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A new formulation of the charge exchange problem is presented, which leads to a system of 
equations with an Hermitian matrix in the quasi-classical approximation. A general approx
imate formula for charge exchange probability, which can be applied for arbitrary colliding 
particle velocities, is obtained. The calculation of the H+ + He ( 1s2 ) - H ( 1s) + He+ charge 
exchange cross section on the basis of this formula yields satisfactory results. 

1. Collisions of heavy particles, particularly col
lisions accompanied by charge exchange, can be 
described in the quasi -classical approximation 
over a wide energy interval. This approximation 
consists in assuming the coordinates of the nuclei 
to be specified functions of the time and not dy
namic variables. The problem of charge exchange 
reduces to a solution of a system of nonstationary 
perturbation theory equations for the amplitudes 
of the state probability. 

To obtain such equations for a process A + B+ 
-A++ B, the total wave function of a system con
sisting of two ions A+ and B+ and an electron is 
usually written in the form of an expansion in the 
wave functions of the atoms, formed by attachment 
of the electron to the ion A+ (eigenfunctions 1/Ji of 
the atom A) and to the ion B+ (eigenfunctions <Pm 
of the atom B) respectively [1•2]. Inasmuch as the 
1/J and cp are eigenfunctions of different Hamil toni
ans and are not orthogonal to one another, there
sultant system of equations is not Hermitian, and 
the transition probabilities are not normalized 1>. 
This apparently is one of the reasons why in the 
integration of the system the rule has been to con
fine oneself to the first perturbation theory approx
imation. Exceptions are the special case of sym
metrical resonance and the recently considered [5 J 
charge exchange with a small resonance defect. 
We note that DemkovC5J calculated the matrix 
elements of the perturbation in an approximation 
such that the system was artificially made Her
mitian. 

In the present paper we present a different for
mulation of the charge exchange problem 2>, lead-

l)More details on the fundamental difficulties connected 
with such an approach can be found in the papers of Dirad•] 
and Sunakawa[•]. 

2 >we note that an analogous approach is applicable also 
to other collisions accompanied by particle redistribution. 

ing to a system of equations with Hermitian matrix. 
We develop an approximate method for integrating 
this system, analogous to that proposed earlier [6] 

for the excitation of atoms. A general approximate 
formula is obtained for the charge-exchange prob
ability, including as limiting cases many of the 
previously obtained results, particularly in the 
works of several authors [1, 5 J. 

2. We consider first for simplicity the charge 
exchange occurring when a hydrogen atom collides 
with a proton. In this case the system consists of 
two protons, which we denote by A and B, and an 
electron. The Hamiltonian of the system is of the 
form 3> 

H = - 1/z/1 + V(rA) + V(rB) + W(R), (1) 

where r A and rB are the radius vectors of the 
electron relative to the protons A and B; R -dis
tance between protons, which within the framework 
of the quasi classical method is a specified function 
of the time: 

V(rA) =-1/rA, V(rB) =-1/rB, 

W(R)=1/R. (2) 

Assume that the hydrogen atom consisted prior 
to the collision of an electron and a proton A. We 
are interested in a charge exchange process in 
which the electron goes over to the proton B. We 
shall henceforth assume the trajectory to be a 
straight line: R = p + vt, where p -impact param
eter and v-relative velocity (p•v = 0). The ref
erence systems connected with the center of mass 
and with the centers of atoms A and B are in this 
case equivalent; it is convenient to choose as the 
origin the center of the atom B. We represent the 
total wave function of the system in the form of an 
expansion in the wave functions <Pm of the atom B, 

3 >we employ atomic units throughout. 
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i.e., in the eigenfunctions of the Hamiltonian HB: 

(3) 

Substituting these expressions in (8), multiplying 
each of the equations with m ,r. n by aM: ( t) 
[ 1 -I Sno I2 J-112, and summing all equations with 
m ,r. n, we can obtain a system of two equations 

( J ia = v nna + v noei"'not b, where ~ + ) denotes summation over the states (11) 

of the discrete spectrum and integration over the with initial conditions 

states of the continuous spectrum. The expansion 
(4) is carried out in a complete system of eigen
functions of the Hamiltonian (3), and is therefore 
exact. As t --- - oo the wave function (4) should 
describe the hydrogen atom, which consists of an 
electron and proton A moving with a velocity v: 

IJ!(t)-+ 'l'ov(t) 

