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It is shown that there exist two equally valid variants of calculating statistical averages
which lead to two different but equivalent expressions. The first variant was utilized by

Kaufman and Onsager[ﬂ.

A description is given of the method utilized in the second variant

of the calculation which is more convenient for deriving the famous Onsager formula (formula
(12) of the present text) for the spontaneous magnetic moment of an infinite Ising lattice.

1. INTRODUCTION

THE present paper is an extension of the work of
Kaufman and Onsager (13 devoted to the calculation
of thermodynamic averages for an infinite two-
dimensional Ising lattice. To facilitate reading and
in order not to encumber the [present article by
references to earlier papers 2] we have presen-
ted in the appendices a brief exposition of the ma-
terial which we require, and have focussed our
attention on the new material contained in the
present paper.

In the papers of Kaufman and Onsager[l’zj the
calculation of the partition function Z and of the
averages (F) is carried out in accordance with the
formulas

Z =Sp(ViVy)™, (B> = Z-1SpF(V,Vo)™. (1)

Here V4, V, are two noncommutative 22-rowed
Hermitian matrices which depend on the tempera-
ture and whose form is given in Appendix 1, n is
the number of columns and m is the number of
rows in the lattice, and we are interested in this
paper in the limiting case of an infinite lattice
(n — «, m — «). All three matrices V;, Vy, F
are functions of the 2n Dirac matrices of dimen-
sionality 2": PyQ P,Q, ... P,Q, which satisfy the
commutation relations

[PePi]y = 200, [QuQi)+ = 26n, [PrQ]+=0. (2)

The characteristic feature of the resultant
situation consists of the fact that the system is
described by a non-Hermitian statistical operator
Z = (V4Vy)M without having a corresponding ex-
pression for the Hamiltonian. Therefore, it is
convenient to transform formula (1) in a certain
manner.

We introduce two Hermitian matrices

Ty = V2V, V', Ty = V"2V, V,' (3)

and write the statistical matrix Z in two equivalent
forms
Z [ (V1V2)m f— VI‘/lemVI—‘/z,

Z — (V1V2)m = Vy—hTymV,'k, (4)

It is obvious that the matrices Ty and T, are
gimilar, and that the partition function Z can be

calculated in two equivalent forms:
Z=2SpT, Z = Sp To. (5)

We meet an analogous situation also in the evalua-
tion of averages and obtain for them two equivalent
expressions:

<F> =71 Sp FVi‘/RTi"‘Vr‘/z

= Z-1Sp (Vi “FVy%) Tym, (6a)
<F> =71 Sp Fva_‘/’Tzr"‘7gl/2
= Z~18p (V'hFVy~2) Tym, (6b)

In the literature there are given two formulas
for the correlation of spins (SkSk+1) in the same
row.

The first one was obtained by Onsager and
Kaufman'!) and has the form !

(—1)2(S(S14n> = ch? H¥Ap — sh2 H*A_,,  (T)*

where H* is the temperature parameter (cf.,
Appendix 1); Ay and A_g are two Toeplitz deter-
minants:

(1) 2(2). .. & (k) { S(—1)... .. S (— k)

S0y 2 (1)... 5 (k—1) 2 0)..... (1 — k)
Ap=|. .. ... B

S@—k). ... (1) Sk—2)...... S (—1)

DThere is an error in sign in(*].
*sh = sinh, ch = cosh.
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and the matrix elements X'(k) are defined in the
limit (n — <, m = «) by the formula

2n

S cos (ko + 8’ (0)) dw.

0

(k) =

27 ©)

The second formula was obtained by Potts and
ward[34J and is derived with the aid of a technique
which is different from that utilized inl"). It has
the form
S*(0) 2 (1) ... 2% (k—1)
(Sy Sy = | ’

2 (k) = 21—n S cos (kw - 8 () do. (11)

[§]

A mathematical proof of the equivalence of the
two formulas is given in an appendix to (4], The
functions 6'(w) and 6*(w) appearing in formulas
(9) and (11) are internal angles of a hyperbolic
triangle and are expressed in terms of the sides
2H* and 2H’ by means of formulas (2.5) of hyper-
bolic trigonometry given in Appendix 2.

The object of the present paper consists of
showing that in choosing for our calculations either
the matrix Ty or the matrix T, we arrive either at
formula (7) or at formula (10), so that the equiva-
lence of the two formulas becomes obvious and
follows from formula (6).

From (10) one can in a fairly elementary manner
derive the famous Onsager formulal®? for the spon-
taneous magnetic moment of an infinite two-dimen-
sional Ising lattice (cf., Appendix 5):

(M ] Mo)? = lim <(S;S14>
— (1 — sh~28’ sh-22H)% for T < Ty,
(M]Mo)2 =0 for T > Ter.

