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It is shown that it is impossible, without violating the unitarity condition <I azl :s 1) in three 
channels, to add to the two-particle amplitude satisfying the unitarity condition any functions 
that possess in the finite part of complex space singularities with respect to only one vari­
able (s, t, or u) and grow more slowly than an exponential function at infinity, the only ex­
ceptions being terms corresponding to S and P waves in the three channels. This signifies 
that those amplitude parts which possess in the finite part of space only single-variable sin­
gularities are determined by that part which contains singularities with respect to two vari­
ables. As an example, an expression is derived for the single integrals and subtraction 
polynomial of the Mandelstam representation in terms of double spectral functions. 

}. The unitarity condition interrelates the singu­
larities of the amplitude of a two-particle reac­
tion, in the sense that if the amplitude has certain 
singularities, then the unitarity condition stipu­
lates that it must also have others. The opinion 
was advanced [t] that perhaps by specifying some 
of the simplest singularities (poles) it is possible 
to determine the remaining singularities with the 
aid of the unitarity condition. 

We shall discuss in this paper the connection 
between the amplitude singularities in two vari­
ables and the single -variable singularities, and 
the connection between parts of the amplitude 
which have only single -variable ( s, t, or u) sin­
gularities in the finite part of the complex space 
and the part having singularities in two variables. 
It will be shown that if the former increase at in­
finity (over a large circle in the complex plane ) 
at a rate slower than exponential, then the unitar­
ity condition <I azl :s 1) requires that they be ex­
pressible in a part containing two-variable singu­
larities, accurate to terms corresponding to S and 
P waves in three channels. In particular, the only 
entire function satisfying the unitarity condition 
and increasing at infinity more slowly than an ex­
ponential function is a constant. This connection is 
obtained from an examination of the behavior of the 
amplitude in the vicinity of an infinitely remote 
point, and does not depend on the properties of the 
amplitude in the finite part of the complex space. 
The requirement that the amplitude increase in the 
vicinity of an infinitely remote point more slowly 
than exponential is necessary in order for the lim-

itations that the unitarity condition imposes on the 
growth of the amplitude in the physical region (to 
the right and to the left on the real axis) be oblig­
atory also on approaching infinity from any direc­
tion in the complex plane. 

The result obtained is a certain generalization 
of that of Froissart [2], who showed that the differ­
ence between two amplitudes with power-law bounds 
at infinity and satisfying the Mandelstam represen­
tation is equal to a constant and to six single inte­
grals corresponding to the S and P waves in three 
channels, i.e., it is impossible to add to the am­
plitude a finite sum of single integrals and a poly­
nomial, other than those indicated above. 

2. Let A and A' be two two-particle reaction 
amplitudes having the following properties: 

a) They satisfy the condition of unitarity in three 
channels in the form I az I :s 1. 

b) They increase more slowly than any exponen­
tial at infinity (over a large circle in the complex 
plane): 

lA I < C(a) exp (alsl + altl) 

for all a > 0. 
c) They have identical two-variable singulari­

ties in the finite part of the complex space, i.e., 
their difference is a sum of entire functions of 
one variable: 

00 00 

~A = A- A' = ~ tPfps (s) + ~ uPfpt (t) 
p=O p=O 

00 00 

+ ~ sPfpu (u) + ~ tPuqe5pq; 
p=O p, q=O 

127 

(1) 



128 E. I. MALKOV 

d) With regard to the analyticity of the ampli­
tudes in the energy, we shall assume that in a suf­
ficiently small vicinity of an infinitely remote point 
all the singularities lie on the real axis, and the 
amplitude is analytic in z within a Mandelstam 
ellipse with semiaxis z0 = 1 + t/2q~. 

