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Energies of the {3- and y-vibrational states of even-even strongly deformed nuclei with 
152 ::sA ::s 186 and 228 ::sA ::s 254 are calculated. Satisfactory agreement between the 
calculations and corresponding experimental data is found in the case when Kn = Kp = Knp 
= K where K =lOA -413 n:w~ in the first region and K = 12A -413 n:w~ in the second. In agree
ment with the experimental data, it is shown that for the Dy and Er isotopes the energies 
of the y-vibrational states lie below those of the {3-vibrational states. It is noted that in 
most cases the lowest states with Krr = 2+ and K1r = o+ possess distinct collective prop
erties and their energies are much below those of the nearest poles in the secular equa
tions. In a number of cases the energies of the quadrupole states lie near the poles and 
their wave functions are very close to the two-particle ones. The calculated E2 transi
tion probabilities do not contradict the experimental data. 

1. The study of the collective excited states of 
even-even nuclei has been the subject of many 
theoretical and experimental papers. A sufficiently 
large amount of experimental material has been 
accumulated on the energies of the {3- and y-vibra
tional states in even -even strongly -deformed nu
clei, and on the reduced probabilities of the elec
tromagnetic transitions. The theoretical investi
gations of the microscopic nature of the collective 
states are based on the approximate second quan
tization proposed by Bogolyubov in 1947 [!] and on 
the mathematical methods developed for supercon
ductivity theory [2]. The most thoroughly studied 
were the collective states of spherical nuclei [a-s]. 

In the region of strongly deformed nuclei, investi
gations [6] made prior to 1963 are limited to the 
presentation of the fundamental equations and to 
the elimination of the ghost state. In [ 7•8] were 
calculated the energies of the octopole states of 
strongly-deformed even-even nuclei, and suffi
ciently good agreement was obtained with the cor
responding experimental data. In [s] were calcu
lated the energies of the y-vibrational states and 
the probabilities of the electromagnetic E2 transi
tions. However, the energies of the f3 oscillations 
were not calculated in that paper, and the energies 
of the y oscillations, calculated using the asym
ptotic wave functions of the Nilsson potential, were 
approximately one and a half times larger than the 
experimental values. 

It is of interest to calculate the energies of the 
{3- and y-vibrational states at the same value of 

the quadrupole-quadrupole interaction constants, 
using the exact wave functions of the Nilsson po
tential. The present paper is devoted to such cal
culations and to a comparison of theory with ex
periment. 

2. The energies of the collective states will be 
calculated on the basis of the superfluid model of 
the nucleus. In this model the Hamiltonian for the 
interaction between the nucleons in the nucleus is 
written in the form of three terms 

H = Hav + Hpair +Heal!, (1) 

which describe the average field of the nucleus, the 
interactions that lead to pair correlations of the 
superconducting type, and interactions responsible 
for the collective effects. In calculating the ener
gies we take the quadrupole collective states Hcoll 
in the form 

{
X (2) X (2) 

Hcoll = - ~ T Q21•+ (n) Q21' (n) + i- Q2/ (p) Q21'- (p) 
P·=0,2 

where 

ss' 
oo' 

(2) 

K< 2> K(Zl and K< 2> are quadrupole-quadrupole inter-n • t • np 
action constants. 

In the microscopic treatment of the superfluid 
model of the nucleus, the wave functions of the 
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collective states are superpositions of the wave 
functions of two quasiparticle states. The collec
tive states are considered alongside with the two 
quasiparticle states, and there are no limitations 
here on the energies of the collective states. The 
terms {3-vibrational and y-vibrational states must 
be regarded as arbitrary, the f3 -vibrational states 
being the lowest excited states with K1r = 0"", that 
is, with zero projection of the angular momentum 
on the nuclear symmetry axis and with positive 
parity (different from the rotational states), while 
the y-vibrational states are the lowest states with 
K1r = 2"". 

