rowed representation of this rotation 
R( T 1) will be expressed by the 2n-rowed matrix: 

1\ = "Q exp ( ~ iy"P"Q") = "TI exp ( {- r"C"), (15) 

which is obtained as the result of a certain canon­
ical transformation of the initial system of basis 
vectors ( Pk• iQ z) into the new system of unit vec­
tors (Pa• iQ,B)· 

Since in the new system of basis vectors the 
matrix T 1 is a function of n commuting matrices 
Ca which we can choose to be diagonal with eigen­
values equal to± 1, the matrix T 1 is a diagonal 
matrix with the eigenvalues 

'Av = exp Plz(+v1 + V2 ± ... +vn)], (16) 

where the subscript v runs through all the 2n 
possible choices of sign in the exponent. Geo­
metrically the parameter y a turns out to be the 
third side of a hyperbolic triangle (diagram in 
Appendix 2). 

All the above also refers to the matrix T2, 

which is similar to the matrix T 1 and which, con­
sequently, has the same eigenvalues (16) as the 
matrix T 1• Consequently, there exists a system of 
basis vectors (Pa• iQ.s) in terms of which the 
matrix T2 assumes the form: 

n n 

The transitions T1 - T1 and T2- T2 are accom­
plished by means of two canonical transformations 
of the initial system of basis vectors ( Pk• iQ z) into 
the sy~ems of basis vectors ( Pa, iQ13) or 
( Pa• iQ,B). The first of these transformations has 
the form 2> 

Pk = ~ (cr"" P" + "k" Q"), Q" = ~(cr'hP" + T'hQ"), 
(Cl) (Cl) 

1 [ 2rw.k 6' (ex) ] 
crk" = n'l• cos -n- + -2- ' 

crk", = _1_ sin [ 2Mk -{)'(ex) J 
n'l• n 2 ' 

"""' = n~J, cos [ 2n:k - 6' ~ex) ] . (18) 

2)There is an error in sign in[•] in formula (58) and in[ 1] 

in the case of Tka'· 
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Since we need formulas also for the second canon­
ical transformation (Pk, iQz)- (PO', iQ13), we 
have given in Appendix 3 a new derivation of the 
formulas for both transformations and we have 
obtained the formulas 

Pk = ~("-~caPa + f.lkaQa), 
(a) (a) 

Aka= n~!, cos [ 2~a ( k- +)- o* ~)] , 
_ 1 ,· [ 2:rta (, 1 ) o* (a) ] 

!-lh- n'f, stn -n- k- 2 --2- ' 

, 1 . [ 2:rta ( 1 )' o * (a) ] 
Aka =~Sill -n- k +2 +-2- ' 

, _ 1 , [ 2:rta ( 1 ) o* (a) J Ilk<>- -~cos -n- k +2 +-2- · (19) 

The geometric meaning of the angles o'(CI') and 
o*(CI') appearing in formulas (18) and (19) is given 
in Fig. 1 of Appendix 2. Expressions for them are 
given in Appendices 2 and 5. 

3. "INTERMEDIATE" AVERAGES 

We find it convenient to introduce two "inter­
mediate'' averages of the quantity F by means of 
the formulas 

{F}2 = Z-1 Sp FT2m, (20) 

in terms of which, taking (6) into account, we shall 
express the true average: 

<F)= {V,-'f,FV1'"}1, (F)= {V2'1,FV2-'1,}2. (21) 

We write formulas (20) in terms of the systems of 
basis vectors which diagonalize either T 1, or T 2 : 

n 

{Fh =Z-1 Sp F (P, Q) n exp (r (a) c" I 2), 

n 

{Fh ~ z-1 Sp F (P, Q) IJ exp (r (a) C: 1 2). (22) 

We see that only those terms of the matrix F will 
give a non-zero contribution to {F h. or {F b which 
are expressed in terms of the paired operators 
CCI' = iPCI' QCI' or CCI' = il?CI' QCI'. Thus, for example 

