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The graph technique developed by Belyaev is employed for calculating the ground-state en
ergy and elementary-excitation spectrum of a Bose gas with negative scattering amplitudes 
at low momenta. An important point in the solution of the problem is that repulsion plays an 
important role at small distances and thus ensures the possibility of stable states at densi
ties exceeding a certain critical value. The scattering amplitude for zero momenta is con
sidered small so that the gas approximation is valid near the critical density. The final 
formulas resemble those derived by Huang, but the numerical coefficients are quite different. 

A study of the model of a Bose gas with weak at
traction at large distances is of certain interest. 
We note that, as is well known from experiment, 
the interaction potential of two helium atoms cor
responds to attraction at large distances and re
pulsion at small distances between the atomso Such 
a model should exhibit saturation, i.e., there should 
exist a critical density below which stable states 
are impossible. 

A direct extension of the results of Bogolyu
bov [1 J concerning the energy spectrum of a weakly 
nonideal Bose gas raises certain difficulties, for 
the excitation energy turns out to be imaginary in 
the lowest approximation. Huang [ 2] constructed 
some simplified model of a Bose gas with attrac
tion and made an approximate calculation of the 
energy spectrum and of the ground -state energy o 
However, his method is exceedingly cumbersome 
and it is difficult to clarify the character of the 
approximations made. In the present paper we 
calculate, using a graph technique developed by 
Belyaev [a, 4], the energy spectrum and the energy 
of the ground state for a model of a weak non
ideal Bose gas with attraction close to that pro
posed by Huang. 

We assume that the Bose particle pair-inter
action potential energy V(r) = V1(r) + V2(r) 
consists of a repulsion kernel V 1 ( r) > 0 of ef
fective radius a, and a long-range attraction 
V2(r) < 0 of radius R »a. Let us assume that 
the relation between these quantities is such that 
in the essential region we have V1a3 - V2R3, so 
that the corresponding Fourier components U1 (k) 
and U2(k) have the same order of magnitude when 
k < 1/R. In addition, we assume that the Born pa-

rameter ~ 1 for the potential V1 is of the order of 
unity, i.e., ~ 1 = U1m/a- 1, and then it follows 
that ~ 2 = U2m/R- (U 1m/a)(a/R) « 1. 

We shall show that in this case the scattering 
amplitude f ( k, k') for two particles scattered by 
each other and interacting via a potential V ( r ) 
can be expressed simply in terms of the scattering 
amplitude of two particles with an interaction po
tential energy V 1 ( r). The scattering amplitude 
can be represented by a Born series obtained by 
iterated solution of the integral equation for the 
scattering amplitude (see, for example [4•5]) 

U (k'- Pt) ... U (Pn-t- Pn) U (p,- k) 
X [k2/m- Pt2/m + i6] ... [k2jm- Pn2/m +ill] 

(we use a system of units in which n = 1 ). 
In the sum over n, the principal role is played 

by those regions of integration where U ~ U 1• In
deed, let us consider, for example, the integral 
over Pn· The relative contribution from the re
gion where I Pn - k I - 1/R will be of the order of 
(U1m/a)( a/R) « 1, and an analogous estimate will 
hold for the region I Pn -t - Pn I - 1/R. Similar 
reasoning holds for integration with respect to any 

Pi· 
Since U(k) ~ U1(k) when k » 1/R, we can re-

place U by U1 in the sum over n. From this we ob
tain approximately, neglecting the terms of order 
a/R, 
4nm-1/(k, k') = [ u (k'- k)- ul (k'- k)] 

(1) 
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where f1 (k, k') -scattering amplitude for the po

tential v1. 
We assume, in addition, that the potential U ( k) 

is such that 

4nm-1f (0, o) < o, with It (0, o) I 11 (0, o) I = ~ < 1. (2) 

The quantity (3 characterizes the "weakness" 
of the attraction and is the small parameter of the 
problem. We note that the smallness of (3 does not 
signify smallness of U2, and is connected with the 
almost total cancellation of the repulsion and at
traction in the scattering amplitude at small k and 
k'. This assumption is essential to the calculation 
that follows, for in the opposite case ((3 ~ 1) there 
are no thermodynamically stable homogeneous 
states with low density. Therefore the model in 
question has limited applicability and cannot be 
used for the calculation of real He II. 