(12)
(13)

2. REDUCTION OF THE MATRICES T, AND T,
TO DIAGONAL FORM

In accordance with the basic formulas of the
theory of Dirac matrices

Py = ¢ "PhUP U — Pych 22 4 iQ; sh 2z,

iQr = e PrU (1Q)) kY — Py sh 2z 4 iQ; ch 2z, (14)

the matrix T, is a 2"-rowed representation of a
certain rotation R (T,) (Lorentz transformation) in
the 2n-dimensional space of the basis vectors
(Pk, iQj). It is obvious that this rotation R(T))
can be represented as a product of n consecutive
commuting rotations in the nonintersecting planes
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(Py, iQq) (Py, iQy) ... (Py, iQ,) through certain
hyperbolic angles v, ¥gs «.-Vn-

The 21-rowed representation of this rotation
R(T,) will be expressed by the 2'-rowed matrix:

T, = 1[ exp (LiTa-PaQa> = H exp (i 7« Ca ) , (15)
a=] N 2 a==1 2

which is obtained as the result of a certain canon-

ical transformation of the initial system of basis

vectors ( Py, iQ) into the new system of unit vec-

tors (Pgy, iQB).

Since in the new system of basis vectors the
matrix T; is a function of n commuting matrices
Cy which we can choose to be diagonal with eigen-
values equal to +1, the matrix T, is a diagonal
matrix with the eigenvalues

Ay = exp[Yo(Eyi &= va £ . .. ztya)], (16)

where the subscript v runs through all the 27
possible choices of sign in the exponent. Geo-
metrically the parameter vy, turns out to be the
third side of a hyperbolic triangle (diagram in
Appendix 2).

All the above also refers to the matrix T,,
which is similar to the matrix Ty and which, con-
sequently, has the same eigenvalues (16) as the
matrix Ty{. Consequently, there exists a system of
basis vectors (P, iQﬁ) in terms of which the
matrix Ty assumes the form:

]

2 = H exp (l/zi'l’a Faéa) = IJ! exp (1/2'Ya ﬁa)' (17)
1 1

The transitions Ty — T; and Ty — Tz are accom-

plished by means of two canonical transformations

of the initial system of basis vectors (Pk, iQy) into

the systems of basis vectors (Py» 153) or

(Pq, iQp). The first of these transformations has

the form?

Pk = 2 (Gku Fa + Tha Qa),
()

Qi = Z (0ka P, + Tka Qa)v

(@)

1 [ 2mak | 8 ()
Gka—_—WCOS[ n +TJ7
1 . [2nak | 8 (a)
T}m—*—:——n—lzﬁlﬂ\' n J‘—TJ’
, 2nak 6 (o)
Oka v, n - 9 :I )
2nak &
o = s [ 8 =20 | as)

2There is an error in sign inl?l in formula (58) and in[']
in the case of 7y 4~
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Since we need formulas also for the second canon-
ical transformation (Py, iQ7) — (Pgq, iQB), we
have given in Appendix 3 a new derivation of the
formulas for both transformations and we have
obtained the formulas

Pk = 2 (xka—ﬁa + ”kaaa)y Q/c = 2’ (xkalﬁa + Hka,(:za)-

(a) (@)

1 o 1 8" (o) T

P = S o8 [T(’“‘?)— > |
* 1

Bix = —- Sin[~:—a<k——;—>—6 (206) )
, 1 [ 2 1\ &) ]

My = o sm[ " (’f + 7) +t— |
;L 1 [ 2na 1 0 (o)

Wka ——T‘LT/:COS [——n—<k +—2—)+ 2 } . (19)

The geometric meaning of the angles 6’(«) and
6*(«) appearing in formulas (18) and (19) is given
in Fig. 1 of Appendix 2. Expressions for them are
given in Appendices 2 and 5.