= 'l'o(rn- R(t)) exp[ivrn- i(e0A + v2 / 2) t], 

t-+ -oo. (5) 

Simultaneously 

am(t) -+am0(t) = Smo(t)exp(iwmot), Wmo = e~ - B~, (6) 

Smo(t)=~'i'ov(r- ~ )eivr<p;;,(r+ ~ )ar. (7) 

Substituting (4) in the Schrodinger time-dependent 
equation we obtain the usual system of equations 
for an ( t) with Hermitian matrix 4>: 

{am= (~ + ~) H:nm' exp [iWmm' t] am•, (8) 

n;nm' = ~ <p;, (rB) {V (rB- R) + w (R)} <pm' (rB) drB. (9) 

The system (8) must be solved with initial condi
tions (6). 

The system (8) can be easily generalized to the 
case of arbitrary atoms and ions. In this case only 
(8) will contain potentials averaged over the states 
of all the internal electrons. 

Substituting in the right side of (8) am'(t) 
=a~' (t) and using the completeness condition for 
the functions <Pm (rB ), we can readily obtain for 
the charge exchange probability I am ( oo) 12 the 
usual Born formula 

co 

I an (0<'""') i2 = j ~ dt (<pn IV (rB- R) I 'i'ov) ei"'not 12• (10) 
-co 

To a certain degree of approximation we can ob
tain from (8) also a system of two equations for 
the state probability amplitudes, analogous to that 
usually considered [1 J, retaining the hermiticity of 
the matrix of the equations. 

For m ,r. n we put 

am(t) = b(t)am0 (t) [1 -1Snol 2 ]-'h, an(t) = a(t). 

4 >As can seen from (8), the term W(R) introduces only an 
inessential phase factor in the solution. It will therefore be 
left out from now on. 

b(-oo) = 1, a(-oo) = anO( -oo) = 0 

(a~ (t)- 0 as It I --- oo, since the discrete-spec
trum functions <f!n(rB) and 1fi0(rB -R)exp (iv•rB) 
do not overlap as R(t) -oo): 

Vnn=<<p~~~rB~RI\<pn)• (12) 

V no = [ (<pn• \ rB - 1 I 'i'ov) - SnoV nn]/[ 1 -J Sno 12 ]'/, 

(13) 

Voo = {('iJov* I rB-1 1 'i'ov)- Re [Sno (<pn* I r B-1 \ 'i'ov) 

-Son ('i'ov* J rB-lj <pn) ]-\ Sno 12 VnnH 1 -I Sno \2r 1 • (14) 

It is easy to show that b(t) has the meaning of 
the state probability amplitude 

'¥ (t) = (1 - I Sno l2f'1' Nov - Sno<pn}. 

As It I - 00 we have w(t) - 1Jiov· The functions <¥ 
and <Pn are orthogonal for arbitrary t, and there
fore I a 12 + I b 12 = 1. The system of equations (71) 
and (72) of [1] can also be obtained from (8) if we 
put (for m ""n) am(t) = b'(t) a~(t) and an(t) 
=a' (t) + b' (t) a~ (t). As noted above, the matrix 
of this system is not Hermitian. 

3. It is easy to show that the exact solution of 
the system (11) (a, b) is related to the exact solu
tionofthe system (71), (72) from [1] (a',b') by 

a(t) = a'(t) + b'(t)Sno(t), 

b(t) = b'(t) (1-\Sno\ 2). (15) 

Therefore in those cases when exact solutions can 
be obtained, for example in symmetrical resonance, 
the charge exchange probabilities I a ( oo ) \2 and 
I a' ( oo) \2 coincide. On the other hand, in cases 
when the exact solution cannot be obtained, the 
system (11), which has a Hermitian matrix, offers 
certain advantages. In particular, in integrating 
the system (11) we can use approximate methods 
previously developed for problems in atomic exci
tation. We use below a previously derived method, 
[G] based on the fact that the moduli of the func
tions a and b, for a system of equations of the 
type (11) with Hermitian matrix, can be expressed 
exactly in terms of the phase difference n of the 
functions a and b. The function n can be calcu
lated with sufficiently good approximation with the 
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aid of the asymptotic methods of the theory of dif
ferential equations. 

