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The tunnel current through a system of two or three closely spaced potential barriers pro
duced by dielectric layers in a conductor is calculated. It is shown that in the absence of 
scattering the resonance tunnel current (RTC) is very large compared to the nonresonance 
current. The dependence of the current on electric potentials V 2 and V4 applied to barriers 2 
and 4 is considered for a two-barrier system (Fig. 1). It is found that with variation of V2 the 
RTC passes through a maximum followed by a region of negative slope (Fig. 2, b). The effect 
of electron scattering is taken into account. Scattering decreases the RTC through a barrier 
system as a result of appearance of a resonance scattering current. The RTC can become 
saturated. Numerical estimates are presented. The resonance transmittance is calculated 
for a three barrier system (Fig. 3) and it is shown that the RTC has a sharp maximum if the 
quasi-levels in neighboring wells coincide. 

INTRODUCTION 

MUCH attention is being paid of late to the 
tunneling of electrons in crystals, through potential 
barriers produced by thin dielectric layers of 
thickness of the order 10-100 A. The physical 
interest in the question is due to the fact that this 
yields much new information on the behavior of 
electrons in crystals and in thin layers. It was 
indicated [t] that resonant tunneling can occur in 
the presence of several closely located barriers. 
The resonance is due to the interference of the 
deBroglie waves, in analogy with the optical 
phenomena in a Fabry-Perot interferometer. By 
deforming the barriers, the weak external electric 
signals can greatly change the resonant trans
parency and control the resonant current. Such an 
idea was advanced also by Davids and Hosak[2J 
who, however, did not discuss the physical aspect 
of the phenomenon at all. 

In the present article we attempt a calculation 
of the tunnel current for the case of two and more 
barriers, and obtain results that can be compared 
with experiment. It is found that the voltage-cur
rent characteristics of the resonant current can 
have sharp maxima and sections with negative 
.slope. It is shown that as a result of the Pauli 
principle the resonant current is capable of reach
ing saturation. The main deduction of the work is 
that in the absence of scattering the total resonant 
current can exceed the nonresonant current by 
many times. The resonant tunneling consequently 
can play the major role in the mechanism of the 

tunnel conductivity of a system of barriers. 
For resonant tunneling to occur it is necessary 

to satisfy the following conditions [t]: large elec
tron mean free path in the conductors, specular 
reflection from the barriers, and small scattering 
of the electrons inside the barriers. In this article 
we take into account the influence of these factors 
and find that in spite of the scattering, the resonant 
current does not prevail over the nonresonant cur
rent so long as quasi-levels exist in the well be
tween the barriers. All the calculations are based 
on the model of the free isotropic electron gas. 
Calculation of the resonant tunneling with account 
of the concrete electronic properties of the crys
tals is the next, more complicated stage. Such a 
calculation is made difficult by the fact that at the 
present time the properties of electrons in thin 
dielectric and conducting layers have not yet been 
sufficiently well studied; in particular, there is 
quite little information on the scattering of the 
tunneling electrons in the barriers. However, re
cent experiments [3] have shown that thin dielectric 
layers are quite homogeneous, and that the tunnel 
current is well described by the model of the sim
ple potential barrier. 

Since resonant tunneling can play the decisive 
role in the mechanism of tunnel conductivity of the 
system of barriers, this phenomenon is worthy of 
a detailed experimental and theoretical study. We 
note further that even in tunneling through single 
barriers, resonant effects, due in this case to im
purity traps, can play an important role [4]. 
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2. TUNNEL CURRENT THROUGH A SYSTEM OF 
TWO BARRIERS 

Figure 1 shows a system of two potential bar
riers made up of dielectric layers in a conducting 
crystal. For simplicity we show the barriers rec
tangular, but the calculation is suitable for bar
riers of arbitrary shape. If each of the barriers 
has low transparency, we can use the following 
quasi-classical expression for the transparency of 
the system [ i]: 

T = [sin2 Is ch2(/2- h) 

•i 

"Ma = ~ Pidz, 
%i-1 

(1)* 

p =I Y2m [U (z)- E] I; (2) 

Ii-action integral, taking in the i-th region be
tween neighboring turning points, Pi -z -components 
of the classical momentum of the electron, E-en
ergy of motion along the z axis. The z axis is 
directed along the normal to the layers. The en
ergy is reckoned from the bottom of the conduction 
band U 1 in the crystal 1. 