3. Let us consider the y-vibrational states. In 
the study of these states it must be taken into ac
count that along with the matrix elements f~cr( s 1, s 2 ) 

= f( s 1, s 2 ), where K1 ± 2 = K2 (K1 and K2 are the 
momentum projections of the two states) it is nec
essary to take into account the matrix elements 

22 - . fer -cr(s1, s 2 ) = f(s 17 s 2 ) w1th K1 + K2 = ± 2, elements 
no't taken into account in many papers. 

On the basis of the variational principle we ob
tain, within the framework of the approximate sec
ond quantization method, a secular equation that 
determines the energies Wi of the excited states 
with K1r = 2"", in the form 

1 = 2 (2} 'V [/ (ss') 2 + 7 (ss')2] u,,~ 
Xn Li Q (ss') 

ss' 

+ 2 (2) 'V [/ (vv')2 + 7 (vv') 2 ] Uv;' 

xv Li Q (vv') 
vv' 

+ 4 [(x 12))2- x (2lx (2)] 'V [/ (ss')2 + 7 (ss')21 u.,~ 
np n P Li Q (ss') 

ss' 

'V [f (vv')2 + 7 (vv')2 ] Uv} 
X Li Q (vv') ' 

vv' 

(3) 

where 

Q (ss') = e(s) + e(s')- w;2 / [e(s) + e(s')] 

and analogously for n ( vv'). The summation of 
ss' ( vv' ) is carried out over the single -particle 
levels of the average field of the neutron (proton) 
system; 

e (s) = Y Cn2 + {E (s)- A.n}2 , e (v) = Y Cp2 + {E (v)- A.p}2 , 

The subscript i denotes the first, second, etc., 
root of the secular equation. 

In the case K~2 > = K~2 > = K~~ = K, to which we 
confine ourselves henceforth, the secular equation 
assumes a simpler form, namely 

__!.._ = 'V [f (ss') 2 + 7 (ss')2 ] u,,~ + 'V [f (vv')2 + f (vv') 2 Ju) 
2x L;J Q(ss') L;J Q(vv') 

ss vv (4) 

The wave function of the i-th state with K1r = 2"" 
is of the form Qi w, where the operator Qi is 
equal to 

(?; = {{2J ['ljJ,,~ A (ss')- cp,,! A (ss'j+ 
ss' 

+ 'lJ,,.Il{ (ss')- cp88! Ill (ss'j+] + 2J ['!Jv) A (vv') 

with 

' 1 ,, 
A (ss) = V"2 Li OiXs'a IX,, -a, 

a 

where <Yscr• avT -quasiparticle operators. 
The functions 

are written in the form 

'ljJ,,! = lj2 (g,,! + w,,\ 
cp,,! = lj 2 (g,,; - w,))' 

where 

'J) •• ~ = 1/2 (g,) + u.;,)), 

q;ss~ = 1 I 2 (iss; - Wss;), (6) 

i 
Wss' = 

ffij i 

e (s) + e (s') g,,,, 
- i 
Wss' == (i)i i 

e (s) + e (s') g,,·; (7a) 

; [ 2 J'l,f(ss')u,,. 
g,,,= Yni+Yni+ypi+Yvi Q(ss')' 

- i [ 2 ]';, f (ss') Uss' 

gss'= yni+Yni+ypi+Yvi Q(ss')' (7b) 

with 

Thus, solving the secular equations (3) and (4), 
we obtain the energies of the states with K1r = 2"" 
and the corresponding wave functions. 

4. Let us consider the {3-oscillations, that is, 
excited states with characteristic IK1r = 00+. In 
this case there are diagonal and off-diagonal ma
trix elements of the quadrupole -moment operator, 
and f ( ss') = 0. Thus, the secular equation for a 
system consisting of one sort of particles can be 
written in the form 

(8) 

with the contribution of the diagonal terms, calcu
lated by this formula, reaching 50-70%. 