Since the characteristic momentum for U 1 is 
1/a, we have f1 ( k, k') R< f1 ( 0, 0) for k, k' « 1/a. 
Therefore we have for k « 1/a 

4nm-1/(k, k) = [ u (0) - u! (0)] + 4nm-1/1 (0, 0) 

= -4nm-1Mo, (3) 

whereas for 1/R « I k- k' I « 1/a and k << 1/a we 
have 

4nm-1/(k,k') = [U(k-k') -U1(k-k')] 

+ 4nm-1/! (0, 0) :::::::: 4nm-1/o 

(we can neglect U2 (k) when k » 1/R). We use 
the notation f0 = f ( 0, 0) > 0 throughout. 

Thus, in the present model the scattering ampli
tude varies rapidly as I k - k' I varies from zero to 
values ~ 1/R, and then remains constant to k, k' 
R< 1/a (see Fig. 1 ). 

f(o,k} 

The energy spectrum of the weakly excited 
states and of the ground -state energy can be ob
tained with the aid of the single-particle Green's 
function. To calculate the Green's function of the 
interacting Bose particles it is convenient to use 
the graph technique developed by Belyaev [3, 4]. 

We introduce the Green's function of the super
condensed particles: 

G'(x- x') = <T¢'(x)¢+'(x)'), 

G(x- x') = <T¢'(x)tjJ'(x')), 

G(x-x') = <T¢+'(x)¢+'(x')), 

where T -symbol of the T -product and 1/J' ( x ) , 
1/J+' (x ) -operators of annihilation and creation of 
the super-condensed particles at the point x. 

According to [3] (see also [5J), we obtain for 
the Fourier transforms of the introduced Green's 
functions 

G' ( ) p0 +Eo (p) + S (p)- A (p)- f1 
p = (p0 - A (p)]2 - [Eo(P) + S (p)- !1] 2 + 2:o22 (p)' 

c (p) = c (p) 

2:o2 (p) 

Here 

S (p) = 1/2 (~u (p) + ~11 (- p)), A (p) = 1/2 (~u (p) 

-~n(-p)), Eo(P)=p2/2m. (5) 

The chemical potential p. is expressed in terms of 
the mass operators ~11 and 2:: 02 by the relation 

(6) 

first derived by Hugengoltz and Pines [GJ. 

The mass operators L:11 (p) and L: 02 (p) are sums 
of Feynman diagrams, in which the straight lines 
correspond to the Green's functions of the free par
ticles and the broken lines to the condensed parti
cles, while the wavy lines correspond to the Fourier 
component of the potential. The general rules for 
the construction of the graphs and for writing down 
the corresponding analytical expressions can be 
found in [3•5]. In the general case it is impossible 
to sum the graphs. The effective calculation of the 
mass operators with a Born parameter ~ ~ 1 can 
be carried out only for the case of low density n [ 4], 

when nf~ ~ na3 « 1. We shall likewise assume the 
density to be small, so that nf~ ~ {3 2, and we shall 
calculate 2:: 11 and 2:: 02 in the lowest order in {3. 

The corresponding calculations were made by 
Belyaev [ 4 J, but our case is different in that the de
pendence of the scattering amplitude on the mo
menta cannot be neglected, since this amplitude 
varies rapidly in the interval 0 :<::: k ;;;. 1/R, as can 
be seen from (3) and (4). In addition, the order of 
magnitude of the Green's function changes at low 
values of the momentum. This, however, is not 
an essential factor in the estimate of the contri
butions of different graphs, since 2:: 11 and 2:: 02 con
tain only integrals of the Green's functions, and 
the order of magnitude of the integrals remains 
the same as before, owing to the smallness of the 
corresponding momentum region. In the second-
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order approximation, the corresponding contribu
tion to the integrals turns out to be small because 
in addition the scattering amplitude is also small 
in this region (see below). 