Under all the four foregoing conditions, the only 
nonvanishing terms in the sums (1) are those cor­
responding to S and P waves, i.e., terms with 
p ~ 1, while in the last sum-the term with p = q 
= 0. Let us regard Mas a function oft (or u) 
with s = const < 0. For the asymptotic behavior 
of the amplitude on the real axis in the t channel 
we have the limitation[3, 2] 

lA I < Ctln2 IA I max, (2) 

where I A I max -maximum value of the amplitude 
on the Mandelstam ellipse. Using the limitation b), 
we obtain 

(3) 

A similar estimate takes place on the left cut, 
corresponding to the physical region of the u chan­
nel. Consequently, on a large circle surrounding 
infinity !:::.A increases with increasing radius more 
slowly than exponentially, while along two radii (to 
the right and to the left along the real axis) it in­
creases more slowly than t cubed. Such a function 
should increase more slowly than Ct3 in any di­
rection [4]. It follows from condition (3) that the 
jump on the cut increases more slowly than t3, so 
that the sum 

00 00 

~ uPfvt (t) + ~ sPfvu (u) 
p~o p~o 

can be broken up into two terms, one bounded in 
the vicinity of an infinitely remote point by the 
quantity t 3•E, and the other an entire function, 
which we include in the last term of formula (1). 

We rewrite (1) in the form 
00 00 

~A - ~ uPj' pt (t) - ~ sPf' vu (u) 
v~o r1~o 

co 00 

= ~ tr1 [Ips + ~ uqcr'pq]. 
p~o q~o 

(4) 

The function is bounded from the left in the vicinity 
of the infinitely remote point by the quantity t3•E, 
and consequently the entire function on the right is 
bounded by the same value, meaning that it is a 
polynomial of third degree in t: 

co co 

~A=~ uPj'pt (t) + ~ sPf'pu (u) 
p~o p~o 

3 3 co 

+ ~ tPfps (s) + ~ tP 2J uqcr'pq· (5) 
p~o p~o q~o 

If we consider the quantity !:::.A with t = const 
< 0 and u = const < 0 in similar fashion, we obtain 

a p+q~a 

~A = 2J tPj' ps (s) + Pstu + 2J tP uqcr;q. (6) 
p~o p, q~o 

It then follows from condition (3) that I fpt ( t) I 
< t 3+ E, meaning that !:::.A is bounded for all values 
of the variables by some power of t. We now re­
peat the initial arguments presented and impose a 
power-law bound on the amplitude difference in 
place of an exponential bound. As a result we ob­
tain 

1 

~A=~ tpf'ps(s)+Pstu+C, (7) 
p~o 

which is the sought result. 
At a fixed angle we can obtain for !:::.A an esti­

mate analogous to that obtained by Kinoshita et 
al. [5]: I !:::.A I < ce-2 ln312 t. Using this estimate 
for the functions fpt• we obtain 

If' pt I < Ct-P ln'f, t. (8) 

fps and fl:m are analogously bounded. 
We now consider a less general case, when the 

analytic properties of the amplitude in a finite part 
of the space are given by the Mandelstam rules, 
i.e., part of the amplitude containing the singular­
ities with respect to two variables is a double in­
tegral with double spectral functions, with a power­
law bound at infinity (I Pstl < csN-Etn-E, etc.), 
and the part of the function having a singularity in 
the finite part of the complex space with respect 
to only one variable comprises a set of series of 
single integrals (in general, infinite, but converg­
ing on the entire plane ) and an entire function. 

We shall show that under a supplementary limi­
tation on the two absorption parts (for example 
At and Au ) in the form 

I A t1 < c (e) exp [ d 1 s 1 + 1 t 1) '/, ln ( 1 s 1 + 1 t 1) J (9) 

for all E > 0, the series of the single integrals are 
finite sums, and the entire function is a polynomial. 