Pk Qz =);{aka a'w P"P~ + "Lka -r:'z,B QaQ[l + (crkoc -r:'z(l 
a,[l 

- T:ka a'I~)PaQ{l} = ~ {AkaA'z!l PaP.B + f.lkct f.l 1 l[JQaQ[J 
a,{l 

and, consequently, 

{i Pk Qzh = ~ (crka -r:'za- -r:kct u'za) {C<>h, 
(<X) 

(23a) 

{i Pk Qzh = ~ (Akct 1-l'za - Ilk<> 'A'ux) {Cah· (23b) 
(a) 

Further, we express {F} 1 and {Fh in terms of the 
eigenvalues of the matrices T 1 and T2 by means of 
the formulas: 

{Fh = ~(vI F I v)1Avm I ~A/", 

{Fh = ~(vI F I v)2 Avm I ~Avm, (24) 

where (v IF l v) 1 and (v l F I v) 2 are diagonal matrix 
elements of the operator F in those representa­
t:ions in which either T 1 or T 2 are diagonal. 

Let A max be the maximum eigenvalue of the 
matrices T 1 and T 2• Without loss of generality we 
~~n always choose representations for CCI', or for 
CCI' such that for all Cl' we will have either 

(J'maxiCai'Amax), = 1, or ('AmaxiCai'Amaxh = 1. (25) 

Dividing the numerator and the denominator in (24) 
by A ~ax and letting m - oo, we obtain 

{F}, = (AmaxiFl'Amax)!, {F}z = ('AmaxiFI'Amax)z. (26) 

Using this formula for the calculation of the 
''intermediate" averages in accordance with 
formula (23) we obtain, taking (25) into account, 

" 
=_!_~cos [ 2:rta (k -l) + o' (a)], 

n (a) n 

a 

1 ~ [2:rta J =- .:::..JCOS -(l-k+1) +o*(a). 
n (<>J n 

(27) 

Carrying out calculations in accordance with this 
seheme we easily obtain 

{i Pk Pzh = ~ (crk>. T;" - -rk" C!z") = 0, 
(<>) 

{i Pk Pzh = ~(Aka !lla - f.lk:t A-let) = 0, 
(a) 

{i Qk Qzh = ~ (cr'b -r:'1"'- -r'h a'z") = 0, 
(<X) 

{i Qk Qzh = ~('A'ka !l'za- f.l 1 kx 'A'za) = 0. (28) 
(a) 

We shall refer to expressions (27) and (28) as the 
pairing of the corresponding operators. In going in 
(:27) to the limit n - oo we obtain (since the argu­
ment of the cosine contains odd functions of w) 
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{i P" Q1h = i:rr ~ cos [w (k- l) + {J' (w)] dw _, 

= ! } co~ [ w (/c - l) + {J' ( w)] dw 

1 " 
2:rt ~ exp i [w (k- l) + {J' (w)] dw = ~' (k- l), 

_, 

1 " 
- {i P" Qzh = 2:rt ~ cos [w (l - k + 1) + {J* (w)] dw _, 

1 r . = - .l cos [ w ( l - k + 1) + {J* ( w)] dw 
:rt 0 

2~ ~ exp i [w (l- k + 1) + {J* ((t))l dw 
-1t 

= ~· (l - k + 1). (29) 

We now express in terms of pairings the true 
averages ( iPkQ z), ( iPkPZ), and ( iQkQ z). In ac­
cordance with formulas (14) we have 

V~-''•Ph.Vl'/, = chH*Ph. + shH*iQR., 

V,-''•QzV,''' = sh H*Pz + ch H*iQz, 

V '"Ph. V2-''' = ch H'Ph. + iQR.-1 sh H', 

V2'i•iQzV2-'i• = sh H'PzH + iQz ch H'. (30) 

Consequently, in accordance with formulas (21), 
(27), and (28) (k o;e l) 

<Ph.Pz> = sh H* ch H* [~' (k- l) - ~' (l- k)] = -<Qh.Qz), 

<Ph.Pz) = -sh H' ch H'[~* (l- k) - ~· (k- l)] 

= -<Qh.Qz>, 

<iPR.Ql> = ch2 H*~' (k- l) - sh2 H*~' (l- k), 

<iPkQz> = -ch2 H'~* (l- k + 1) 

+ sh2 H'~*(k -l-1). 