We shall show that the diagonal terms should 
not play so important a role. Indeed, let us con
sider a case when all the diagonal terms are equal 
to one another, that is, f(ss) = f0, and then the 
corresponding part Hcoll is of the form 
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- 1 /2x/o2jY2, 

where N -particle -number operator. Since the 
number of particles is the same in the ground and 
in the excited states, it follows that this term does 
not lead to a change in the energy difference be
tween the ,a-vibrational and the ground states. If 
f(ss) ,= f0, then the diagonal terms can lead to 
both a decrease and an increase in the energy of 
the excited states with K1r = o•. Thus, the coherent 
effect that leads to a lowering of the energy of the 

X i+Xpi _ _!__ 
n 2x 

Vni vi p 

1 Vni ~ 28 (s) ~. 0 
s 

vi 1 
0 ~ 28 (v) ~. p 

v . 

2 2 
Wni ~ u. - v. 0 

~. 
8 

2 2 
wi 0 ~Uv - V., p 

~v 
v 

where we put 

and 

X i _ ..._,I (ss')2 u •• ~ 
" n - ""-l Q (ss') ' 

ss' 

(9a) 

We note that in the case when f(ss') = f0 the 
diagonal terms drop out from (9). In this case 
therefore the energy of the excited state with K1r 
= o• does not depend on the diagonal terms, in 
agreement with the reasoning presented above. The 
role of the diagonal matrix elements in (9) was 
greatly reduced compared with (8). 

The wave functions for the states with K1r = o• 
can be easily obtained by using the following ex-

. .., i d i presswns .LOr gss' an Wss': 

a ~ = V2 {I (ss') u ••. - {) , 2Cn r ni (s)} 
""" YZni + Zpi Q (ss') ss 48 (s)2- ffi;2 Yni ' 

(10) 

; V2 { I (ss') u ••• ffii 
Wss' = YZni + Zpi [8 (s) + 8 (s'W- ffii2 

_ {)... ffiiCn r n; (s) _a •.. _S;_ ~,.i} (ll) 
8 (s)! 48 (s)2 - ffii2 ) Yni 8 (s) (J)i r ni 

and analogous expressions for the proton system, 
with 

states with K1r = o•, relative to the nearest pole 
of the secular equation, is connected essentially 
with the off-diagonal matrix elements of the 
quadrupole -moment operator. From these argu
ments we see that the calculations of Wi from (8) 
are very inaccurate. 

A method proposed in [4] for eliminating the 
ghost states makes it possible to improve greatly 
the approximation considered above. The secular 
equation has in this case a more complicated form, 
namely (for K~> = K~}> = K~~ = K ): 

Wni wi p 

2 2 
~Us - V 8 0 
.;..J ~. 
s 

0 ~u}- v} 
~v = 0; 

v 

(1)·2- 4C 2 '\1 l n 0 
.;..J 28(s)~. 

8 

ffi;2- 4Cp2 
0 ~ 28 (v) ~v (9) v 

X 4 [E (s2')- A.n][E (s2)- A.n] - 4 (E (s)- A.nJ!E(s2)-A.n) 
8 (s2 ') [ 48 (s2')2- ffii2 ] 

+ 4 [ E (s) - A.,.] [E (s2')- A.n] + 4C,.2- ffii2 

8 (s2') [ 48 (s2')2 - ffii2 ] ' 

i 4 [E (s) - A.n] [E (s') - A.n] + 4Cn2-ffi;2 
Yn = ~ 8 (s) [ 48 (s)2 - roi2 ] 8 (s') [ 48 (s')2- ffii2 ] ' 

£i-'\.1 l(ss) 
n - ~ 8 (s) [48 (s)2 - ffi; 2] 

X _4_C...:..::n2 __ ffi..::..;2_+~4~[E~(s!..,) .--A....:..::".:....:][;.,.E__.!(_s'!..._) _A.~n] 
8 (s') [ 48 (s') 2 - ffi;2 ] 

The roots of the secular equation (9) were ob
tained, as for (4), with an electronic computer. A 
determinant of sixth order was expanded (the pro
gram was set up for the general case of arbitrary 
values of Kn, Kp, and Knp) and was so that the 
dependence on Kn, Kp, and Knp became explicit. 
The first root was then sought in the interval from 
w = 0 to the nearest pole Xn(w) and Xp(w), the 
second root between the first and second poles, 
etc. The roots were obtained by dividing the seg-
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w, MeV 