4. We shall show first that it follows from the 
unitarity condition and from the limitations b) and 
(9) that the functions At and Au have a power-law 
bound for any fixed s. The absorption parts are 
equal to the sum of the integrals of double spectral 
functions over the cuts plus an entire function s. 
The fact that the integrals over the cuts are 
bounded by a power of t ( u ) follows from the 
power-law boundedness of the double functions, 
so that it is necessary to prove only that the en­
tire function is bounded. We denote the entire 
function s in At by Af. We can write for it the 
following partial-wave expansion: 
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t'l• 00 

At'= 2 ~ (2l + 1) Im a/ (t) P1 (z 1). 

qt l=O 

(10) 

The reasoning is carried out in the usual man­
ner: for l < Zeff the partial waves are bounded by 
the unitarity conditions, and for l > Zeff they are 
cut off because of the analyticity in zt, and rep­
resent an exponentially decreasing tail. 

It follows from the unitarity condition that the 
Im az are bounded by a power of t: 

I Im at' I< I Im ac] 

(11) 

The first term in (11) is bounded by the unitarity 
condition (I azl ~ 1 ), while the second is bounded 
by virtue of the boundedness of the double func­
tions (Pst etc.) and the Legendre function 

( :n: )''•I z + (z2 -1)''•')-<l+'!.) 
IQc(z)l< 2f 11-z2)'1• . (12) 

As a result we have 

' Ct2N-E' Ct2N+1/,-E' 

I Im at I< 1 + z'l•l Zo + (zo2-1)'''1l+'l•l1-zo2!'/, < z'l• ' 
(13) 

where z0 -lower integration limit in (11). 
For large Z, the partial waves are cut off by 

the condition of analyticity in z and by the bound­
edness of At as t-oo, which follows from (9). 
It is obvious that Af satisfies the condition (9), 
since the integrals along the cuts have a power­
law bound: 

I Im a/ I= ).1~qt . ~ At' (t, z1) Q1 (z1) dz1 I 
t • 2:n:z z' 

< c exp 1 e (I s I + I t I) •;, In (I s I + I t I) 
z'1•j z' + (z'2 -1)'1• ll+'!. 11 - z'2)'1• • 

(14) 

The integral in (14) is taken over an ellipse with 
major semiaxis z' which does not depend on t. 
From this we see that 

lerf = et'/, ln t. (15) 

We can now estimate the sum (10). For Legendre 
polynomials we use the bound 

We have 

At' l < c ~: (2l + 1) t
2;;-e·11 + 2: 12 +[ ( 1 + 2~~2) 2-ir r 

1
eff I 'I 'l < Ct2N+'/,-E' Vlerf ~ 1 + ~ 

l=O qt 

< Ct2N+l-•' exp [e·s'I.Jn t]. (16) 

For any finite s we can take an E sufficiently 
small so that 

jAt'J < Ct2N+1-en 

for any s; analogously we obtain for the entire 
part of Au 

IAu'l < Cu2N+t-en. 

5. From the results given in Sec. 4 it follows 
that for any s the amplitude can be represented 
in the form 

t2N+l ~ A dt' u2N+l ~ Audu' A=- t + 
n {2N+I (t'- t) -:n:- u'2N+l (u' - u) 

(17) 

In the last sum the only nonvanishing ap ( s) are 
those with p ~ 2N. Indeed, when s = const < 0 
A is bounded in the vicinity of an infinitely remote 
point by the quantity t3, as already shown for the 
general case (3). The integrals in (17) increase 
more slowly than t 2N+t-E as t tends to infinity 
from any direction in the complex plane t. There­
fore with increasing radius of the large circle in 
the complex plane t, the entire function in (17) 
likewise increases more slowly than t 2N+t-E, and 
this means that this function is a polynomial of 
degree 2N. 

If we now calculate from (17) the absorption 
part in the s channel, we see that the entire func­
tion in this part is a polynomial of degree 2N. 