In particular, from (32) it follows that 

(31) 

(32) 

<S1S2) = <-iP2Q1) = -ch2 H*L:'(1) + sh2 H*L:'(-1), 

<S,S2) = < -iP2Q1) = L:* (0). (33) 

In [t] a proof is given of a theorem, analogous 
to Wick's theorem, according to which the "inter­
mediate" averages of a product of an even number 
of Dirac matrices 

are expressed in the limit n - oo in terms of 
pairings by means of the formula 

(i)".{PIX, Q[l, ... PIX" Q[l"} 

= ~ (- 1)P {i PIX, Q[l,} {i PIX, Q[l,} ... {iPIX"Q[l"), (34) 
(P) 

where the summation is extended over all the P 
permutations of the numbers {3 1 {3 2 ••• f3k· Since the 
pairings {iPaP (3} = {iQaQ(3} = 0 we see that only 
those intermediate averages which contain an equal 
number of Pi and Qk matrices differ from zero. In 
accordance with formulas (29) and (34) we have 

~' (::t1- ~1) ... ~' (::t1- ~,,) 

~' (::t2- ~1) . . . . . . . 

~· (- ::£1 + ~~+ 1) ... ~· (-::tJ-~1<+1) 

~* (- ::£2- ~I + 1) . . . . . . 

(35) 

(36) 

4. CORRELATIONS OF SPINS IN THE SAME ROW 

Until now we have been emphasizing that both 
variants of the calculation of thermodynamic aver­
ages are on an equal footing, and that the various 
expressions obtained are equivalent: 

(37) 

However, in two cases the true averages (F) coin­
cide with one of the intermediate averages. 

In the first case, when F depends only on the 
operators Ck = iPkQk, we have [formula (21)) 

<F( ... c" ... )> = {F( ... ck .. . )h (38) 

In the second case, when F depends only on the 
operators Sk, we have 

V2'I•FV2-'/, = F; 

<F( .... Sk .. . )) = {F( ... S~t ... )}2. (39) 

In carrying out the calculation in accordance 
with the second variant we have: 

= (- 1)" {iP2Q1·i P3 Q2 ... iPk+1 Q"h 

~· (0) ~· (1) ... !~* (k - 1) 
~· (- 1) . . . ~· (k- 2) 

~· (1 - k) . . . ~· (0) 

(40) 

Calculations according to the first variant pro­
ceed in a more complicated fashion. We have 

{S,Sk+,} 1 = {iQ,P2iQ2P3 ... iQkPk+l} I 

= {iQ,C2 ... CkPk+l}i, 
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(S1Sk+1) = {(sh/l*P, + chll*iQ,)CzCa ... C~t(chll*Ph+t 

+ sh Il*iQt+h)} 1 = ch2 Il* { ( iQtCzCa ... C~tP~t+t)} t 

+ sh2 Il* { (P 1CzC3 ••• C~tiQt+h) }t. (41) 

( -f)k(S,S~t+t> = ch2 Il*{iPzQt · iPaQz ... iPh+tQ~t}t 

and, consequently, we obtain finally 

2;' (1), 2;' (2) ... 2;' (k) 

( -1 )" (SrSk +r) = ch2 Il* 
2;' (0) 2;' (1) ... 2;' (k-1) 

2;' (2- k)... 2;' (1) 

2;' (- 1) 2;' (- 2) •.. 2;' (- k) 

- sh2 H* 
2;' (0) . . . 2;' (1 -- k) 

(42) 

2;' (k - 2) . 2;' (- 1) 

Formulas (40) and (42) represent two different ex­
pressions for ( Sk Sk + 1) , given in the Introduction. 

APPENDIX 1 

THE MATRICES V1 AND V2 

In the papers of Onsager [5] and of Kaufman [2] 

it is shown that in the limit n--.... oo the matrices V 1 

and v2 are of the form 
n 

All the matrices Sk, Cz with different subscripts 
eommute. We always choose such a representation 
in which all the Ck are diagonal. 