The applicability of the gas expansion can be 
proved also by using the initial formulation of the 
diagram technique, without resorting to the scat
tering amplitude. Since U( k) has in the present 
model the same order of magnitude for repulsion 
and for attraction, we obtain, by equating U( k) to a 
positive constant U0 for k < 1/a and to zero for k 
> 1/ a ( R > a ) , the same estimate as in the case of 
pure repulsion for any graph. It follows therefore 
that any loop in I:ik with more than two straight 
lines introduces a small parameter (for n0a3 "" {32 ) 

i.e., the gas approximation can be used (see [5J). 
Thus, following [4J, we can confine ourselves 

to graphs of the first and second orders in n0f~, 
where n0 -density of the number of particles with 
zero momentum. The first-order graphs have the 
form shown in Fig. 2a, where the square denotes 

a b c 

FIG. 2 

the ladder vertex function r 0(p1, p2; p3, p4 ), which 
coincides in first approximation with f((p- p2 )/2, 
(p3 - p4 )/2 ), and the broken lines correspond to 
the creation or annihilation of particles in the con
densate. 

The second order in I: is described by graphs 
consisting of two small squares connected by two 
lines corresponding to all possible total Green's 
functions (5) (Fig. 2b), and also graphs consisting 
of one square with a loop, which also corresponds 
to some total Green's function (Fig. 2c). It is nec
essary to subtract from these graphs the aggregate 
of graphs of the same type, but now contained in 
the first-order graphs. The corresponding ana
lytic expression for I:02 is of the form (see [4]) 

~02 (p) = nof0 (p, -p; 0, 0) + 4ino ~ ro (p, q; p + q, 0) 

X ro (p + q,- p; 0, q) G' (p + q) G' (q) (:;r4 + 4ino 

X~ f 0(p, 0; p- q, q) f 0(q,- p; q- p, O)G' (q) G (p- q) 

d4q . (' -0 
X (2:rt)4 + 4m0 .\ f (p, q; 0, p + q) 

- v d4q 
X f 0 (- p, 0; q,- p -q}G' (q)G (p + q) (2:rt)4 

+ 4ino ~ ro (p, - q; 0, p- q) f 0 (q, -p; 0,--p+q} 

A V d4q 2 • \' ro 0 ) X G (q) G (p- q} (2:rt)4 + mo.\ (p, ; P- q, q 

- v v d4q 
X f 0 (- p, 0;- q, -- p+q)G (p- q)G (q) (2:rt)4 

. + i ~ ro (p, - p; q, - q) [G (q)- noro (q, - q; o, O) 

d4q 
X Go(- q) Go (q)] (2:rt)4 , 

G0 (q) = (q0 - q2j2m + ibf1 • 

The expression for I:11 is written in the form 

~11 (p) = 2nof0 (p, 0; p, 0) + 4ino ~ f 0 (p, 0; p- q,q) 

(7} 

xro(q, p- q; p, O)[G' (q) G' (p- q)- G0 (q) Go (p- q)] 

d4q + 4. (' r-o ( · 0) l--;-0 (. O· ) X (2:rt)4 zno .\ p, q, p + q, p + q, , p, q 

X G' (p + q) G' (q) (;~4 + 4in0 ~ f 0 (p, 0; q, p- q) 

- v d4q 
X fO(q, 0; p, q- p) G' (q) G (p- q) (2:rt)4 + 4inG 

X ~ ro (p, - q; 0, p- q) f 0 (q, p- q; 0, p) G (q) G' (p + q) 

d4q , · (' 'o . '""o . X (2:rt)4 -;- 4mo .ll (p, -q, 0, p- q) I (q, 0, q- p, p) 

A v ) d4q I 2. (' ro ( . ) G' ( ) d4q 
X G (q) G (p- q (Z:rt)4 -r zno .\ p, q, p, q q .(2:rt)4 • 

(8) 