Indeed, the integral of Af over the right cut is 
a uniformly converging integral of the entire func­
tion s, and consequently makes no contribution to 
As; analogously, the integral of A~ over the left 
cut makes no contribution to As. We therefore 
have for the absorption part As 

t2N+I ~ p dt' u2N+I ~ p du' A _ _ st + _ --;::-;;:~us--,--------. 
s- :n: t'2N+I (t'- t) :n: u'2N+l (u'- u) 

2N tN ~ p dt' uN ~ p du' + ~ tP da (s) = _ st + _ us p-=o P :n: {N (t'- t) :n: • -u"'N.-;-;-(u--:,--u-;-) 

- ~ !__ \' P~t dt' - ~ uP \' Pu.,du' + ~ tP da (s) 
4J :n: .j t P+l 4J :n: j U P+l 4J p 

p=N p=N p=O 

2N 

= As''+ ~ tPpps (s), (18) 
P=O 

where As denotes the first two integrals, and all 
the remaining terms are lumped in the sum over 
the powers of t. It is therefore clear that Pps ( s ) 
= 0 when p > 2N. This means in turn that all the 
single integrals of degree higher than 2N vanish. 

6. The unitarity condition imposes limitations 
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on the growth of Pps as s- co. Let us write down 
Eq. (18) for ( 2N + 1) values of the angle. We obtain 
a system of ( 2N + 1 ) linear equations with ( 2N + 1 ) 
unknowns Pps ( s) ( 2q§ )P [since t = 2q~ ( z - 1)]. 
Its solution is of the form 

1 2N 

p (s) = ~ [As (z;)- A." (z;)] ~pi, (19) 
ps (2q.2)P ~ i=O 

where .6.. -determinant of the system and .6..pi -
corresponding cofactor. It is obvious that the par­
tial waves As and A~ are equal when l > 2N, so 
that we can rewrite (19) in the form 

We represent the absorption part of the ampli­
tude in the t channel in the form 

s2N-p I Pst ds' s2N-p \' Putds' 
Ar =' -n-.) s'2N-p (s'- s) + -n- J s'2N P (s'- s) 

2N-p-1 s" d" I 
+ ~ kl-" At . 

k=o . ds •=o 
(22) 

The second integral in (22) increases with increas­
ing t no faster than tP-E. Indeed, 

~2N-p \' p1 du' I 
~ .l (1-t- ~',r-p(u'- u) 

<I s2:-P I tN-su'N-sdu! I / Ctp-s 
,. .l tN-pu'Niu'-u\ !' · 

(23) 

(20) Here we have used the limitation on the double 
spectral functions and the obvious inequality 

where As, 2N(A~,2N) -contribution of the first 2N 
partial waves to As(A~). Since A~= O(s2N-E), 

we have Pps = O(s2N-p-E ), and the unitarity con­
dition (iazl :$1) yields .6..Pps = 0(1/sP). Thus, 
the principal part in the asymptotic expression for 
Pps is Pps• which is expressed in terms of double 
spectral functions. We shall henceforth change the 
notation and take Pos and Pts to mean their prin­
cipal parts in the asymptotic expression, i.e., Pos 

and Pis· 
The total amplitude can therefore be written in 

the form 

{ sNt!\. ~ Pstds' dt' 
A = ~ ~ s'NfN (s'- s) (t'- t) 

2N s2N-p (' p ds' } 
+ ~ tP -n-J s'2N ~(s'- s) + Pstu + ~ tpsqppq 

p=O p, q 

{ 
1 81-p \ ~p ds' } 

+ ~ tP----;:[.) s'l-P (;, _ s) + Pstu . 
p=O 

(21) 

Let us consider the entire function contained in 
(21). When s = const < 0, it increases along the 
large circle of the complex plane t more slowly 
than t2N -E, and consequently this function is a 
polynomial in t of degree 2N -1, and Ppq = 0 
for p > 2N -1. If we consider (21) for u = const 
< 0, then analogous arguments yield Ppq = 0 for 
p + q :> 2N -1, i.e., the entire function in the am­
plitude is a polynomial, q.e.d. 