Barriers 2 and 4 are characterized by param
eters 12 and 14, while well 3 is characterized by the 
parameter 13• Resonance occurs if 13res = 1r(n + 1/2) 
(n = 0, 1, 2, ... ). We introduce a small deviation 
from resonance 

8 = Is - lares, jej~1 (3) 

and expand (1) in powers of E near resonance. 
Confining ourselves to the highest terms, we ob
tain 

E•t, = ch (12- h) I ch (12 + h + ln 4), (5) 

i.e., near resonance the transparency is expressed 
by a dispersion curve with half-width (5). Away 
from resonance, where cos 2 13 ~ 1, the trans
parency is 

Tnonres ~ ch-2 (/z + h), (6) 

*ch =cosh. 

d 

FIG. 1. a - System of two potential 
barriers, made up of two dielectric layers 
2 and 4 between conductors 1, 3, and 5; 
b, c, and d - change in the form of the 
potential barriers and shift of the quasi
levels following application of an elec
tric field on each of the barriers. 

which corresponds to the transparency of the two 
barriers 2 and 4 placed in contact. 

We apply to barriers 2 and 4 the corresponding 
voltages V 2 and V4, in order to cause the Fermi 
levels in regions 3 and 5 to drop appreciably be
low the Fermi level E iF in region 1. This gives 
rise to tunneling from 1 into 5. We shall assume 
that no reverse tunneling occurs at all. 

The density of the tunnel current flowing from 
medium 1 into medium 5 (when v4 = 0 this is the 
current measured by the galvanometer G5 of 
Fig. 1a) is equal to 

00 

j = e ~ T (Pt) V1V1 (Pt) dph (7) 
0 

where e-electron charge, v 1-z component of the 
electron velocity in medium 1, and 

v. (P!) = ~ n1 (Pix, Pty, PI) dplxdPiy 

-spatial density of the electrons with specified p 1 

in the crystal 1. 
In the simplest case considered, that of a gas, 

when E = PU2m and v1 = p 1/m, we can rewrite (7) 
in the form 

00 

j = e ~ T (E) v!(E) dE. (8) 
0 

The transparency (6), which is under the integral 
sign here, depends on the voltages V2 and V4• The 
tunneling can involve not only the electrons lying 
near the Fermi boundary, but also electrons from 
deep levels, so that (8) holds equally true when the 
electron gas in the conductor 1 is either degener
ate or nondegenerate. 

Let us consider the physics of the phenomenon, 
using as an example a degenerate gas at absolute 
zero. In this case 

Vt(E) = m(E1F- E) I 2:n:2fi3 

and vanishes when E ~ E 1F· Let us assume that in 
well 3 there is one resonant level with energy 
Eres· Owing to the exponential dependence of the 
transparency (1), the main contribution to the inte
gral (8) is made by two energy regions: the region 
near resonance (E ~ Eres) and the region near the 
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Fermi boundary (E ~ E 1F)· Accordingly, the total 
tunnel current from 1 to 5 can be divided into two 
parts, resonant and nonresonant. The resonant 
current is obtained by substituting (4) in (8). Let 
us assume that v 1 (E) changes little over the half
width (5) of the resonance curve. Then (4) assumes 
the role of a 6-function under the integral sign. 
Putting dE = dE/(di3/dE)res and integrating with 
respect to E from - oo to + oo, we obtain 

ires= T£evtf(e21• + e21•) (dis/dE) IE=Eres· (9) 

Unlike the transparency (1), the current (9) has 
no maximum at I2 = I4. This is caused by the fact 
that when I2 = I4 the half-width of the resonant 
curve (5) has a minimum. Expression (9) is not 
valid if v 1 (E) varies strongly over the half-width 
of the resonance curve. In this case the resonant 
current can turn out to be sensitive to small in
equalities of the barriers. The latter occurs, in 
particular, in the case of a system of three bar
riers, which will be considered at the end of the 
article. 