From the system of the 2n-rowed Pauli matrices 
Ck, Sz we go over to the system of the 2n Dirac 
matrices Pk, Q l of dimensionality 2n by means of 
the formulas 

p, = s,, 
Pz = SzCt, 

Pa = SaCtCz, 

Q, = iC,S~, 

Qz = iC,CzSz, 

Qa = iC1C2CaSa, 

which satisfy the commutation relations: 

[P~tPzl + = 26,_z, [P~tQzl+ = 0. (1.6) 

From (4) and (1.5) we obtain 

S~tSh+t = -iPh+tQh, C~t = iP~tQJt. (1. 7) 

In the calculation of the averages (F) we can 
neglect in (1.1) the numerical factor which will in 
any case cancel out, and we can write the matrices 
V 1 and V2 in the form 

V1 = ~ exp (ill* P" <l~c), 
k 

v2 = llexp (-ill' pk+l Qk)· (1.8) 
k 

We have for the correlation of two spins situated 
in the same row 

vl = (2 sh 2Jl)nf2 II exp (H* Ck), (1. 1) (StSI+~<> = <(StSz) (SzSa) ... (S~tSh+t)> 
k=l 

n 

(1.2) 
k=I 

where H = J /kT and H' = J' /kT are two dimension­
less temperature parameters, J and J' are the 
energies of interaction between neighbouring spins 
in the same column and in the same row. The third 
auxiliary temperature parameter is defined by the 
formula 

Il* = 1/z In cth H, sh 2H* = 1 Ish 2/l. (1.3) * 
We distinguish between low temperatures H* < H' 
and high temperatures H* > H'. At the tempera­
ture which satisfies the equation H* = H' a phase 
transition takes place. 

The matrices Sk and Ck are a 2n-rowed gener­
alization of the Pauli matrices ax and az and, 
consequently, satisfy the conditions 

l =I= k, (1.4) 

*cth = coth. 

The difference between the limiting values 

lim (St Sk+ r) 
k-+00 

(1.9) 

(1.10) 

at high and at low temperatures is characteristic. 
In Appendix 5 is is shown that at high temperatures 
H* > H' the correlation of the spins ( S1 81 + k) as 
k- oo tends in the limit to zero, i.e., at high tem­
peratures there is no long range order in the 
lattice. At low temperatures the quantity ( St S1 + k) 
tends to a value different from zero as k--.... 00 , i.e., 
the lattice does have a long range order. At a tem­
perature H' = H* a phase transition of the second 
kind occurs, associated with the disappearance of 
long range order. 

APPENDIX 2 

FORMULAS OF HYPERBOLIC TRIGONOMETRY 

1. The cosine formula: 

ch v(w) = ch 2ll* ch 2ll'- sh 2H* sh 2H' cos w. (2.1) 
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2. The sine formula: 

sin b' (w) sin b* (w) 
sh 2H' = sh 2H* 

sin w 
sh r (w) • 

(2.2) 

3. The five element formula: 

sh v(w)cos b'(w) = sh 2H* ch 2H'- ch 2H* sh 2H' cos w, 

shv(w) cosb*(w) = sh2H'ch2H* 

- ch 2H' sh 2H* cos w. (2.3) 

4. The four element formula: 

sin w ctg b'(w) = sh 2H* cth 2H'- ch 2H* cos w, (2 4)* 
sin w ctg 6* ( w) = sh 2H' cth 2H* - ch 2H' cos w. • 

From formula (2.4), taking into account the fact 
that 

e2ix = ( ctg x + i) / ( ctg x - i), 

it follows that 

1 sh 2H* cth 2H' - ch 2H* cos w + i sin w 
b' ( (t)) = 2; ln ~~n=-----:-;-~;-;----;~;-;:;:----'--:--:--

• sh 2 * cth 2H' - ch 2H* cos w - i sin w ' 

1 sh 2H' cth 2H* - ch 2H' cos w + i sin w 
b*(w)= 2;In~~~~~=--~~--~~--• sh 2H' cth 2H* - ch 2H' cos w - sin w ' 

