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The photodissociation of molecules in a strong (laser ) radiation field is considered for tiw 
< D 0, where D 0 is the dissociation energy. The mechanism of dissociation of polar diatomic 
molecules by strong buildup of their oscillations is analyzed in detail. The analysis is car­
ried out by perturbation theory, and the probabilities for two- and three -photon dissociation 
are calculated. Numerical estimates show that the dissociation process due to this mecha­
nism should be observable. 

}. In the action of a strong radiation field on atoms 
and molecules, processes of photo-ionization and 
photo-dissociation can become extremely probable 
even under the conditions tiw < I0 and tiw < D 0, 

where tiw is the magnitude of the quantum of ra­
diation and I0 and D 0 are the energies of ioniza­
tion and dissociation, respectively. The question 
of such a process of non-resonant photo-ionization 
of atoms was partially considered earlier. [t J The 
present paper is concerned with the study of the 
process of dissociation of molecules in the radia­
tion field of a ruby laser (or generation near to it 
in frequency); in this case tiw r:::; 1. 7 8 e V. In order 
to keep the theoretical analysis simple, we shall 
limit ourselves to a treatment of diatomic mole­
cules. 

Two mechanisms of photo -dissociation are pos­
sible. The first consists in the excitation of the 
molecule to an electronic term of repulsion with 
subsequent rapid decomposition of the molecule 
into atoms or ions. Until now such processes have 
been observed only in one-photon transitions in 
ultraviolet light (see, for example, [ZJ). Obviously, 
the type of molecular bond should have nothing to 
do with the probability of such a dissociation proc­
ess. 

The second dissociation mechanism, which will 
be considered below, on the other hand depends on 
whether the molecule is polar or homopolar. We 
have in mind a process of dissociation of the mole­
cule by means of a strong buildup of its vibrations 
or, in other words, by means of excitation of high 
vibrational states of the molecule with transition 
into the continuous spectrum. For existing radia­
tion densities such a buildup can be effective only 
for polar molecules that have appreciable infrared 
absorption spectra and is accomplished by the di-

rect interaction of the average (over the electronic 
state) electric dipole moment of the molecule J.1 ( r) 
( r is the internuclear spacing) with the electric 
field of the radiation ft 0 cos wt. For homopolar 
molecules such spectra are either absent entirely 
(if the molecule has a center of symmetry; J.-!(r) 
= 0 ) , or they have extremely weak intensity (if the 
effective charge e 1 = (dJ.-!/dr )r=re « e, where e 
is the electronic charge). In what follows we shall 
consider only polar molecules, for which the effec­
tive charge is not too small compared to the elec­
tronic charge. 1) 

2. The quantitative analysis presented below 
pertains to a model of the molecule that takes into 
account only its vibrational degree of freedom. The 
electronic state of the molecule in the vibration 
process is assumed only to change adiabatically 
with a change in the spacing r, which is allowed 
for by the dependence of the energy of this state 
on r. 

We consider the motion of a particle with re­
duced mass M = M1M2 /(M1 + M2 ), where M1 and 
M2 are the nuclear masses, under the influence of 
a perturbation with the operator - J.1 ( r ) ft 0 cos wt 
and in a potential field U 0 ( r ) representing the total 
energy of the molecule in its ground electronic 
state with a given internuclear separation r. The 
function u 0(r) has one minimum at r = re (we set 
U0(re) = 0) and at (r- re)---.. oo tends asymptoti-

l)We note that the division here adopted of molecules 
into polar or homopolar types on the basis of the magnitude 
of the effective charge is not uni versa!. This division is also 
made (see, for example,[']) on the basis of the character of 
asymptotic behavior of the function 11(r) as r -. =; in case 
JL(r)-. const x r, one speaks of a polar bond (the molecule dis­
sociates into ions), in case v(r) -. 0, one speaks of a homo­
polar bond (the molecule dissociates into atoms). 
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cally to the constant value De = D0 + E0, where E 0 

is the ground vibrational level of energy. Dissoci­
ation of the molecule corresponds to a transition 
of the particle to a state of the continuous energy 
spectrum which lies above the level De. In the 
states of the discrete spectrum the particle per­
forms anharmonic vibrations. In calculations we 
shall approximate the function U0(r) by the Morse 
potential [4,5]: 

x = r- r •. (1) 