3. “INTERMEDIATE’’ AVERAGES

We find it convenient to introduce two ‘‘inter-
mediate’’ averages of the quantity F by means of
the formulas

{F}, =Z'SpFT ™, {F}o =Z"1SpFT,™, (20)

in terms of which, taking (6) into account, we shall
express the true average:

(FY = {V5FVy},,  (F> = {V:FV,~'e},. (21)

We write formulas (20) in terms of the systems of
basis vectors which diagonalize either Ty, or Ty:

{F), =27SpF (P, Q[[exp(r (@) Ca/2),

(F), = Z'SpF (P, QJJexp(y(x)Ca/2). (22

s

We see that only those terms of the matrix F will
give a non-zero contribution to {F},, or {F},, which
are expressed in terms of the paired operators

Cy =Py Qqy or Cy = iPy Q. Thus, for example

Py Q = D {Oks 613 Pa Py + Tho 15 Qu Qs + (Ske Tis
a,p

— Tha 6'18) Pa Qg) = Z {Mah1p Pa Py + pia P«,lﬁaa Qs
a,B
+ (Mea Wip — Mia Vi) Py 6(5}

and, consequently,

{l Pk Ql}l = Z (cka Tlla — Tka Gllu) {Ea}ly
(@)

(23a)
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{i Pi Qule = 2 (Mea Wia — Wia Miz) {Cado. (23D)
(@)

Further, we express {F}; and {F}, in terms of the

eigenvalues of the matrices Ty and T, by means of

the formulas:
{F}y = Z (v| F | v):A [ 2™,

{(F}y = = (v|F | v)e by [ Zhym, (24)

where (v |F|v); and (v |F|v), are diagonal matrix
elements of the operator F in those representa-
tions in which either Ty or T, are diagonal.

Let A yyax be the maximum eigenvalue of the
matrices Ty and Ty. Without loss of generality we
can always choose representations for Cq, or for
C,, such that for all @ we will have either

(}\fmax |_Ca|7\rmax)i == 1, or (}\rmaxl(=:<z|7\rmax)2 =1, (25)

Dividing the numerator and the denominator in (24)
by A max and letting m — =, we obtain

{F}i == (}\’maxllemax)h {F}Z == (}Nmax!Flhmax)Z- (26)

Using this formula for the calculation of the
‘‘intermediate’’ averages in accordance with
formula (23) we obtain, taking (25) into account,

{iPQ}h = Z (oka Vi — Tka G'1a)

a

- % Zcos [z—nﬂ:cx(k -+ 9 (oc):! ,

(@)

—{iPr Qi) = — D) (Mex Wia — Mo M 1)

=% Zcos[zg—a(l—k-i—ﬂ +6*(oc)}. (27

(@)
Carrying out calculations in accordance with this
scheme we easily obtain

{iP P} = Z (Okx Tra — Tka G1a) = 0,
(a)

(i PP}y = Z(?"ka Wie — W Mia) = O,
(@)

{l Qk Ql}l = Z‘(s’ka Tie — Vha G'la.) =0,
()

GQQls = N(Vike Wi — Wiz Mia) = 0. (28)
(a)

We shall refer to expressions (27) and (28) as the
pairing of the corresponding operators. In going in
(27) to the limit n — « we obtain (since the argu-
ment of the cosine contains odd functions of w)
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‘./).‘-l

{iPr Q}y = ZL

-4

{z
= Egexpz[m(k—l)-}é’(a))]dm

—=

cos [@ (k — I) + &' (w)] do
[@ (k—1) + & (0)] do

- X (k— 1),

—{iP: Qe = %Scos[m(l—k—}—l)ﬁ—é*(m)]dw
\ cos o —k+ 1) + 8* (0)] do

0

=~

:%Sexpz[m(l—k%-l) 0* (w)] do

=3 (l —k +1). (29)

We now express in terms of pairings the true

averages (iPrQ7), (iPxP7), and (iQkQ7). In ac-
cordance with formulas (14) we have
V=P V': = ch H*P; + sh H*iQp,
V—2Q; Vs = sh H*P; 4 ch H*iQ,,
V %P, Vy,='h = ch H'Py + iQp—1 sh H’,
V22iQVo=": = sh H'Pyy + iQ; ch H'. (30)

Consequently, in accordance with formulas (21),
(27), and (28) (k #1)

(PuPp = sh H* ch H*[Z'(k — 1) — 3'(1 — k)] = —<QuQ,

(PyP) = —sh H' ch H'[S* (1 — k) — 3*(k — 1) ]

= —<Q:Q, (31)
(iPyQD = ch? H*S (k — 1) — sh? H*S/ (I — k),
GPRQ = —ch2 B'S* (1 — k + 1)

+ sh2 'S (k — 1 — 1). (32)

In particular, from (32) it follows that

(8s8s> = (—iP2Q> = —ch? H*¥’(1) + sh? H*X'(—1),
(848> = (—iP:Qs> = Z*(0). (33)
mnt a proof is given of a theorem, analogous
to Wick’s theorem, according to which the ‘‘inter-

mediate’’ averages of a product of an even number
of Dirac matrices

{Pal QBI Pa: Qﬁz * * Pak QBk}’

are expressed in the limit n — « in terms of
pairings by means of the formula

(i)kk {Pa: QBx s Pak QBk}
=2 (—1)P{i P, Q) {i Pa, Qp}..