(2.5) 
from which we obtain: 

fl'(H', H*lw) = 6*(H*, H')w), 
6'(-w) = -6'(w), 6*(-w) = -6*(w). (2.6) 

APPENDIX 3 

FERMI OPERATORS AND THE BOGOLYUBOV 
TRANSFORMATION 

Instead of the Dirac operators Pk and Q k we 
introduce the Fermi operators 

(3.1) 

A+k' = ~ (u*ka A+cx + v*ka Aa). (3.3) 

where 
" 

~ (uka u*za + Vko. v*zo.) = bkz. 
(a) 

~ (uka Vza + Uzo. Vko.) = 0 
(a) 

(3.4) 

corresponds, in accordance with formulas (3.1), to 
the canonical transformation of the Dirac operators 

(a) (a) 

OCka = {- [(Uka + Uka•) + (vka + Vka*)], 

~ka = ~ [(uka- Uka*)- (vka - Vka*)]; 

0Cka 1 =- ; [(uka- uka") + (vka- Vkcx*)], 

~ka1 = + [(uka + Uka*)- (vka + Vka*)]. (3.5a) 

As can be easily verified, from (3.3) follow the 
formulas for the inverse transformation of 
Bogolyubov: 

Aa = ~ (uka• A~+ Vka A~+), 
(k) 

(3.6) 

and, consequently, from (3.5a) by means of the re­
placements Uka - Uka, uka - uka one obtains the 
inverse transformations for the Dirac matrices: 

Pa = ~ (ocko. Pk' + 0Cko. 1 Qk'), 
k 

Qa = ~ (~ka Pk' + ~ko. 1 Qk') • (3.5b) 
(k) 

Imposing on the operators Pk and Q k the 
periodicity conditions 

and choosing for the functions uka and Vka the 
functions 

uka = n-'l•exp (2nikocfn), 

(3.7) 

(3.8) 

for which the following commutation relations hold: we obtain the Fourier expansions for the operators 
+ 

[An, Az]+ = 0, [A~t+, Az+]+ = 0, [A~t, Az+] = fl~tz. (3.2) Ak, Ak: 

The canonical transformation of Bogolyubov [s] Ak = n-'1, ~a (oc) exp (2nikocfn), 

*ctg = cot. 

(a) 

Ak+ = n-'1• ~a+ ( -oc) exp (2nikocfn), 
(a) 

(3.9) 
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and the inverse formulas: P' k = Pk ch H* + iQk sh H*, 

a ( ot) = n-'f, ~ Ak exp (- 2niotkfn), P~<" = P' k ch 2H' - iQ' k-! sh 2H', 
k 

a+(- ot) = n-'1• ~Ak+ exp (- 2niakfn). (3.10) 
k 

We write in terms of its components the Fourier 
transformation 

P'k = Pk ch x + iQk shx, (4.1) 

iQ' k = Pk sh x + iQk ch x. 

In terms of the Fermi operators we have 

(3.11) Utilizing formulas (3.13) and (3.16) we rewrite 
them in terms of Fourier components (x = H*, 
y = -2H'): 

(3.12) 

and in terms of Fourier components we have 

a'(a) = exa(a), a+'(--a) = e-xa+(-a). (3.13) 

Further, we consider the transformation 

P'k = Pk ch y + iQk-! shy, 

iQ'h = Pk+1 shy + iQk ch y. (3.14) 

In terms of the Fermi operators we have 

A\= A~< ch y + 1/2(Ak-! + Ah+!- A+k+! + A+k+i)sh y, 

Ak+ =A~< ch y 

(3.15) 

In accordance with formulas (3.9) we obtain in 
terms of the Fourier components 

( 2:rtot ) a'(ot)= chy+cos--,;-shy a(a) 

+ (ishy-sin 2:ot)a+(-a), 

a+(-ot)= -(ishy·sin 2~ot)a(a) 