The levels En are then determined by the formula 
(also obtained from second -order perturbation 
theory for the anharmonic oscillator) 

En = liw.(n + 112} - liw.x.(n + 112} 2, n = 0, 1, 

w.2 =! ( ~:~t=o = 
2a;:•, Xe = ~~:. (2) 

For the majority of molecules the quantity Xe 
is of the order 10-2• The ratio of the frequencies 
w/ we lies in the interval from several units to 
several tens, and thus the interaction of the mo­
lecular vibrations with the radiation field f80 cos wt 
is possible only because of the anharmonic charac­
ter of the vibrations, which allows transitions with 
I An I > 1. In the case of interest to us, liw < D0, 

the transition of the particle to the continuous spec­
trum (dissociation of the molecule ) is possible 
only as a result of a multi-photon process. The 
dissociation energies Do of the majority of di­
atomic molecules are in the interval 2-5 eV, i.e., 
they are spanned by two or three quanta liw. In 
what follows we shall assume that at the initial 
moment (prior to exposure) the molecule is in the 
ground vibrational state n = 0 and accordingly cal­
culate the probabilities of two- and three -photon 
processes of dissociation. 

The intensity of the transitions is determined 
by the matrix elements of the average dipole mo­
ment of the molecule 

+oo 
f.lnm = ~ 'ljln• (x) f.1 (re + x) 'ljlm (x) dx, (3) 

-00 

where 1/Jn ( x ) are the eigenfunctions of the one­
dimensional motion of the particle in the potential 
well U(x), which have the formC4•5J 

'ljln(x) = Nn exp{-fle-<>x} (2fle-<>X)~-n-'"Ln(2~-2n-1)(2fle-«X), 

Nn-z=__!_~ ~ (-i)s+r(2~-n-1) (2~-n-1) 
ot•=Or=o n-s n-r 

X n(n- 1) .. . (s + 1)n(n- 1) .. . (r + 1) 

X r {2fl - 2n - 1 + s + r); 

f1 = "f2MD. I ali. (4) 

In these equations LW) (x) is a generalized La­
guerre polynomial, and r (x) is the gamma func­
tion. 

Substitution of (4) in (3) leads to an integral 
which is easily calculated by the saddle-point 
method. For this we separate the factor 
exp [ - 2{3 ( e -ax+ ax)] from the integrand and 
observe that the parameter f3 is always of order 
102• Then the remaining part of the integrand for 
not too great values of the sum ( n + m ) (not ex­
ceeding, for example, twenty) is a slowly-varying 
function. Leaving only the first non-vanishing 
term of the expansion in powers of 1/ f3 arising 
in the saddle-point method (see, for example,C6J), 
we obtain 2> 

- N N Jf rt/2 (2rl)213-'f,-n-m -213 f.lnm- n• mel or.2 1-' e 

X {[ 2 (n + m) + 3 + ::] L~f3-2n-l) L<;;.f3-zm-l) 

+ 4~ [nL~~~2n) L<;;.{3-2m-l) + mL~{3-2n-1) L<;;.~].2m)) }· (5) 

In this equation the value of the argument of the 
Laguerre polynomial equals ( 2{3); the polynomial 
with negative lower index should be considered to 
be identically equal to zero. From Eq. (5), in par­
ticular, it is seen that if the condition 

if fulfilled, then the intensity of the transition 
n - m depends weakly on the curvature of the 
function J.l. ( r ) and consequently also on its asym­
ptotic behavior for large r (see first footnote). 
We assume that this condition is fulfilled and ac­
cordingly do not take account of the contribution 
from the term ~ Ji.". A numerical calculation from 
Eq. (5), for example, of the matrix elements J-1.5 0 

and J-1. 10 , 5 with e 1 ~ e and a ~ 108 em - 1 gives ' 
3.8 x 10-3 and 2 x 10-3 D. 