7. We now proceed to calculate the single inte­
grals and the subtraction polynomial in terms of 
the double spectral functions. We first prove some 
inequalities which we need in what follows. We 
wish to estimate integrals of the type 

82N-p ~ p ds' __ st (2<p<N-1)fors=const,t-oo. 
n • s'2N-p (s'- s) 

11- t- u'I2N-p > tN-Pu'N. 

(The sum of the squares of the masses of the ex­
ternal particles is set equal to unity: 

4 

~ m;2 = s + t + u = 1.) 
i=l 

We now estimate the derivatives of At, which 
enter in (22): 

(24) 

For the derivatives of Legendre polynomials we 
have the following bound [SJ: 

I ~P(z)J< _(Z+l.:)! \z+(z2 -1)'1'\1-", (25) 
dl l """" 2" /d (l - k)! 

hence 

I d"" P 1 (z)l < l2". 

dz z=l 

(26) 

The effective l iri the sum (24) is equal to eft x 
In t, and therefore 

!£._ A < -- "' l 2"+1 < C ~ = Ct ln2"+2 t I " I c l eff z2k~2 

dsk t S=O (2qt2)k ;::0 (2qt2)k 
(27) 

(this estimate holds true also for s < 0 ). 
We thus obtain 

s__ st = At + 0 (tP-•). 2N-p ~ p ds' 
n s'2N-p (s' - s) (28) 

Using the known bounds for At in the physical 
and in the unphysical regions of s [ 7 •2] 

\At!< {Ctln2 t, _ s<O' 
Ctl+(N-1) Ysf•o, S > 0 

(29) 
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we can rewrite (28) in the form 

I s2N-p \' Pstds' I 
-n-.l s'2N-P(s1 -s) 

( p -1 )2 
for s < sp = so N _ 1 {30) 
for s :;;;;.sP 

The other inequalities are obtained from (30) by 
permutations of Pstu· 

8. The subsequent reasoning is as follows: we 
take the Mandelstam representation, written in the 
usual form (21), and transform it algebraically in 
order to obtain a one-dimensional dispersion re­
lation, for example for fixed s ::5 0. This yields 
two dispersion integrals over the left and right 
cuts, written with two subtractions (I A I < Ct ln2 t 
in the t channel and I A I < Cu ln2 u in the u chan­
nel ) , and a polynomial in t. This polynomial is 
found to be of degree ( 2N -1 ) , but the limitation 
on the asymptotic behavior of the amplitude, which 
follows from the unitarity condition, requires van­
ishing of all the coefficients of the powers of t 
above the first. Equating the resultant expressions 
to zero, we obtain the sought-for connection of the 
single integrals of degree larger than first and the 
coefficients of the subtraction polynomial, Ppq with 
p > 1, with the double spectral functions. 

Relegating the cumbersome algebraic deriva­
tions to the appendix, we present the final result. 
For p ::::: N we have 

s2N-p \' Ppsds' 
ap (s) = -It- .l 812N-p (s1 _ s) 

2N-1-p 

+ 2J sqppq+P2N-1-p(s). 
q=O 

Equating this expression to zero, we get 

2N-1-P 

P = 0 for p:;;;;.N; ps "'V sqp = - P2N-1-p (s), L.l pq 
q=O 

i.e., only the single integrals of degree smaller 
than N differ from zero. For 2 ::5 p ::5 N -1 we 
have 

2N-1-p 

+ 2J sqppq + p2N-1-P (s). 
q=O 

( 1 - s')t-p Pus ds' 

s'2N-p (s' - s) 

The integrals in the right side converge when s 
< sp in accordance with (30). Equating (33) to 
zero, we obtain 

(31) 

(32) 

(33) 

s2N-p \' Pps ds' 82N-p \' dt' (' Ps_t~d~s~--,­
-lt- .l s'2N-p (sl- s) = -----;:{2 .l {rHl .\ s'2N-p (o'- s) 

8 z" -p \' ( u - . 11 ,, "· N-l( l) 1 1 ~ (·1 s")1-pp dsl 
+(-i)P~ 2J P, .lu'i+l, 8'2N-p(s'-s) ' 

l=P (34) 

which is the sought expression for the single inte­
grals in terms of double spectral functions. For 
the coefficients of the subtraction polynomial we 
get 