1.5 2 

1.0 

0.5 0 

FIG. 1. Energies of {3- and y-vibrational states 
for K( 2 ) = lOA-"'!, flw~ = 410A-% MeV. Points- ex
perimental data (0-Krr = o+. •-Krr = 2+), hori
zontal segments- calculated data (the value of K 
is indicated, the parity is positive everywhere). 

srr:s• G~ss Gd16D Dy1sD D~1s• Etss Er Yb7o y67s Hf118 W16Z 

Gd1s• Gd1sa Dy158 D~16Z Efs" Er1ss Ybss Ybm Hls '-'/so 

W,MeV 

1.5 

!O z-

0.5 

T~Z8 rt{3Z u234 u238 Pu238 Pu24Z crri'6 cl'B Frri'z 
T~JO um u236 PuZ36 Pu240 cnt' Cf2'6 CfZIO FmZ54 

FIG. 2. Energies of {3- and y-vibrational states for K( 2 ) 

= 12A-"'I, fiw~ = 480 A-% MeV. Notation the same as in Fig. 1. 

ment in two, and eleven iterations were used to 
find the root with accuracy 10-4• 

5. Calculations of the energies of the {3- and y
vibrational states and of the reduced probabilities 
of the electromagnetic transitions were made in 
both regions of strongly-deformed nuclei; 152 ~A 
~ 186 and 228 ~A ~ 254. The wave functions and 
the Nilsson potential single -particle level schemes 
were used in the calculations [10]. All the calcula
tions in the region 152 ~A ~ 186 were made with 
the wave functions for a deformation 6 = 0.3, while 
in the region 228 ~ A ~ 254 -for 6 = 0.2 and with 
the same single -particle level scheme in the neu
tron (proton) system for each nucleus in each re
gion. In order to make the calculations most unam
biguous, no account was taken of the changes in the 
nuclear deformations. Consequently the accuracy 
of the calculations became worse near the bounda
ries of the regions of the strongly deformed nuclei, 
because the equilibrium deformation changed but 
not the behavior of the single-particle levels of the 
average field. The single-particle level schemes 
of the average fields, the values of the correlation 
functions, and the chemical potentials used in the 
present calculations are given in [8]. We note that 
the correlation functions and the chemical poten
tials were obtained earlier in [ 11 , 12 ] 

The quadrupole-quadrupole interaction constant 
I{ is chosen such as to obtain the best agreement 
between the calculated energies of the states with 
Krr = 2+ and the corresponding experimental data. 
The value of K depends on the number of transi
tions in (4). We took into account all the transi
tions between the single-particle states given in 
[ 8] -approximately 100-120 transitions each. We 
note that the calculated energies ofthe {3- and y-vibra
tional states do not depend on the number of tran
sitions in Eqs. (4) or (9) if a sufficiently large 
number of transitions is taken. If, following 
Belyaev [3], we assume that 

x = kA-'Iehw0° = k'A-'f, MeV, 

then we cannot choose the same value of k for 
both regions of strongly-deformed nuclei. Thus, 
in the region 152 ~A ~ 186 we have k = 10, while 
in the region 228 ~A ~ 254 we have k = 12. There 
is no doubt that by increasing the number of tran
sitions in the region to 228 ~A ~ 254 we can ob
tain the same value of k for both regions. We note 
that when K = 1. 8 A - 1 nw~ a sufficiently good agree
ment is obtained between the calculated energies of 
the collective states and the experimental data in 
both regions. 

If the {3 -vibrational state energies are calcu
lated in accordance with (8), then to obtain even 
crude agreement with experiment it is necessary 
to introduce two values of K: one to describe the 
energies of the {3 oscillations, and the other for 
the y oscillations. 