( 2rta ) + chy- cos --,;-shy a+(-a). (3.16) 

a' (ot) = eH•a. (ot), 

( 2rtot ) a"(a) = ch2H'-cos-n-sh2H' 

x a' (a) -ish 2H' sin 2rtct a+' (-a), 
n 

a+"(-a)(ch2H' +cos 2~a sh 2H') 

x a+' (-a)+ ish 2H' sin 2rcot a' (ot), 
n 

a"' (ot) = eH*a." (a), 

For the resulting transformation R( T 1 ) we ob­
tain 

a"' (ot)= e2H* ( ch 2H'- cos 2~a sh 2H') 

x a (ot)- i sin 2na sh 2H'a+ (- ot), (4.3) 
n 

a+"'(-ot) = isin 2rtot_sh2H'a(ot) 
n 

+e-2H*(ch2H' +cos 2:a sh2H')a+(-ot), 

or, utilizing formulas (2.1), (2.2) and (2.3) of 
Appendix 2, we obtain 

a"'(a) = [chy(a) + shy(a) coso'(a)]a(a) 

- ishy(a) sino'(a)a+(-a), 

APPENDIX 4 a+"'(--a) = ishy(a) sino'(a)a(a) 

REDUCTION OF THE MATRICES T 1 AND T2 TO 
DIAGONAL FORM 

We utilize the Bogolyubov transformation [sJ in 
order to find the canonical transformations 
(Pk, QZ)- (Pk, Qz). (Pk, Qz)- (Pk• Qz). 
which bring the matrices T 1 and T 2 into diagonal 
form. 

We consider first the transformation of the 
matrix T1 = vV 2 v2 vV 2 and write out the sequence 
of rotations which realize in the 2n-dimensional 

. space the rotation R( T 1): 

+ [chy(a) -shy(a) coso'(a)Ja+(-a). (4.4) 

It can be easily verified that the matrix of this 
transformation is unimodular, and its trace is 
equal to 2cosh y(a). Consequently, its eigenvalues 
will be exp [y(a)] and exp [-y(a)]. The unitary 
transformation 

-- ( ) 6' (a) . + ( ) . . 6' (a) b(a) =a a cos-2--la -ot sn1-2-, 

- 6' (a) 6' (ot) 
b+(-a) = -ia(a)sin - 2 -+a+(-ot)cos - 2 - (4.5) 
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brings it to diagonal form 

b'"(a)=eY<a>!J(a), b+"'(-a)=e-Y(a)b+(-a). (4.6) 

Going over in accordance with formulas (3.10) from 
the Fourier components a(a), a+(-a) to the Fermi 
operators Ak• Ak:, we obtain from (4.5) 

b-( ) 1 'V {A IY (a) .A + . b' (a) } 
a = n'h L.J "cos - 2- - z k sin - 2 -

k 

( 2niak) xexp --n- , 

b+( ) 1 'V{ .A . b'(a) A+ b'(a)} -a = n'!, L.J - z "Slll - 2 - + 1, cos - 2 -
k 

(. 2niak) 
x exp --n- , (4.7) 

or 

- 1 -...:1{ b'(a) .. b'(a)} 
b(a) = n';,L.:. Akcos-2-- zAksm--:r-

k 

( 2niak) x exp --n- , 

From (4.8) and (4.9) we obtain in accordance 
with formulas (3.5a), (3.5b) and (4.9) 

P" = ~ (crkaPk + cr'kaQk), 
(k) 

(4.11) 

(4.12) 

where 

1 (' 2Jtak b' (a) J <1ka = ----,--1 COS -- + - 2- , 
n' n , 

1. (2Jtak b'(a)\ 
"''" =- n'/,sln -n- + -2-), 

cr'1w. =~;,sin ( 2n:k - ~, ~)), 

(4.13) 

The calculation in the case of the matrix 
T2 = V~12 V1 ve 2 is carried out analogously. We 
write out in terms of the Fourier components the 

( 2niak ) 
xexp -n- . (4.8) sequence of rotations which realize in the 

2n-dimensional space the rotation 
We now show that the transformation (4.8) is the 
inverse Bogolyubov transformation (3.6) with the 
coefficients 

* 1 b'(a) ( 2niak) 
u"" = n'!, cos ----:z- exp \- -n- , 

i . (>'(a) ( 2Jtiak ) 
Vka = - n'f, s1n - 2- exp - -n- · (4.9) 