In the general case the nondiagonal matrix ele
ments in (11) are complex: 

V' nO = Ueicp(t), (16) 

This distinguishes the system (11) from the anal
ogous system of equations in the problem of atomic 
excitation, where the phase qJ ( t) is equal to zero 
or is independent of the time. Taking this circum
stance into account, the probability of charge ex
change can be determined by an approximate for
mula (compare with formula (15) of the earlier 
paper [6]) 

00 

w=la(oo)l2=/ J U(t) 
-00 

t 

Xcos(~ [w+cp+Vnn-Voo+4U2(T)]'1•d•)dtj2• (17) 

It is assumed in (17) that U (t) is an even function. 
If U ( t) is odd, then in (17) we must replace 
cos ( ... ) by sin ( ..• ). For concreteness, the 
function U ( t) will be assumed here even. All 
further results are independent of this assumption. 
Formula (17) was discussed in detail before [6]. 

In particular, it was shown that (17) gives correct 
expressions for w in several limiting cases, for 
example the Born approximation and the Landau
Zener case [7]. 

When w + <$ + Vnn- V00 » U, formula (17) goes 
over into (82) of [t]. 

It is easy to show that at large R the potential 
Vno decreases by const·e-YR, where y = (2Imin) 1f2 
and Imin is the smallest of the ionization energies 
~t- and ~[(. In this case, using the method devel
oped above, [SJ we can obtain from (17) (see Ap
pendix I) 

I :rtWno PWon . { r , ) 2 , J 2} oo 
w = exp - 2J/ ( -yv- / + (-v-, sm2 ~ U (t) dt. (18) 

-00 

When Wno = 0, formula (18) assumes the same 
form as the exact formula for the case of symmet
rical resonance. The difference consists only in 
the fact that instead of the expression 

(V'no-SnoH'nn)/(1-ISnol 2 ) (19) 

(18) contains U(t) from (16). 
In the case of a small resonance defect (small 

Wno), where we can leave out the term ( wn0p/v )2 

under the radical of the exponential in (17), for
mula (18) yields, accurate to differences of small 
significance, the same result as formula (11) 
from [5] 

By way of an example we calculate with the aid 
of (18), with some supplementary simplifications 
(see Appendix II), the effective cross section of 
the charge exchange H+ + He ( 1s2 ) -He+( 1s) 
+ H ( 1s ). We use the Slater approximation for the 
wave function of the 1s electron of He. All the 
concrete calculations are given in Appendix II. As 
a result it became possible to obtain in limiting 
cases of large and small velocities the simple 
analytic expressions: 

v--+ 0, (20) 

a=l.7, V--+oo. (21) 

In the intermediate region the cross section cr(v) 
was calculated with an electronic computer. The 
results of the calculations, and also the experi
mental data, are shown in the figure. As can be 
seen from this figure, both the numerical calcula
tions and the interpolation of the limiting formulas 
(19) and (20) into the region of intermediate values 
give perfectly satisfactory results. The difference 
between the interpolation and the numerical calcu
lation does not go beyond the limits of the accuracy 
that can be expected under the assumptions made. 

I am grateful to L. A. Va1nshte1n for a discus
sion and to I. L. Be!gman and A. V. Vinogradov for 
help with the calculations. 

APPENDIX I 

When one of the following conditions is satisfied 

0 
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Effective cross section a(v) of charge exchange H+ 
+ He(1s 2)-. H(1s) +He+ (experimental data of[']): 1- cal
culated with formulas (18) and (A 11.6); 2 - from formula (21). 
3 - from formula (20). 
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(ffino = ffi), 

the radical in (I7) can be replaced by w + 2U, 
which differs from the initial radical by not more 
than a factor /2. To calculate the integral 

oO z 

Ja(oo)J=IRe-~ \ U(R)exp{~ (~2U(R')dz'+(L)z)}dzl, 
-00 0 

(AI. I) 

we use a contour that is closed in the upper half
plane of the complex variable z, with a cut along 
the imaginary axis from ioo to ip. In calculating 
the integral (ALI), we take outside the integral 
sign the function exp (iwz/v ), which is monotonic 
along the imaginary axis, at the point z in the 
vicinity of which the derivative of the argument 
of the exponent in (ALI) vanishes. The remaining 
integral is calculated exactly. Recognizing that 
U(R) = f(R) exp ( -yR), where f(R) is generally 
speaking a power-law function, we can verify that 
the points z form along the imaginary axis a se
quence 

n = 0, 1, 2 ... (AI.2) 

We take out exp (iwz/v) at the point z0 which 
gives a maximum contribution to the integral, 
after which we obtain 

Ja(oo)l=exp{-v (~:r + ((J):r}Jsin ~ Joo u(R)dzl. 