For transition from the discrete spectrum to 
the continuous one with energy E = En + liw > De 
it is necessary to understand by the function 1/Jm (x) 
in (3) the corresponding function of the continuum 
¢E(x ). As is well known, we may with high accu­
racy use a semiclassical approximation for this 
function, i.e., a plane wave with variable momen­
tum p(x) = [ 2M(E- U(x))] 112• For our purposes, 
however, the form of the function ¢E(x) can be 
simplified still further by considering that the 
principal contribution to the integral (3) is due 
to the neighborhood of points x that satisfy the 
condition U(x) =En= E -liw (in this neighborhood 

2lln calculating the integral (3), the function /l(re+ x) was 
expanded in powers of x; e, = (diJ./dr)r =rei /l, = (d21J./dr2)r =re' 
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the function of the discrete spectrum IJ!n (x) has 
maximum oscillation amplitudes). Namely, the 
momentum in the plane wave IJ!E (x) can be con­
sidered as constant and equal to p1 

= [2M( E- En )] 112 = ( 2Mfiw )112, i.e., we can place 
IJ!E ( x) = L - 112 exp (ip1x/fi) ( L is an arbitrary 
length; normalization to unity is assumed). For 
the calculation of the integral (3) for a transition 
to the continuous spectrum it is also perfectly 
permissible for our estimates to take, in place 
of the function IJ!n ( x), the corresponding function 
of the linear oscillator 

¢n<0>(x) = C,e-x'/2<1'Hn(X I cr), 

where Hn ( ~ ) is an Hermite polynomial, a 2 

= fi/Mwe. Then we obtain 

00 

XnE = Cn ~ e-x'f2a' Hn (xla) eip,x/11 xdx 
-00 

We observe that the quantity XnE has the dimen­
sions of (length )312• Numerical calculation from 
this formula for n = 5 (w/we f'::j 5), M"" 10-23 g 
gives (x5,E )2 f'::j 5 x 10-28 cm3• 

(6) 

3. The probability of the dissociation process 
will depend essentially on whether or not there is 
a resonant transition in the discrete vibration 
spectrum (2). In the case of a two-photon process 
it is a question only of the resonance of the first 
transition. The transition should be considered 
resonant if in the spectrum (2) there is a level n 
satisfying the condition 

(w- Wn, o)2~ (!Ln, o (go I li) 2, Wn, o = (En- Eo) I li. (8) 

When this condition is fulfilled the probability 
of finding a particle in the state n must be consid­
ered different from zero even in the zeroth approx­
imation of the perturbation ( - J.l jg 0 cos wt) and os­
cillating as sin2 (l-In, 0 jg 0 I 2fi )t between zero and 
one. [5) It follows immediately from this that the 
probability of two-photon dissociation W~2Js in this 
case is determined to within a factor of order unity 
by the transition probability Wn-E under the influ­
ence of the perturbation (-!-!Eo cos wt) from state 
n of the discrete spectrum to state E of the con­
tinuous spectrum; the latter is expressed by the 
well-known formula[5J 

W n-+E = 2nfi-ll F nE I2P (Pt2 I 2M) 

= 2n1i-1 1112!LnE(gol 2p(1iw), (9) 

where p(E) is the density of states of the free one­
dimensional motion of the particles, equal to 
(L/27rh)(M/2E) 1/ 2• Substituting p(E) in Eq. (9) 
and using (7), we obtain 

W n-+E = (M I 21iw) '/, (etXnE (go I 21i)2. (10) 

Obviously, when Wn -E » 1-!n,o tg0 /fi the probability 
W~2Js precisely equals Wn-E· In the opposite 
case, Wn .... E « l-In 0 jg 0 /fi, the total probability that 
the particle stays 'in level n equals 1/ 2 and there­

fore W~2Js = 1J2 Wn-E· 
For (XnE )2 f'::j 1o-28 cm3 , M f'::j 10-23 g, tg0 f'::j 3 

x 10 7 VI em (this corresponds to a laser power of 
P f'::j 200 MW focused on a spot 0.1 mm in diam­
eter), e 1 ~ e, Eq. (10) gives W~2Js f'::j 5 x 1010 

sec-1• For tg0 f'::j 3 x 106V/cm (P f'::j 2 MW) we 
have W~~s f'::j 5 x 108 sec-1• 