6. Let us discuss the results of the energy cal
culations for the lowest states with IKrr = oo+ and 
IKrr = 22+. The calculated energies of these states 
and the corresponding experimental data are shown 
in Figs. 1 and 2. The experimental values of ener
gies were taken from [11 , 13 •14 ], etc. 

In the region 154 ~A ~ 182, the calculated en
ergies of the states with Krr = 2+ agree sufficiently 
well with the experimental data. An exception is 
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w182 , owing to the change in the deformation. How
ever, if we take K = SA -4/3 nw~ we obtain 1. 2 MeV 
for the energy of the state W182 with K1r = 2+ and 
approximately 1 MeV for w184• If we choose K 

= llA -4/ 3 nw~, then the agreement between theory 
and experiment for Er166 , Er168, and all the iso
topes of Yb is very good, but for the Dy isotopes 
the calculated energies of the 2+ states lie much 
lower than the experimental values. 

The agreement between the calculated energies 
of the o+ states with the experimental data is sat
isfactory. Exceptions are the isotopes of Hf and 
W, in which the energies of the o+ states are quite 
close to the values of the corresponding poles, so 
that account must be taken of the blocking effectC 15], 
which in this case plays a large role. If we take 
this effect into account, good agreement with ex
periment can be obtained also for the Hf and W 

isotopes. 
An interesting question is that of the relative 

behavior of the energies of the (3- and y-vibra
tional states. According to our calculations, the 
energies of the states with K1r = 2+ are consider
ably lower than the energies of the states with K1r 
= 0+ for the Dy and Er isotopes. The drop in the 
energies of the y-vibrational states below the en
ergies of the f3 -vibrational states is determined by 
the behavior of the levels of the average field and 
the corresponding wave functions. This drop is in 
full agreement with the experimental data and is 
explained theoretically here for the first time. 

An investigation of the structure of the collec
tive state will be dealt with in the next paper. How
ever, getting somewhat ahead of ourselves, we 
note that most of the lowest states with K1r = 2+ 
possess clearly pronounced collective properties. 
Thus, for Er166 , each of the four two -quasiparticle 
states contributes from 16 to 32% to the collective 
state with K1r = 2+. In many cases the lowest states 
with K1r = 2+ are close to two-quasiparticle states. 
Thus, for Yb172 the wave function of the lowest 
state with K1r = 2+ contains a contribution equal 
to 97.6% of the two -quasiparticle neutron state 
% + [512] - 1/2 + [521]. Inasmuch as the admixtures 
of the other states make up less than 3%, this state 
is very close to the two-quasiparticle one, thus 
confirming the results previously obtained in [ll]. 
However, Yb172 should have a second state with 
K1r = 2+, lying 200-400 keV higher than the first 
and having collective properties. 

The results of the calculations of the energies 
of the (3- and y-vibrational states in the region 
228 ::S A ::S 254 and the corresponding experimental 
data are shown in Fig. 2. The calculated energies 
of the states with K1r = 2+ are in sufficiently good 

agreement with the corresponding experimental 
data. The discrepancy in Pu240 is connected with 
the fact that no account is taken of the blocking 
effect, and if account is taken of this effect, the 
two-quasiparticle state with K1r = 2 + has an energy 
0.9 MeV, in accordance with l 12 J. The excessively 
strong decrease in the states with K1r = 2+ for 
Cf250 and Fm 254 is due to the very large matrix 
element of the transition between the states '/2 + [613] 
and %+[611]. If we increase the number of transi
tions, the positions of the 2+ levels in Cf220 and 
Fm254 and the behavior of the energies of the states 
with K1r = o+ should be more correct. The cross 
in Fig. 2 denotes the values of the energies of the 
states with K1r = 2+ for Cf25° Fm254 and Fm252 

calculated with K = llA -4/ 3 n~~- Th~ agreemen; 
between the calculations and the experimental data 
can be improved by foregoing the condition Kn = Kp 

= Knp· 

7. The reduced probabilities of the E2 transi
tions from the states K1r = 2+ to the ground states 
are calculated from the formula 