(P)

{iP,Qs,),  (34)
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where the summation is extended over all the P
permutations of the numbers B8, ... Bk. Since the
pairings {iPoPg} = {iQuQp} = 0 we see that only
those intermediate averages which contain an equal
number of Pj and Qi matrices differ from zero. In
accordance with formulas (29) and (34) we have

{Z Pal QBX i Paz QBz“'i PakQBk}l
g (11 — Bl) I (11 — B,‘)
_ Z@a—B). . ... (35)
(o —B1) ... (a — By

(_ 1)k {iPllx QB: iPaz QB:" 'iPakak}2

Z* (— o + Brt 1) ZF (—ou—By+1)
e AR (36)

5% (=t - Biopd).. B# (it + BbD)

4. CORRELATIONS OF SPINS IN THE SAME ROW

Until now we have been emphasizing that both
variants of the calculation of thermodynamic aver-
ages are on an equal footing, and that the various
expressions obtained are equivalent:

(F> = {V"FV i}y = {V"iFVy~},. (37)

However, in two cases the true averages ( F) coin-
cide with one of the intermediate averages.

In the first case, when F depends only on the
operators Cik = iPkQk, we have [formula (21)]

V,~%FV = F,

L ={F(..Cr.. )}

In the second case, when F depends only on the
operators Sk, we have
V,2FV,~": = F;

KF(...Sk...)>={F(...Sk..)} (39)
In carrying out the calculation in accordance
with the second variant we have:

(S1Sk4d> =<5182:85:85 . ..

= (— 1)* {iPyQ;-i P53 Q...

5% (0) T (1) . . . IZ* (k — 1)
¥ (—1)... >* (K — 2
i it (40)

[S* (1 —k) ... 3*(0)

CF(...Cr (38)

Sk Sk+1>

-iPk+1 Qk}z

Calculations according to the first variant pro-
ceed in a more complicated fashion. We have

{Sisk+1}l == {iQ1P2iQ2P3 . iQhPh+l}i
= {LQ102 . e CkPh-H}h
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<S;Sh+1> = {(Sh H*P; + ch H*iQ1)C2C3 ce Ck(ch H*Pryy

+ sh f]*iQH.h)}j = Ch2 H*{(iQ1C2C3 e Cth+1)}1

+ sh? H*{(P1CsCs . . . CiQi4p) } 1. (41)
(—1)%(S;Sp41> = ch? H*{iPyQ; - iPsQs . . . iPr11Qu}1
— sh2 H*{iP1Qy + iP5Qs. . . iPrQui1}1
and, consequently, we obtain finally
(1), 2Q2) ... (k)
(A 8.5y 123 — chEE® 0)2 (). .. = (k—1)
FE—B... Td)
Hnbedaii Ay
— sh® A* . . . PR . . . . . . * (42)
2’(k—2')... 2 (— 1)

Formulas (40) and (42) represent two different ex-
pressions for ( Sk Sk . 1> , given in the Introduction.

APPENDIX 1
THE MATRICES V, AND V,

In the papers of Onsager (5] and of Kaufman %]
it is shown that in the limit n — « the matrices V,
and V, are of the form

V, = @sh 2By [ exp (H* €y,

k=1

(1.1)

Vo= [ exp (H' Sk Sk.),
k=1

where H = J/KT and H’ = J’/kT are two dimension-
less temperature parameters, J and J’ are the
energies of interaction between neighbouring spins
in the same column and in the same row. The third
auxiliary temperature parameter is defined by the
formula

(1.2)

H*=1;Incth H, sh2H* =1/[sh2H. (1.3)%

We distinguish between low temperatures H* < H’
and high temperatures H* > H’. At the tempera-
ture which satisfies the equation H* = H’ a phase
transition takes place.

The matrices Sk and Ck are a 2-rowed gener-
alization of the Pauli matrices ox and oz and,
consequently, satisfy the conditions

SkC — CSr = 0,
L+ k,

SiCr + CrSp = 0,

Sz = Cp2 = 1. (1.4)

*cth = coth.
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All the matrices Sk, C; with different subscripts
commute. We always choose such a representation
in which all the Ck are diagonal.

From the system of the 2n-rowed Pauli matrices
Ck, S; we go over to the system of the 2n Dirac
matrices Pk, Q7 of dimensionality 2% by means of
the formulas

P, =S, Q, = iC,S;,
P, = S,Cy, Q; = iC,CsS;,

P; = S3C4C,, Qs = iC,C2CsS;,

P, = S,CiC;...Cny; Qn = iCiCz...C.S,, (1.5)

which satisfy the commutation relations:
[PrPi] 1 = 28p, [Q:Q]+ = 28w, [PxQ]+ = 0. (1.6)
From (4) and (1.5) we obtain
SkSrpt = —iPryiQn, Cr = iPrQr.