2N-1-P 

"'V sqp = - P2N-1-p (s). L.l pq (35) 
q=O 

Let us consider the expressions obtained for the 
single integrals. When s < sp these integrals con­
verge uniformly and the integrands are analytic 
functions of s. Consequently, the single integrals 
have no singularities in this region. When s > sp, 
the singularities of the obtained expressions are 
made up of singularities of the integrand function 
(cut along the real positive axis from s 0 to infi­
nity) and the singularities due to the behavior of 
the integrand at infinity. Under the integral signs 
of (34), on the other hand, we have the sum of the 
absorption part and the function (28) which con­
verges at infinity. Let, for example, the absorp­
tion part At behave at infinity like f(s)tl(s), 
where l ( s ) is a real growing function below the 
threshold s 0, which goes into the upper half plane 
when s > s 0• Then 

82N-p \' __r!!__ \' P81ds1 = s2N-p f (s) (' t'l(s)-p-1 dt' 
---;:t2 .l t'P+l .l s'2N-p (s'- s) n2 .l 

00 I) d I 8zN-p (' c; (s s 

+ ~ .l s'2N-p (s'- s) ' 
s, 

(36) 

where the first integral includes terms that grow 
at infinity, and the second includes the converging 
expressions. Integrating, we obtain from the first 
term 

szN-p 'l(s)-p I"" 1 f' (s) 
----;t2 f (s) t 1, l (s) - p = l (s)- P ' (37) 

where f' ( s ) is some function of s. 
When we move in the s plane to the right along 

the real axis, Z(s) increases, and if it passes 
through an integer point at some value s < s 0, the 
amplitude has a pole at this value of s. When s 
> s 0 the function Z(s) goes into the upper half­
plane, and at the values of s for which Re l ( s) 
is a positive integer we have resonance. In the 
amplitude this pole (resonance) is associated with 
tP( z~ ), flnd consequently has a momentum p. 

The inequality (30) establishes the lower bound 
of the mass of the particle with momentum p ::::: 2, 
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if the latter exists: 

( p -1 )2 
mp >so N _ 1 (38) 

If we advance the very likely hypothesis [l, 2] that 
a more stringent limitation than indicated by 
Froissart exists for the amplitudes of the inelastic 
processes and for the elastic backward-scattering 
amplitude, for example I A I < Ct1-E, and if such a 
situation obtains in the t and in the u channels, 
then the single first-degree integral in the s chan­
nel should also be expressed in terms of double 
spectral functions Pst and Psu in accordance with 
(34). There are grounds for assuming that the 
single first-degree integrals are always expressed 
in terms of the double functions, i.e., even if there 
is elastic forward scattering in the t and u chan­
nels. To this end it is merely necessary that a 
more stringent limitation exist for the real part 
of the amplitude than for the imaginary part, 
namely, I Re A I < EU for all E > 0, so long as 
u > u0( E). In order to obtain this expression, it 
is sufficient then to take the real part of (21) with 
s ~ 0, divide it by t, and let t go to infinity; we 
use here the reality of the single integral when 
s < 0. 

9. The integral (34) determines the single in­
tegrals in the regions s < St; analytic continuation 
is needed to find their values in other regions. The 
function represented by the integral (34) is, in ac­
cordance with the Mandelstam hypothesis, analytic 
in the entire plane except on the real positive axis, 
where it has a cut and may have poles. Obviously, 
if we find the jump on the cut (the poles give a 
jump equal to the o-function), then the Cauchy in­
tegral will provide the analytic continuation in the 
entire plane. 