Indeed, in accordance with formulas (3.4) we have, 
taking into account the fact that o'(a) =- 6'(-a), 

'>,;l * 1 'V { • b' (a) ( 2nia(k -l) ) 
L.J(Uk?.Ula. + v1,aVza*)=-- L.J cos·--2- exp \----
(a) n (cr) n 

+ sin2 (>' ~aL exp ( ~Jtia ~=---'0__)} 

1 'V { 2rra 
=-L.J cos-(k-l) 

n (a) n 

+i cos b (a) sin 2:a (k- l)} = 6"1, (4.10) 

Formula (4.8) is the desired canonical transforma­
tion of the initial matrices Ak = Y2 (Pk + iQ k) into 
the new matrices ba = Y2 (Pa + iQa), in terms of 
which T 1 is diagonal. 

( 2rra ) a' (a)= ch H' +cos n sh H' 

xa (a)- (ish H' sin 2~a) a+ (-a), 

a" (-a) = (ish H' sin 2rra ') a (a) 
n , 

( 2na) + ch H'- shH' cos n a+(- a), 

a" (a) = e-2H* a' (a), 

a'" (a)= ( ch H' +cos ~~ash H') 

x a" (a)- (ish H' sin 2~a) a+"(- a), 

a+"' (-a) = (ish H' sin 2na) a" (a) 
n , 

-' 2na ) 
+~chH'-cosnshH' a+(-a). (4.14) 

For the resultant transformation R(T2 ) we ob­
tain 
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a'" (a)= {ch r (a)+ sh r (a)cos [ 2:a + /)* (a)]} a (a) 

-{ish y (a) sin [ 2:a + 6* (a)]} a+ (-a), 

a+'" (-a) ={ish y (a) sin [ 2:a + 6* (a)]} a (a) 

+ { ch_r (a) -shy (a) cos [ 2: + 6* (a)]} a+ (-a). 

(4.15) 

The matrix of this transformation is unimodular, 
and its trace is equal to 2cosh y (a). Consequently, 
its eigenvalues will be exp (y (a)] and exp [-y (a)]. 
The unitary transformation 

b=( ) . +( ) . [na 6* (a)] a = -W -a Sill n + - 2-

[ na 6*(a) J +a (a) cos n + -2- ' 

= [na 6* (a)] b+ (-a) = a+ (-a) cos n + -2-

. ( ) . [ na 6* (a) J - za a Sill n + - 2- (4.16) 

brings it into diagonal form 

b"' (a) = ev<a.fz; (a), 

where 

Aka = n~l• cos [ 2:a ( k - ~ ) - 6* J a) J , 

~ka = n~l. sin [ 2:~ ( k- ~)- 6* Ja)J, 

, 1 . [2na( 1) 6* (a)] 
A ka = 7i'h" Slll n k + 2. + -2- ' 

, _ -1 [2na ( ..L _!_) 6* (a)] 
~ ka. - n'!, cos n k ' 2 + 2 . (4.22) 

APPENDIX 5 

DERIVATION OF THE ONSAGER FORMULA 

In the theory of Toeplitz matrices [4• 7] a formula 
is derived for the limiting value of the determinant 

~* (0) ~*(1) ... ~* (n -1) 

T* (n) = ~* (-1) I'* (0) . . ~* (n- 2) 

~* (1- n) . . ~* (0) 

b+"' (-a) = e-v<a.>'b+( -a). ( 4.17) for n - oo. In accordance with this formula 
Going over from the Fourier components to the 
Fermi operators we obtain 

=b() 1 "{ .. [na 6*(a)JA a = n'/, .LJ -l Sill n + - 2- k 
k 

k=n 

lim T* (n) =lim e<n+J) ''• II exp ( -lih1,2), 
11-+00 11-+00 k=l 

1 2~ 

hk = - (' i/)* (w) eiwk dw. 
2n .l 

0 

(5.1) 

(5.2) 

[ na 6* (a)] ~} (2niak) +cos n + 2 - Ak· exp -n- . (4.18) Since o*(w) is an odd function ofw, then h 0 = 0 and 