In the calculation of the averages ( F) we can
neglect in (1.1) the numerical factor which will in
any case cancel out, and we can write the matrices
V, and V, in the form

Vi = Dlexp (iH* P¥ ),

k

1.7)

Vo = Llexp (— il Pryy Q). (1.8)
k

We have for the correlation of two spins situated
in the same row

<SISI+h> = <(Slsg) (SzSa) e (Shsh+1)>

= (—i)h<Ph+1QthQh_1 . P2Q1>. (1.9)
The difference between the limiting values
lim ¢Sy Sks1d (1.10)

k—>c0
at high and at low temperatures is characteristic.
In Appendix 5 is is shown that at high temperatures
H* > H’ the correlation of the spins (S;S;,k) as
k — « tends in the limit to zero, i.e., at high tem-
peratures there is no long range order in the
lattice. At low temperatures the quantity {S;S;, k)
tends to a value different from zero as k— «, i.e.,
the lattice does have a long range order. At a tem-
perature H’ = H* a phase transition of the second
kind occurs, associated with the disappearance of
long range order.

APPENDIX 2
FORMULAS OF HYPERBOLIC TRIGONOMETRY
1. The cosine formula:

ch y(w) = ch 2H* ch 2H’ — sh 2H* sh 2H’ cos w. (2.1)
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e 2’
2H*
2. The sine formula:
sind’' (w) sind*(w) _ sino (2.2)
sh2H’ sh2H* = shy(o)*

3. The five element formula:
sh y(w)cos 8 (0) = sh 2H* ch 2H’ — ch 2H* sh 2H’ cos o,
sh y(®) cos 8*(w) = sh 2H’ ch 2H*

— ch 2H’ sh 2H* cos o. (2.3)
4. The four element formula:

N ’ - 2 * ’r *
sin @ ctg 8" (w) sh 2H* c¢th 2H” — ch 2H* cos o, (2.4)*

sin o ctg 6" (w) = sh 2H" cth 2H* — ch 2H’ cos w.
From formula (2.4), taking into account the fact
that
e?i* = (ctgz + i) / (ctg z — i),
it follows that

¥ (0) —iln sh2H* cth2H’ — ch2H* cos ® + isin ®
T2 sh2H* cth2H’' — ch2H* cos®w — isin® ’

’ * 73 . .
o ((o)=—1.ln sh2H' cth 2H ch2H’cosw + isinw

2i sh2H' cth2H* — ch2H' cos® — sinw '’
(2.5)
from which we obtain:
& (H', H*|o) = 8*(H*, H'|0),
8 (—0) = —8(0), 6*(—0) = —06*(0). (2.6)
APPENDIX 3

FERMI OPERATORS AND THE BOGOLYUBOV
TRANSFORMATION

Instead of the Dirac operators Py and Qi we
introduce the Fermi operators

Ar =12(Pr + iQx),
Pr = Ay -+ Ay,

Ah+ == 1/2 (Pk - iQh)1

iQk = A — Ah"" (3.1)

for which the following commutation relations hold:

[Ah1 Al]+ = 01

The canonical transformation of Bogolyubov[ej

[Aet, At]. =0, [Ag, Ar] = 6u. (3.2)

*ctg = cot.
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Ay = 2 (ke Az + Vo A'),

At = 2@ Ata + v¥1e Ad), (3.3)
where
D) (@ka U*a + Vka V*1a) = Ok,
(@
E (uka Vig + Ua Vka) = (3.4)

(@)

corresponds, in accordance with formulas (3.1), to
the canonical transformation of the Dirac operators

Pk' = Z (“ka Prx + Bka Qa), Qk' = Z (aka' Pa + B;ta Qa)y

(a) (@)

Oka = —%— [(ka + Uia") + (0ka + Via’)],

Bra = —;— [(2ka — Uka’) — (Vka — Via")];
O’ = — _;_ (ke — Uka") + (Vka — Via')],

Bra = _é— [(uka + uka*) — (vka + vka‘)]- (3.5a)

As can be easily verified, from (3.3) follow the
formulas for the inverse transformation of
Bogolyubov:

Aa = 2 (uka. A;f + Vka A;¢+),
(k)

Aa+ = Z (uka A;t+ + Uka' A;t),
(k)