We introduce an auxiliary variable y = 1 
- 2smin/s, where 0 < Smin < Sp, which varies 
from -1 to + 1 when s varies from Smin to in­
finity. We then represent Pps/s 2N-p-l in the form 
of a sum in Legendre polynomials (or some other 
orthogonal polynomials ) : 

Pvsfs2N-p-1 = cp (y) = ~ (2l + 1) arPr (y). (3 9) 

Then az can be expressed in the form of a finite 
sum of derivatives of the integral (34) with respect 
to s in the region s < sp. for example at the point 
s = 0. Indeed, 

1 1 

ar = 2 ~ cp (y) P1 (y) dy; 
-1 

we substitute here 
l 

Pr (y) = ~ ~rk/s'k 
k=O 

and go over to integration with respect to s': 

1 oo l R 2 l oo ' 
(' Pps 'V 1-'lk Smin d 1 'V R (' Ppsds 

CXr = 2 ~ s'2N-p-1 Ll s'k 8'2 s = Srnin Ll 1-'lk ,) s'2lV-p+l+k 

Sm.in. k=O k=O Smin 

r Prk d2N-v+k 
=-;;.,------,---~ ~:-;c;----cc 82N -P 

= Srnin 2} (2N- p + k)! ds2N-p+k 
k=O 

00 

X ~ 
Ppsds' I 

S'2N-p (s' - S) s=O • 

Substituting (34), we get 

l N-1 ([ 
:1 [ 1 (' dt' (' Pstds' (- 1 )P 'V ) 

CXr = Smin ~O ~lk Jt j t'P+1 j s'2N-p+l+k + --Jt- ~p p 

_ Smi': (' dt' (' _P_st_ p ( 1 _ 2smin \ d , 
- Jt j t'P+1 .l s'2N-p+1 1 s ) s 

XPr ( 1- Zs;in) ds'. 

(40) 

(41) 

10. We now calculate the coefficients of the sub­
traction polynomial. Formulas (32) and (35) give 
expressions for Ppq with p 2: 2 in terms of the 
double and single spectral functions. With the aid 
of a procedure analogous to that used in the cal­
culation, we can determine all the Ppq except p 01 , 

p 10 , and p00• To determine p 01 and p 10 it is not 
sufficient to use the limitation on the asymptotic 
value at fixed s, t, or u (lA I< s ln2 s), but it is 
necessary to use also the limitation for the fixed 
angle (lA I < ln312 s ). 

We now obtain an expression for the coefficients 
of the subtraction polynomial, suitable for all the 
Ppq (except p 00 ). To this end we rewrite (21) in 
the form 

A= A1 + ~ (1 - z)P (1 + z)q (- 2qu2rqppq + A2. (42) 
p,q 

We write this formula for ( 2N + 1 )N values of 
the angle zu and solve the obtained system of 
equations for Ppq: 

1 

(2lV+l)N 

X 2} [A(qu, Z;)-A1(qu, Zi)-A2(qu, Zi)~pq,;].(43) 
i=l 

For the function A2 we have the obvious limitation 
I A2 I < CuE for zu = const. Therefore if we now 
let qu go to infinity in this formula, then the terms 
with A and A2 will tend to zero, and we obtain 
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for all p and q except p = q = 0. 
From formulas (34) for the single integrals and 

(44) for the subtraction-polynomial coefficients we 
see that they are linearly related with the double 
spectral functions. 

In conclusion I wish to thank I. M. Shmushkevich 
for valuable remarks. 

APPENDIX 

The amplitude of the two-particle reaction for 
s ~ 0 should satisfy the one dimensional dispersion 
relation with two subtractions: 

t2 \ A 1dt' u 2 ·~ Audu' 
A = - ,2 ( , ) + - ,2 ( , ) + ao (s) + a1 (s) t 

Jt •• t t-t Jt u u-u 

=It+ I u + ao (s) + a 1 (s) t, 

where It and lu denote the integrals along the 
right and left cuts. 