If the resonance condition (8) is not fulfilled, 
then the amplitude of the probability of the par­
ticle staying in the excited state n is different 
from zero only in the first approximation of per­
turbation theory and equals [5] 

(l) _ !Ln,ojgo 1 - exp {- i (w- Wn,o) t} . (11) 
an --2.., ' t• (J)- Wn,o 

then there occurs excitation of the entire series of 
states n with a larger probability, the larger the 
ratio J.ln,o /I w- wn,o 1. For simplicity, we shall 
consider only one dissociation path, by fixing on 
a specific value of n corresponding to the maxi­
mum value of J.ln,o/1 w- wn,o 1. In this way we ob­
tain a lower bound for the dissociation probability. 

Substitution of Eq. (11) into the equation giving 
the amplitude of the probability a~>(t) of the pe­
riod of the particle in a state of the continuous 
spectrum with energy E gives, in second-order 
perturbation theory (see [5]) 

aE(2) (t) = _!_ jg02 [exp {i (co En+ Wn, 0 - 2w) t} 
]i2 4 llnE lln,o i (w - w ) n,o 

_ exp {i (WEn- w) t}] 
i(W-Wn,o) · 

Solving this equation for the condition a~> ( 0) = 0, 
forming the square of the modulus I a~>(t)l 2 , and 
integrating as always over the states of the con­
tinuous spectrum that satisfy the energy conser­
vation law E = En + fiw, we obtain for the disso­
ciation probability per unit time 

W. (2) = l/ M (e1--;;nE (go ) 2 
( lln.o fb'o ) 2 

(12) 
nonres ~ 81iw 27i 7i~w1 

The quantity ~w1 = I w - Wn 0 I obviously does 
' 3 not exceed wn+t,n/2. For J.ln,o"' 10- D, ~w1 /27r 

"" 1013 cps, and power P f'::j 200 MW, the factor 

(13) 
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and the probability wgJnres ~ 107 sec-1• 

For a power P ~ 2MW the probability W~2Jnres 
~ 103 sec-1• 

The equations determining w<3 > for the three­
photon process of dissociation are obtained in 
analogous fashion. In this case, when both tran­
sitions in the discrete spectrum are resonant 
(i.e., condition (8) and one analogous to it for 
transition from state n to state m are fulfilled), 
the dissociation probability is determined in the 
same way 3> from the probability Wn-E (Eq. (10)) 
as is W~2Js· If only one transition (e.g., the sec­
ond, from n to m )4> is resonant, then, as calcu­
lation shows, the probability w<3> is determined 
by Eq. (12) with a factor %. 

In this case, when both transitions in the dis­
crete spectrum ( 0 --n --m) are nonresonant, the 
usual solution of the equations of successive ap­
proximations for the amplitudes an ( t ) and a E ( t) 
leads to the following result (again an upper esti-

3)This is valid generally for an n-photon process if all 
transitions in the discrete spectrum are resonant. 

4 )Incidentally, since with increasing n the energy levels 
condense, while the matrix elements P.n,m for given In- m I 
do not decrease, the condition (8) becomes more easily ful­
filled with increasing n. 

mate in the sense indicated above ) : 

Vli'Ca> = ~ ( M )'/, ( elxnEEto) 2 (lln,o Eto) 2 (f.tnmEto) 2 

nonres 16 Bnw 2n li,1w1 n,1w2 ' (14) 

,1w2 = I ffi - Wmn I· 
We can see from this that the process of nonreso­
nant three -photon dissociation has a low probabil­
ity for the values of the field E 0 considered above. 
However, since w:tJnres "' t%'3, then in a field ft 0 

~ 3 x 108 V /em (such as will exist, for example, 
in focusing a power P ~ 200 MW on a spot 0.01 
mm in diameter), the probability w~Jnres ~ 109 

sec-1• 
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