(3.6)

and, consequently, from (3.5a) by means of the re-
placements ugy — Ukqs> Uk — Ukq One obtains the
inverse transformations for the Dirac matrices:

Py = D) (0ka P’ + o’ Qi'),

k

Qo = X (Bra Pi’ + Bra’ Qi) (3.5b)
(k)
Imposing on the operators Pk and Qk the
periodicity conditions
Ph-{-n = Pk, Qk+n = Qh. (307)

and choosing for the functions uy,, and vy, the
functions

Uke = n~'kexp (2nika/n), Vie = 0, (3.8)
we obtain the Fourier expansions for the operators

Ay, Ay
Ay = n": D) a (a) exp (2nika/n),
(@)

At =n"Dat (—o) exp (2niko/n),
(a)

(3.9)
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and the inverse formulas:
a (o) = n~" ) Ay exp (— 2niak/n),
k
a* (— &) = n~'h D) Ayt exp (— 2miak/n).  (3.10)
k
We write in terms of its components the Fourier

transformation
P’r» =Ppchz + iQushux,

iQr =Prshz + iQuch . (3.11)
In terms of the Fermi operators we have
A’ = e*Ay, At = e*Ant (3.12)
and in terms of Fourier components we have
a(a) = e*a(a), at’'(—a) = e=*a*(—a). (3.13)
Further, we consider the transformation
P’y = Prchy + iQu_s sh y,
iQr = Prysshy + iQrchy. (3.14)

In terms of the Fermi operators we have

Ay = Apchy + 2 (Ap—t + Appr — Aty + Atpyy)shy,
Ah+ = Ah ch Yy

+ Vo (Ar—y — Aty — Appy — Atpy)sh oy, (3.15)

In accordance with formulas (3.9) we obtain in
terms of the Fourier components

270
n

a' (o) = (chy -+ cos sh y) a (o)

+ (ishy-sin%)(f(—a)y
. . 27
gt (—a)= — (zshy-sm —n—)a(:x)

+ (chy—cos %shy) at (—a). (3.16)

APPENDIX 4

REDUCTION OF THE MATRICES Ty AND T, TO
DIAGONAL FORM

We utilize the Bogolyubov transformation Ce] in
order to find the canonical transformations
(Px» Q1) — (Py» Qp)s (P Q7) — (Pyk» Qp)s
which bring the matrices T, and T, into diagonal
form.

We consider first the transformation of the
matrix Ty = V%“Vz V%/z and write out the sequence
of rotations which realize in the 2n-dimensional

.space the rotation R(T):

B. RUMER

P’y = P, ch H* + iQn sh H*,
Py” = P’uch 2H’ — iQ's—y sh 2H’,
Py”’ = Py” ch H* + iQk” sh H*,

iQ'x = Py sh H* + iQx ch H*,
iQy”" = P’py1sh 2H’ + iQ’ych 21,

iQr”" = Py sh H* + iQ,”" ch H*. (4.1)
Utilizing formulas (3.13) and (3.16) we rewrite
them in terms of Fourier components (x = H*,
y = —2H'):
a’ (o) = ef*a (a), at (—a) =eHa" (—a),
a’ (o) = <ch 2H' — cos 2:“ sh 2H’>
x o’ (a) — ish 2H’ sin —2—? at’ (— o),
at’ (— a) (ch 2H’ + cos 2:“ sh 2H’)
+7 o o3 2““ ’
x a'’(—a)+ ish2H’ sin S (o),
a” (o) = eH'a" (), a" (—a) =eHa" (—a). (4.2)

For the resulting transformation R(T;) we ob-
tain

a" ()= e2H* (ch 9H" — cos 2% sh 2H’)

n

X a(oc)—isin—z?sh 2H'a* (— a), (4.3)

21

% sh2H'a (a)
n

a*” (— a) = isin

2ma
n

+ e2H* (ch 2H'" + cos sh 2117’)11+ (—a),
or, utilizing formulas (2.1), (2.2) and (2.3) of
Appendix 2, we obtain

a”(a) = [chy(a) + shy(a) cos & (a)]a(a)
— ishy(a) sin & (a)at(—a),
at”’ (——a) = ishy(a) sin §'(a)a(a)

+ [chy(a) — shy(a) cos &8 (a)]at(—a). (4.4)

It can be easily verified that the matrix of this
transformation is unimodular, and its trace is
equal to 2cosh y(a). Consequently, its eigenvalues
will be exp [y (a)] and exp [~y («)]. The unitary
transformation
)

2 ?