(AI.3) 

For the potential U = A./ cosh yz, A. = const, 
Zener and Rosen [B] obtained an exact solution of 
the initial system of two equations 

1 oo 'A 
I aoc) I= [ch~:r /sin~ v[chyz[-1 rlzl. (AI.4)* 

-00 

Formula (AI.3) with p = 0 and U =A/cosh yz co
incides with (AI.4) if ( 1rw/yv) < I; and differs 
from (AI.4) by not more than a factor % in the 
region where (1fw/yv) »I and the result is ex
ponentially small. In the latter case the differ
ence in the pre -exponential factor is due to taking 
into account only one point z 0 from the sequence 
zn. and is of no importance to the results. 

APPENDIX II 

The wave function of the helium -atom Is elec
tron has in the Slater approximation the form lj;(r) 
= 1f - 1/2 a312 e-ar, a = 1. 7; the wave function of the 

*ch =cosh. 

hydrogen -atom Is electron is cp ( r) = 1f-1/2 e -r. 
Let us substitute these functions into the matrix 
elements (I9). Leaving out (1 - I Sno 12 ) - 112 in the 
denominator of Vno and carrying out the Fourier 
transformation under the integral sign in (I9), we 
obtain 

1 00 ~ 
I (p, v) = v ~ Vno (R)dx = 11 (p, v) + 12 (p, v), x = vt; 

-00 

16a'l• r (' exp {ikR- ivxj2} 
Jl (p, v) =- --ru! j dx j (k2 + a2) ((k- v)2 + 1)2 dk, 

-oo (AII.I) 

J2(p, v) = 32a'l• r dx [ 1 ·[I+ I ]e-2Yx'+r>' 
:rtv joo Vx2 + p2 Vx2 + p2 

X\ exp [ips+ iqx] dsdqdl 
j(s2 + l2 + (q + vj2)~ + a2)2 (s2 + [2 + (q- vj2)2 + 1)2 • 

(AII.2) 

Carrying out the integration with respect to x in 
(All. I), we can express 11 in terms of the Mac
donald functions 

Jl (p, v) =- v (a~a~ 1) [ V 1 ~ v2j4 Kl (p v 1 + -;~) 

+ (a2~ I) (Ko (p(a2 + v~) 

- Ko ( P v~ + :)) ] . (AII.3) 

The multiple integral (AII.2), after integration with 
respect to x, s, and Z, reduces to a single integral 
of products of Macdonald functions 

32a'/. r [ --12 (p, v) = --ruJ joo Ko (pI q!)- Ko (p V 4 + q2) 

2p K ( V~)J { 2 + V 4 + q2 1 p + q (a2 - I + 2vq)3 

x[ Ko(P (a2+ ( q+~ f) 
-Ko(P(1+(q- ~r)]+2(a2-IP+2vq)2 

x [vi+ </-v;2)2 Kl (p VI+ (q- ~r) 

+va2+(:+vJ2)2 Kl(P(a2 + (q+ ~t)]}dq. 
(AII.4) 

In accordance with (IS), the charge-exchange prob
ability is determined by the formula 

a (v)= 2nr pdp exp{- 2 V1(~:r + (P: r} sin2I U(R)dx. 

(AII.5) 
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~ 

Inasmuch as the imaginary part of V no is antisym-
metrical with respect to time in this case, it drops 
out in the integration from -co to oo: 

00 co 

~ Vn0dx = ~ U cos r:pdx. 
-co -oo 

We therefore replace 

1 00 

v ~ U (R) dx 
-co 

by I(p, v ), which can cause the value to be some
what lower in the region of the maximum. As a 
result of such a substitution (AII.5) takes the form 

a(v) = 2n r pdp exp {- 2 v (~:r + (p;l r} sin2 /(p, v). 
o (AII.6) 

We note that when a = 1 formula (AII.3) goes over 
into the expression obtained by Brinkman and 
Kramers, while (AII.4) goes over into the integral 
given by Murakhver [9]. 

At small values of v, the quantity sin2 I ( p, v) 
oscillates strongly, and therefore this factor can 
be replaced in (AIL6) by 1/ 2• For large v, the 
function CJ(v) can be expanded in an asymptotic 
series in reciprocal powers of v. As a result we 
obtain 
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