The nonresonant current from 1 into 5 can be 
estimated by substituting (6) in (8). Integrating and 
assuming that the main contribution is made by the 
region near EtF• we obtain 

inonres ~ evtfe2(l,+J,J [d (12 + /4)/dE]JE=E1r (10) 

Comparing (9) with (10) we obtain for Eres ~ E1F 

ires/ inonres ,.._, 1 f E•f, 

= eh (/2 + h +In 4)/ ch (!2- h) ~ 1, (11) 

i.e., the resonant current can be quite large com
pared with the nonresonant one. 

Let us clarify the character of the dependence 
of the resonant current (9) on V2 and V4. The ac
tion variables for acute-angle barriers have the 
following explicit form: 

? 
I 2 = 3 (2mj1i 2 )'1• d2 I [(U 2- E)'1' 

- (U2 - eV2 - E)'1']jeV2J, 

(12) 

When substituted in (9), these quantities must 
be taken for a value E = Eres• which in turn de
pends, generally speaking, on the applied voltages. 
It is seen from Fig. 1c that the voltage V4 merely 
deforms the barrier 4, but does not shift in prac
tice the resonant quasi-levels in well 3. This is 
confirmed also by the equations given in [t]. To the 

contrary, the voltage V2, as can be seen from Fig. 
1d, lowers the bottom of well 3, and with it the 
quasi-levels. For sufficiently deep quasi-levels we 
can assume that 

(13) 

where E~es-position of the resonant quasi-level 
in the absence of a voltage on the barriers. 

Substituting (13) in (12) we find that for E = Eres 
the value of I2 increases with increasing v2, while 
I4 does not depend on V2 and decreases with in
creasing V4• Therefore with increasing V4 the 
resonant current (9) increases exponentially, until 
I4 becomes smaller than I3; the growth then ceases. 
This is shown in Fig. 2a. 

The dependence of the current (9) on V2 is 
different. With increase in V2 the value of I2 de
creases and the denominator in (9) increases ex
ponentially. The numerator which contains 
v1 (E~es- eV2 ) increases simultaneously, i.e., 
more and more new electrons which lie in differ
ent sections of the Fermi sphere participate in the 
tunneling. If E~es > EtF• then v1 (E~es) = 0 when 
V2 = 0, and there is no resonant current. The 
resonant current occurs when eV2 = E~es - EtF• 
when the quasi-level drops and touches the Fermi 
boundary. With further increase in V 2, the current 
(9) soon begins to decrease because of the exponen
tial increase in the denominator. As a result we 
obtain a sharp maximum, followed by a section with 
negative curvature, as shown by the solid line on 
Fig. 2b. In the presence of several resonant levels, 
several resonant currents become superimposed, 
and this leads to the occurrence of a system of 
maxima, shown dashed in the figure. 

Let us estimate the influence of the scattering 
of the resonant electrons. We assume that this 
scattering is characterized by a small parameter 
y « 1, which represents the relative attenuation 
of the deBroglie wave over the length of the reso
nator well 3. This parameter receives additive 
contributions from the degree of diffuseness of the 
reflection of the electrons from the barriers and 
from all the electron scattering mechanisms in 
resonator 3 and in barriers 2 and 4. As shown 

jres jres 
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FIG. 2. Expected dependence of the resonant tunnel current 
on the barrier voltages. 
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earlier [5], when 12 = 14 the resonant transparency 
decreases as a result of scattering by a factor 
(1 +17) 2, where 17~ y exp(212). At the same time, 
the half-width of the band (5) increases by a factor 
(1 + 11). As a result, the resonant current (9) de
creases by a factor (1 + 17). The scattering is ap
preciable if 11 » 1, in which case we obtain from 
(11) hes/jnonres ~ 1/y » 1, i.e., the resonant 
current still prevails over the nonresonant cur
rent. y then plays the role of the half-width of the 
resonant curve in place of (5). Consequently, the 
resonant current jres prevails over the nonreson
ant current jnonres always whenever sharply pro
nounced quasi-levels exist in the resonator 3. 