6’ (@)
2

6 ()

b (o) == a(a) cos 5

ia* (— a) sin

M—&— a* (— a) cos

5 (4.5)

b* (— a) = —ia («) sin
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brings it to diagonal form

V(@) = e @b (a), B (—a) = e @b (—a). (4.6)

Going over in accordance with formulas (3.10) from
the Fourier components a(a), a*(—«) to the Fermi
operators Ay, Ay, we obtain from (4.5)

1 ”\{ & () g 6’(&)}
“fﬁ% Ay cos 5 — A, s1n—2—

« exp (_ 2:n:rz;oclc> ,
5 (—a)= ‘/2{~1Aksm %) + Ayt 6’(;‘)}

X exp (— ZHiak) , 4.7)
or
b(a) = ,71172{A" cos ¥ Ezoc) — iAgsin 6—’?—)}

k

X exp (__ ZnTilock) ,

ot (a) = Z{zAk sin »A(_)* 4+ Ate 6I (;) }

Lok
X exp (2mu ) . (4.8)
n
We now show that the transformation (4.8) is the
inverse Bogolyubov transformation (3.6) with the
coefficients

« 1 "(a) < 2:ru'ock>
Upa — I—’LI_/Z CcOS 2 e p(_hn ’
. i . 0 (a) 2niak
Vka = — - sin —5=exp (—T—> . (4.9)

Indeed, in accordance with formulas (3.4) we have,
taking into account the fact that 6’(&) =—6(—-a),

‘2nio (b — 1
E(ukaula* + Vpoia* = 2 { cos? exp (_.(_nw_)_)
@ @)

-+ sin® d gd) ex

———2{ s-z—“—“ (k—1)

(@)

P(\%m(i_k) )}

ticosd () sinznTa(It— z)} — 8, (4.10)

D (UkaVia + WiaVha) = — Z sin 6 (o) cos — (Ic —1)=0.
(@)

Formula (4.8) is the desired canonical transforma-
tion of the initial matrices Ax = % (P +iQy) into
the new matrices b, = Yo (Py +iQ¢), in terms of
which T, is diagonal.

INFINITE PLANE ISING LATTICE

193
From (4.8) and (4.9) we obtain in accordance
with formulas (3.5a), (3.5b) and (4.9)
P, = % (6xaPs + 6"k Qi),
Q= ;} (TkaPi + Tllka.‘Qk'); (4.11)
{
Py = (2) (ckfl « + Tl‘aQa)
Qr = X (6kaPa + TkaQu), (4.12)
@
where
2nak &
Oka = /zcosk n: + (Za) >,
1 (2nak | ¥ ()
Tlm._'—msln< n + D) )’
.1 (2mak ¥ (a)
[ ;17;5 n < —_— 2 ) ,
, 20k o' ()
tka=;ﬁcs( = ) (4.13)

The calculation in the case of the matrix

T, = V%“Vi Vé/z is carried out analogously. We
write out in terms of the Fourier components the
sequence of rotations which realize in the
2n-dimensional space the rotation

R(Ts) = R(VS%) R(V1) R(V2"),
a’ (o) = (chH' -+ cosz%‘sh H')
. , . 270
xXda (a) —_— (Z sh H'sin T) d+(‘—‘ d),
at’ (—a) = (ish H’ sin ?i'?) a(a)
, , 2\
+ (ch H' — shH’ cos == a* (—a),
ar/ (Oﬂ) — e-‘zH‘ a' (a)1
o (—a) = " 0¥ (— a),
, 2ma y
a’ (o) = (chH +cosTshH)
, (. o 2ma o,
x @ (a)—(zshH sin—— | a (—a),

2
at” (—a) = (ishH’ sin j;—d) a” (o)

+(chH’—cos&;—%sh H')a*(—— o). (4.14)

For the resultant transformation R(T,) we ob-
tain
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a” (a) = {ch 7 (&) 4 sh 7 (&) cos [2%‘ + 6* (a):l} a(a)

— {i sh (o) sin [22—0‘ + o* (d)}} at(—a),

a" (— o) = {i sh (o) sin [—2%3‘ + o (“)}}

a(a)
+ {ohr (@) —shr(@eos [ 224 o0 @) |} o (— 0.