The transformation (4.18) is the inverse 
Bogolyubov transformation with the coefficients 

* _ -i . [na +/)*(a)] (2niak) 
U ka - n'l• Sill n - 2- exp -n- , 

1 [na /)* (a)l (1 2niak) 
vka = --,-cos - + - 2- exp -- .. n1z n _. n , (4.19) 

In accordance with formulas (3 .5a), (3 .5b), and 
(4.19) we obtain 

Pk = ~ (AkaPa + ~k<> Qa), 
(a) 

Q,, = ~(A1kaPa + ~1kocQa), 
(a) 

Pa = ~ (Ake<pk +A' kocQk), 
(k) 

Q,. = ~(Ak,.Pk + ~'ko:Qk), 
(k) 

(4.20) 

(4.21) 

00 

lim T* (n) = JI cxp( -kh~). (5.3) 
n-+oo 

k=l 
For the evaluation of the Fourier components hk 
of the function io*(w) we turn to formula (2.5), and 
expand the numerator and the denominator into the 
product of two factors (Z = eiw, Z = e -iw): 

ib* (w) =_!_In (cth H'- th H* Z) (th H' -th H*7l). (5 .4)* 
2 (cth H'- th H*Z) (th H'- th H*Z) 

We consider separately the two cases: 

I. 0 < th If*< th H' < 1 (low temperatures): 

i6*(w)=~ 

I (1- th H' th H*Z) (th H'- th H*Zj 
X ll • 

(1 - th H' th H*Z) (th If'- th H*Z)' 
(5.5) 

*th = tanh. 
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II. 0 < th H' < th ll* < 1 (high temperatures): at high temperatures: 

'6* ( ) 1 l (l} =y ~ ,, 1 00 1 
1khk· '=T~-k {4+( ...... }}-'>oo, (5.13) 

1 ! 1 

x I Z (1 - th HI th H*Z) (th H* - th H'Z) 
n . 

Z (1- th H' th H*Z) (th H*- th H'Z) 
(5.6) since the series diverges. In accordance with 

formula (5.1): 

Utilizing the formula -In (1 - x) = (xn /n) we obtain 
in case I 

i6* (w) = _!_ ~ _!_ {- (th H* th H'tZ"- ( th H~ r .Z" 
2 n=1 n thH , 

+ c: !~f Z" + (th H* th H't Z"}, (5. 7) 

and in case II 

i (6* (w) + w) = ~ ~ ~ {- (thH* thH't Z"-(::~~ r Z" 
n=l 

+ (thH*thH1)"Z" + (thH' )"znl 
' th H*. 1 ' (5.8) 

Expanding the function iw in a Fourier series 
we obtain 

. - "'<-1>k (zk zk>· l(l}-- ,:j-k- - • (5.9) 

Thus, the Fourier coefficients hk of the function 
i6*(w) have the form 

I. H' > H*: 

I ·-- 1 {(th H*)k ( l H* h Hl)k}. 
1k - 2k 'th H' I - t 1 t • 

II. H' < H*: 

(5.10) 

} j {') ' /; ( th lJ I ) k * . I /i 1 ( 11) t,,= 2k .. (-1)- .thH* -(lhH thH) J· 5. 

We now calculate i! khk. At low temperatures: 
1 

~khk2 = 1-~! {<th H*)2
" [ (ihk--r + (thH'/" -2n 

·1 1 

1 { · (th H*) 2
) =-4 ln(1- thH', +ln[1-(lhH*thH')2] 

- 2In (1-th2H*)} 

1 (1-th2 H*)2-th2 H* (cth2 H' +th2 H'-2) 
= - 4-ln (1 - th2 H*)2 

1 ( sh2 2H*} 
=- 4 ln1.1- ~h2 2H' (5.12) 

low temperatures: 

lim I (StSI<+,> I = ( 1 - sh2 2If* / sh2 2H') '/, 
k-+m 

= ( 1 - ~h-2 2H sh-2 2H') 'i•, 

at high temperatures: 

lim! <.StSk+t> I = 0. (5 .14) 
1<-oo 

From this follows the Onsager formula given in the 
text. 
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