It is important to note that the scattering leads 
to an additional occurrence of a resonant scatter
ing current jsc• which flows from 1 into 3 when 
V4 = 0, which can be measured with galvanometer 
G3• When there is no scattering, this current is 
zero. Using the results from [5], we find that when 
y « 1, 11 » 1, and 12 = 14 the scattering current is 
equal to the current (9) in the absence of scatter
ing. Thus, scattering does not change the total 
number of resonant electrons tunneling from 1 into 
3. The scattering changes only their eventual fate. 
If 11 « 1, then all these electrons tunnel again 
through barrier 4 and participate in the produc
tion of the current (9). On the other hand, if 
11 » 1, then the greater part of the resonant elec
trons flows out from 3 through galvanometer G3 

back into the crystal 1, producing the resonant 
scattering current jsc. With rise in the barrier 4, 
the barrier rapidly changes into an impermeable 
wall and the resonant current (9) disappears, but 
the scattering current jsc remains the same as for 
12 = 14• The dependence of jsc and of current (9) on 
V 2 is the same. 

3. SATURATION OF THE RESONANT CURRENT 

The resonant current should exhibit a unique 
quantum saturation, connected with the finite den
sity of the electron states in well 3. To explain the 
nature of this effect, let us assume that one of the 
tunneling electrons has penetrated into well 3 and 
has occupied for the time being a resonant quasi
level. By virtue of the Pauli principle, other elec
trons can no longer make use of this level for 
resonant tunneling, until the level becomes free 
again. This imposes a limit on the attainable 
resonant-current density. A similar situation 
takes place in the case of resonant tunneling on 
traps [4]. The saturation is connected with the fact 
that the electrons are fermions. No saturation 
occurs in resonant tunneling of electromagnetic 

waves or other bosons. We present below an esti
mate of the saturation current. 

We introduce the average time spent by the 
resonant electron inside the well 3. If the barriers 
are equal and there is no scattering, its order of 
magnitude is 

(14) 

The number of electrons situated each instant of 
time inside one cm2 of the layer 3 is Thes/e. 
Saturation occurs if this number becomes equal to 
the surface density of the resonant electronic 
states N in the film 3. We estimate the latter by 
using the quasi-classical notion of cells in phase 
space: N = PfJmax/27Tti2• Here PH-longitudinal 
component of the quasimomentum, which can as
sume a continuous set of values. Considering elec
trons with Pi! ¢ 0, we take into account the tunnel
ing of electrons obliquely incident on the barrier. 
PJJmax-limiting value of the longitudinal quasi
momentum for electrons still capable of tunneling. 
This quantity depends both on the electronic proper
ties of the conductors and on the dimensions of the 
system, owing to resonant diffraction [sJ. Putting 
by way of an estimate Pllmax ""' Pares• we obtain 

N ~ kares 2 I 2:rt, k =pI h. (15) 

If the electrons are incident from the outside on 
the barriers at random, then the true resonant 
current, taking into account fermion saturation 
Ores.f) is expressed in terms of the previously 
obtained boson resonant current (9) by 

ires. f =ires. bl (1 +ires. b't I Ne). (16) 

For jres.b T/Ne « 1, i.e., far from saturation, 
we obtain from (16) 

ires. f ~ires. b. 

To the contrary, for jres.b T/Ne » 1 we obtain 

ires. r= isat = Ne I 't. (17) 

The saturation current (17) does not depend on 
the scattering. Scattering merely opens up an ad
ditional channel for the departure of the electrons 
from the quasi-levels in the resonator 3, i.e., it 
leads to the occurrence of a scattering current 
jsc· The latter can also become saturated, the 
maximum value of jsc being 11 times larger than 
(17), since the time which the electron stays in the 
quasi-level is reduced by the scattering by a fac
tor 11· 

We present numerical estimates. Let d3 = 100 A, 
and let the effective mass mt = 0.04m. This gives 
rise to the following quasi-levels in the well 3 
(eV): En~ 0.1 n 2 (n = 1, 2, 3, ... ). Let us examine 
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the resonance at the first quasi-level (n = 1), i.e., 
we put Eres = 0.1 eV. This corresponds to an 
electron velocity v3 l':j 108 em/sec in well 3 and to 
a wave number k3 l':j 3.3 x 106 cm-1• Let us assume 
that the transparencies of barriers 2 and 4 are the 
same and of the order of 10-5, i.e., exp212 = exp214 

= 105• The resonant electron should then experience, 
in the absence of scattering, approximately 105 

specular reflections inside the well 3. The aver
age time which the resonant electron spends inside 
the well 3 is T - 1 o-9 sec. During this time the 
electron has time to cover a distance l = v3T - 0.1 
em. Consequently, scattering is insignificant if the 
mean free path is not smaller than 0.1 em, and the 
degree of diffusion upon reflection is smaller than 
10-5• The surface density of the states (15) in the 
layer 3 is N- 1012 cm-2• Substituting this in (17) 
we obtain the density of the resonant saturation 
current: jsat- 100 A/cm2• 