(4.15)

The matrix of this transformation is unimodular,
and its trace is equal to 2coshy(a). Consequently,
its eigenvalues will be exp [y (®)] and exp [~y (@)].
The unitary transformation

b(a) = —ia* (— oc)sm[ T+ 6*2((1)}
6*

4-a(a )cos[ (oc)]
_b—:+(_ a) = a" (—a) cos{ —}—6*2(‘1)}

— ia () sin [“—:‘ +& 5“)} (4.16)
brings it into diagonal form

b (a) = e"b(a),
b (—a) = e~V @bt (—a). (4.17)

Going over from the Fourier components to the
Fermi operators we obtain

7 (@) = n_l/;{_l sin [ 4 o @)
o[22 e (22

The transformation (4.18) is the inverse
Bogolyubov transformation with the coefficients

. [noc 6*(a)}e <2m'ock>
sin | —= 5 xp—— )

Ja

(4.18)

—i
n't

*
U ga =

1 e 6% () [ 2miok
Uka = o [7{+ ) ]eXP( =) @)
In accordance with formulas (3.5a), (3.5b), and
(4.19) we obtain
Pk = Z (}"kalz)a + Pka 6[1)1
(@)
Qi = 2 (MiaPa + WraQu), (4.20)
(@)
Po = D) (MaPs + M iaQ),
(i)
Qx = 2 (AP + WhaQu), (4.21)

(k)
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where
1 2m 1 o* (a)]
?»,m_n,/’cos[n (Ic——2—>— 5 )
1 2no0 1 6% (at) ]
e = s [ 52 (k=5 ) =252
R T oL 1 6* (o) ]
Maw = g sin [ 2 (k) + 757,
, —1 e 1 8* (o) |
Wao = T oo [ 22 (k) + 752 (a22)
APPENDIX 5
DERIVATION OF THE ONSAGER FORMULA
In the theory of Toeplitz matrices 417 3 formula

is derived for the limiting value of the determinant

S (0)  TEA) . . . I* (n—1)
1% () = | BTN RO BT s,
S*(—n). .. ... 2% (0) t
for n — . In accordance with this formula
k=n
lim 7* (n) = lim et 1T exp (—kh?), (5.1)
Nn—>00 N—>00 k=
17 1
he = 5 g i8* (0) ek do. (5.2)

0

Since 6*(w) is an odd function of w, then hy; = 0 and

lim T* (n
n—->00

= ]I exp(—kh3).
k=1

For the evaluation of the Fourier components hy

of the function i6*(w) we turn to formula (2.5), and

expand the numerator and the denominator into the

product of two factors (Z =elw, 7 = e —iw):

(5.3)

(cth H' — th H*7) ((h H — h H'Z) o

i4* (0) = =1n
(©) = 2 (cth H' — th H*Z) (th H' — th H*Z)

4)*

We consider separately the two cases:
LO<th/l*<thH <1 (low temperatures):

1

o (L—th H"th H*7) (th H' — th H*Z)
(1 —th H' th H*Z) (th i’ — th H*Z)’

(5.5)

*th = tanh.
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I 0 <thH <th #* <1 (high temperatures):

i8* () = %
« 1 2 (1 — th H'th H*Z) (th H* — th H'Z) (5.6)

Z (1 —th H' th H*Z) (th H* — th H'Z)

Utilizing the formula —1ln (1 —Xx)
in case I

= (x/n) we obtain

*\n __
i8* (@) = th #7)

1 - 1 { * nnpn (‘
?E;’; ~ (thH* th H)'2" — |

th H*\"™, . . ,n—n}
+(th—H_) Z" 1+ (th H* th H)" Z"[ ,

(5.7)
and in case II

i (8* (0) + 0) = % ) % {— (th H* th H')" Z"—G%%)"Z"
n=1 t

+ (thH*th H)"Z" +(th11 )Z}

Th A* (5.8)

Expanding the function iw in a Fourier series
we obtain

__2\ 1)

Thus, the Fourier coefficients hk of the function
i6*(w) have the form

zF —27". (5.9)

I. H > H*:
1y thH*)k L
= g { (Fgpr )| — (th 2% th B}
II. H < H*:
= 21{
2

We now calculate 02: khk.

(5.10)

1) . th]l )

— (WH* WA )“} (5.11)

At low temperatures:

?khk = ?1— {(th Hy th%-,)'z + (t,llH')glf—ZJ}
:__{1 ( (‘L;‘g*) )—i—ln[i—(th*th’)‘l]

— 2In(1 —tlﬁH*)}

1 (1—th? H*)>—h® H* (cth? H' +th® H' —2)
(I — th? B2

sh?2H*
sh? 2H'

!

:—Tlllll — (5.12)
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at high temperatures:
Skhy? = 71-27 Gt (... . )}—> 00, (5.13)
1 1 v

since the series diverges. In accordance with
formula (5.1):

low temperatures:
likml SiSp1> | = (1 — sh22H* [ sh2 2H’) "

= (1 — sh=22H sh—2 2H’)',

at high temperatures:

“II[I <\S,Sh+1>| = 0. (5.14)
k—oo

From this follows the Onsager formula given in the
text.
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