The quantity r 0(p1,p2; p3,p4 ) is expressed in 
terms of the scattering amplitude [4]: 

ro (PI> P2; pa, P4) = ;;; I (k, k') + ( ;: ) 2 ~I (k', q) /* (k, q) 

X [ x 02Jm- ~2/m + ib + q2jm- i2Jm- i{J] aaq; 

x02 = P0 - P2j4m + 2f1, P = p1 + P2• 2k = Pa- p4, 

2k' = P1- P2• 

po = P1° + P2°· (9) 

A circumstance of importance for what follows is 
that in the region p » 1/R the principal role is 
played by the first-approximation terms, since 
r 0(p, 0; 0, p) is in this region of the order of f0, 

and the second -approximation correction contains 
an extra factor {3 compared with these terms. 
However, when p ~ 1/R the first- and second
approximation terms have the same order of mag
nitude, owing to the smallness of r 0 "" {3f0 in this 
region, while allowance for the more complicated 
graphs yields as before a small correction to the 
graphs of Fig. 2. 

In calculating the second -approximation correc-
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tions we can neglect everywhere the integral terms 
in formula (9), and also the quantity r 0(p, 0; p, 0) 
f':::i f(p/2, p/2 ), since they contain an extra power 
of {3. In addition, the regions in which the Green's 
functions G', G, and G are not described by for
mulas (5) with first-approximation l:11 and l:02 are 
small, and in these regions the quantities r 0 under 
the integral signs in (7) and (8) are also small (we 
have in mind small momenta p « 1/R). Therefore 
we can use, with the assumed accuracy, Green's 
functions with lower-approximation l:11 and l:02 
in the integral terms of (7) and (8); these Green's 
functions, with allowance for (3), (4), and (9), can 
be written, with the same accuracy, in the form 

As is well known, for small p the Green's func
tions take the form (see [5]): 

G' ( ) _ l:2o (0) ' v 

P - B [(po)2 _ c2p2] , C (p) = G (p) 

_ _ l:2o (0) . 
B [(po)2 _ c2p2) • (15) 

In our case 

2ma(~tt- ~20) I Bp2 lo ~ ~. 

l: 11 (p) = n0f 0 (p, 0; p, 0) + n0fD(p, O; O, p) = 4nm-ln0f(p, O), and therefore, with the assumed accuracy, 

~o2(P) = nof0 (p, -p; 0, 0) ::::::: 4nm-1f(p, 0). (10) 

In addition, we can neglect the chemical poten
tial f.L, since it is of the order of 41!"m -l nof3f0, in 
accordance with (6), (7), and (8). Using (5), we 
thus obtain for the Green's functions themselves, 
in the region 1/a » p ~ 1/R, the expressions 

G' ( ) = P0 +8o (p) + 4nm-1nof (p, 0) 
p 28 (p) 

x(p0 -8fp)+ib -p0 +8~p)-ib)' 
G ( ) = G ( ) = 4nm-1nol (p, 0) 

p p 28 (p) 

x(pa- 8 fp) + ib - p0 + 8 ~p)- ib ) ; 

(11) 

e (p) = [8nm-1nol (p, 0) + 8o2 (p) !'1'. (12) 

We shall henceforth confine ourselves to the 
calculation of l:02 ( 0 ) and l:11 ( 0 ) , for to this end 
it is sufficient to find the spectrum at small values 
of p, and also to calculate the chemical potential 
and the ground-state energy. 

Carrying out the integration with respect to dq0 

in (7), and making use of (11), (12), (9), and the 
smallness of f(q,q) in accordance with (3), we 
obtain 
~ (0) = 4n n I (0 0) + n2 (4n )3 \ 13 (q, 0) so (q) d3q 

2o m 0 ' o rn J 283 (q) (2n)3 

( 4n ) 2 ~ 2 8 (q)- 8 0 (q) d3q 
+ m nov (q, O) 2eo (q) 8 (q) (2n3) • (13) 

We calculate analogously the quantity l:11 ( 0): 