B (EZ) = 1.024A'1•.1Q-53 {e 'V [/ (ss') 2 + 7 (ss') 2 ] 11 ,,~ 
Y n + Y n + Y P + Y P eff:; Q (ss') 

+( + ) 'V [/(w')2 +f(w')2]uvi1 2 
e eeff f:j Q (vv') f (12) 

The reduced probabilities B ( E2) were calculated 
with ep = e + eeff, en = eeff, and eeff = 0. Se. In 
the cases for which there are experimental data[14J, 
the ratio of the probability of the E2 transition to 
its single-particle value, B(E2)/B(E2)s.p• was 
found to range from 1 to 4. Thus, for example, the 
ratio B(E2)/B(E2)s.p is equal to 2.8 for Dy160, 
3.2 for Dy162 , 3.6 for Dy 164 , 1. 7 for Th230 , 1.4 for 
U238 , etc. However, for the 1468-keV z+ state 
B(E2)/B(E2)s.p = 0.04 for Yb172, that is, 30-50 
times smaller than for the neighboring nuclei. 
This circumstance is an additional indication of 
the two-quasiparticle nature of this state, and the 
experimental determination of B ( E2), as well as 
the determination of the second state with K1r = z+ 
in Yb172 , would be highly desirable. 

The values we obtained for the energies of the 
states with K1r = z+ and for the ratios 
B(E2 )/B(E2 )s.p differ from the results of the 
calculations of Marshalek and Rasmussen[9] be
cause our calculations are consistently based on 
the superfluid model of the nucleus, whereas in [s] 

the phenomenological treatment of the unified 
model is combined with the microscopic approach 
of the superfluid model. This difference in approach 
is manifest, for example, in the choice of the 
quadrupole-interaction constant. Further, the dif-
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ference is connected with the fact that in [9] they 
investigated the asymptotic wave functions of the 
Nilsson potential, whereas we took the exact wave 
functions of the Nilsson potential. This difference 
lies not so much in the fact that the matrix ele
ments with the asymptotic wave functions have not 
been calculated with sufficient accuracy, but prin
cipally in the fact that a large number of poles of 
the secular equation (4) is lost when working with 
asymptotic wave functions. We note that in many 
cases nearby poles with even relatively small val
ues of the matrix element f( ss') and f ( ss') play 
a very important role. The difference in the values 
of B(E2 )/B(E2 )s.p is connected principally with 
the fact that the calculations of [9] were carried 
out with a formula that follows from the phenom
enological theory. 

8. Thus, the calculated values of the energies 
of the /3- and y-vibrational states are in sufficiently 
good agreement with the corresponding experimen
tal data for the same values of the quadrupole
interaction constants. The calculations show that 
in many cases the energies of the y-vibrational 
states lie below the {3-vibrational states, as for 
example in the middle of the 154 ::5 A ::5 182 re
gion. The behavior of the energies of the quadru
pole states is determined by the average field of 
the nucleus. In most cases the lowest states with 
Krr == 2+ and K1r == o+ possess clearly pronounced 
collective properties, and the values of the ener
gies of the states drop considerably relative to the 
nearest poles in the secular equations. In many 
cases the energies of the states with K1r == 2+ and 
K1r = o+ lie near the lowest poles, and their wave 
functions are close to two-quasiparticle ones. This 
was pointed out earlier[7J in a study of the behav
ior of the energies of octopole states with K1r == 0-. 

It must be noted that the calculation results de
pend greatly on the Nilsson potential wave func
tions. It is perfectly possible that some errors 
in the calculations are connected with shortcom
ings inherent in the Nilsson potential wave func
tions. However, the sufficiently good general agree
ment between the theory and experiment with re
spect to the energies of the states with K1r == 2+ and 
K1r == o+ is one more indication that it is possible 
to describe the average field of strongly deformed 
nuclei sufficiently well with the aid of the Nilsson 
potential. 

In conclusion we are deeply grateful to N. N. 
Bogolyubov and P. Fogel' for interesting discus
sions, and to K. M. Zheleznova and L. V. Korne1-
chuk for help with the numerical calculations. 
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