Let us estimate now the resonant current with
out account of the Fermi saturation. We put 
mT = 0.1m and E 1F- Eres l':j 0.1 eV. Substituting 
the foregoing numerical values in (9) we get 
jres l':j 200 A/cm2• This exceeds the saturation 
current, i.e., saturation will be reached. By vary
ing v1(Eres) we can gradually approach saturation 
and by the same token estimate the density of the 
states in the well 3. 

We assume now under the same condition, the 
presence of scattering determined by the param
eter y = 0.02, i.e., the resonant electron can exe
cute not more than 50 reflections inside the well 3, 
and stays there not more than 5 1< 10-18 sec. Owing 
to scattering, the current jres decreases by a fac
tor TJ = 2000 times and becomes equal to 0.1 x 
A/cm2• This quantity is already smaller than the 
corresponding saturation current. Simultaneously, 
a scattering current is produced, jsc - 200 A/cm2• 

4. SYSTEM OF THREE BARRIERS 

In conclusion, let us consider a system of three 
barriers, as shown in Fig. 3. This system can be 
regarded as two systems of two barriers shown in 
Figure 1, brought flush together. Such an approach 

(/(t) 

u, 
l 

FIG. 3. System of three barriers made up of three dielectric 
layers 2, 4, and 6 between conductors 1, 3, 5, and 7. 

makes it immediately evident that for a complete 
resonant transparency of the three barriers it is 
necessary that the middle barrier be equivalent to 
the sum of the two outer barriers. In addition, it 
is necessary that the quasi-levels in wells 3 and 5 
coincide. These conditions can be satisfied by ap
plying to the barriers 2, 4, and 6 voltages v2, v4, 
and V6, respectively. 

Near the coincidence of the quasi-levels, the 
resonant transparency is expressed in the follow
ing fashion: 

1' = 4js [(1 + 1js)2 + (I sa IJe3•;, + Jssl/ss•;,}2 ], (18) 

where s =a exp [214 - 2(16 + 12)]; a-a coefficient 
on the order of unity, the form of which will not be 
given, E3 and E3•1, is determined as before by condi
tions (3) and (5), while E 5 and E5,1, are obtained 
from (3) and (5) by adding 2 to each index. 

If the quasi-levels in wells 3 and 5 coincide, 
i.e., 6Eres = E3res - E 5res = 0, then resonant 
transparency sets in when E3 = E5 = 0; in this case 

1'=4/s(1 + 1/s)2. (19) 

For s = 1 this expression has a maximum and be
comes equal to unity. The condition s = 1 signifies 
l2 + 16 = l4, i.e., the equivalence of the middle 
barrier to the sum of the two outside barriers. 
If OEres ;oO 0, i.e., the resonant levels in wells 3 
and 5 do not coincide, then E3 and E 5 do not vanish 
simultaneously and total transparency is impossi
ble. 

We obtain the resonant current through a sys
tem of three barriers by substituting (18) in (8). 
Let us put E 5 = b (E3 + .6), where 

b = (dlsldla) 
dE dE res' 

( d/3 ) L\ = dE bEres· 
res 

The dimensionless quantity 1.61 « 1 characterizes 
the degree of inequality of the resonant levels in 
neighboring wells. Carrying out the integration as 
in the derivation of (9), we obtain 

ires= 4e [vl (E) I dla (s +, 1)] Ba•;,Bs•;, f (L\'), 
dE 8 5•;, + bs3•;, 

(20) 

x --arc tg ----- arctg-- , [ b I L\' 1 1 b I L\' I J 
Ss•;, Ba•;, Ba•;, Bs•t, 

(21)* 

where .6' = .6/(1 + 1/s). This function has a maxi
mum at 1.6'1 = 0. With change in voltage V4, the 
quasi-level E 5res shifts, .6' changes, and the 
resonant current (20) should pass through a sharp 

*arctg =tan-'. 
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maximum, the width of which is comparable with 
the width of the quasi-levels. 

I am most indebted to M. Ya. Azbel' for a de
tailed discussion of the results. 
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