(A.1) 

In order to obtain this dispersion relation from 
(21), we shall transform the individual terms in 
(21), breaking them down into sums of parts which 
will enter in It or Iu, and a polynomial in t. For 
the double integral of Pst we have 

sNtN \' Pstds'dt' 
Jt2 ~ s'Nf'N (s'- s) (t'- t) 

N-1 

~ __!__ \' d , [ t 2 _ ~ _!£'__ J sN (' Pstds' 
- n2~ t t' 2 (t'-t) P~2 t'P+l .\ s'N(s'-s) 

1 \ [ t 2sN \ Pstds' 
+n2 ~dt' t' 2 (t'-t).l s'N(s'-s) 

N-1 2N-p-1 

N-12N-p-1 N-1 l 
'\;1 '\:1 1 '\;1 ( ) 1 ~ Pusds' - LJ LJ fPsq (- )P LJ -- ---

p=O q~N 1~2 P u' l+1 s'q+I 

(A.3) 

The double integral of Ptu is first broken up 
into two by means of the equality 

1 -1 1 
(u'- u) (t'- t) = (t'- t) (s'- s) (u'- u) (s'- s) ' 

(A.4) 

and each of these is then broken up into a term 
representing the part It Ou) and a polynomial in 
t. As a result we get 

-- tu --\dt' tNuN ~ p dt'du' 1 " 
Jt2 t'Nu'N (t'- t) (u'- u)- Jt2 J 

[ t2 (1- S- t')N \ Ptudu' 
X t' 2 (t'- t) ~ u'N (u' -1 + s + t') 

+ 2)~1 2N~-l P q (' Ptudu' ~l (N) ( ')k 

P=; q7o t s ~ t'P+1s'q+Iu' N k7o k - s 

2N-p-q-1 N ~ J 
X n~o ( m c)(- t'(-k-m 

1 \ , [u2 (1- s- u')N \ Ptudt' 
+ Jt2 J du u'2 (u'-uf-.) ['N (l'- 1 + S + u') 

X k,~ (N)( m ) (2N-p-m-1) _1 N+q-n+m 

m:S:-q m k - q k - n - m ( ) 

1 
p (2) + .2] ~~2 ~ m (t- 1)2-m (1- s- u')N-1-p-m 

P=O m=O 

\' Ptudt' J 
X Jt'N (t'- 1 + S + u') . (A.5) 

An analogous breakdown of the sum of single inte-
_ 1 {Ps<J _ _s_l ·_ 1 ~ p ds'J 2J 2J. t'P+l s'q+I • 

(A.2) grals into parts yields 
p=2 q~l\ 

The first integral converges by virtue of the de­
rived inequality (26). In the second integral, the 
first term represents the part It, and the second 
is a polynomial in t and s. 

In exactly the same manner, the double integral 
of Pus can be represented in the form 

V-1 
·,1 P u 2N-p \' Ppudu' 
L.,! s -Jt- J u'2N-p (u' - u) 
p~o 

2N-1 2N-1-p 
- 2J ~ {PsQ (-1)P 

p~o q~o 

min[q, N-11 2N-1-m 1 (n _ P) (n) J 
X LJ 2J u'nll _ rn (-1)q-mPmu ,(A.6) 

m=o n=max[2, p] q P 

N-1 
"-' t2 N-p ~ Pptdt' 
;, uP--

p":'o Jt t'2N-p (t' - t) 

1 [ 2 N-1 

= n ~ dt' t'2 (t~ - t) p~o (1 - S- t')Pppt 
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2N_:;-I min[N-1, 2N-J-p] ( -i)q min[N-1, 2N-1-p] 

1 ~ (Psq t'P+l ~ 
p~ q~ ~ 

(A.7) 

If we now add all the resultant expressions, then 
the sum of the first term in the second integral of 
(A.2) with the first term in the first integral of 
(A.5) and the first term in (A. 7) will yield It, while 
the sum of the first term in the second integral of 
(A.3) with the first term in the second integral 
(A.5) and the first term in (A.6) yields Iu. All that 
is left is a polynomial of degree ( 2N - 1 ) in t. 
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