~ (0) = ~~n 1(0 0) ' n (4n )21 12(q, 0) (8 (q)- 8o (q)) 
n m 0 ' 1 0 m J 8 (q) 8o (q) 

d3q + 4n \I ( O) 8o (q) - n01 (q, 0) - 8 (q) d3q 
X (2n)3 m j q, 28 (q) (2n)3 

+ n (4n ) 3 \ 13 (q,_O) 8 0 (q) d3q 
0 m J 283 (q) (2n)3 • (!4) 

(16) 

The energy of the elementary excitations is a 
positive real quantity, and this leads to the require
ment c2 > 0 (this condition coincides with the 
condition for the thermodynamic stability of the 
system), thus defining a certain critical density 
below which there are no stable states. According 
to (16) and (13), the region of stable states is de
termined by the inequality 

-1(0 O).C (4n)21 ls(q, 0)8o(q) d3q 
• """'no m J 2e3 (q) (2n)3 

4n \' 2 e (q)- e0 (q) d3q 
+ m j I (q, O) 2e0 (q) 8 (q) (2n)3 • 

Since the first part is positive and increases with 
increasing n0, such a region actually exists. It is 
easy to see that the order of magnitude of the crit
ical density nocr will be nocrf~"" (f(O, O)/f0 ) 2 « 1, 
i.e., in this case we actually operate in the region 
of applicability of the gas approximation. Formulas 
(13), (14), and (6) enable us to calculate the chemi
cal potential: 

4n (4n ) 2 \ 12 (q, 0) 
t.t (no)= nom I (0, O) + no m j 28 (q) 8o (q) (8 (q) 

d3q 4n \ 
- eo (q)) (2n)s + m ~I (q, m 

8o (q) - nol (q, 0)- 8 (q) d3q 
X 28 (q) (2n)3 • 

(17) 

In order to find the ground-state energy it is nec
essary to know the chemical potential as a function 
of the total number of particles. In this case the 
particle density n0 in the condensate coincides in 
the lowest approximation in {3 with the total par
ticle density N/V, and owing to the smallness of 
f ( 0, 0 ) this approximation can be used in all the 
terms that enter into 1-'· Thus, the ground-state 
energy is determined by integrating (17): 
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N 

E - E cr = ~ f1 ( N fV) dN, (18) 
/\" cr 

where Ncr -total number of particles in the vol
ume V at the critical density, Ecr -ground state 
energy at N = Ncr· 

The integration of (13), (14), (17), and (18) can
not be carried out without specifying the concrete 
form of the scattering amplitude f(q, 0 ). At suffi
ciently large R, however, it is possible to calcu
late the integrals in explicit form. Indeed, the es
sential integration region, for example in (13), de
pends both on f( q, 0) and on the second factor, 
which decreases like 1/q4 when q 2 » n0f0, making 
the region q ~ 1/a unimportant, and remains ap
proximately constant for q2 « n0f0• 

If n0f0 » 1/R2 or, what is the same, a/R « (3, 
then the region with q ~ 1/R in which f(q, 0) 
varies rapidly (see Fig. 1 ) can be neglected, and 
we can put f ( q, 0) = f0 in all the integrals with 
f(q, 0). The integrations in (13), (17), and (18) 
can be readily carried out, so that we obtain 

• 4rt: N [ 16 ( N\'h] 
c-= m2V /(O,O)+y"Jlfo _foav) ' (19) 

4rt: [ N 32 N ( N )';,] 
f1=-;n yf(0,0)+3Vitvfo /oav , (20) 

E=E - 4rt: [1Vcr2/(0 O)_j_~Ncr2/ (Ncr a)';,] 
cr m 2V , ' 1"1/- V o --v-fo Jrrt: . 

4rt: [N2 64 N 2 ( N )';,·J + m 2V f (O, O) + 15 Vit v lo v fo3 . (21) 

From (19) we see that the dimensionless critical 
density is 

Ncrfo3 IV= (!(0, O)"}'n I 16/0 ) 2 ~ f, 

in accordance with the assumption that the density 
is low. 

From (21) we can determine the pressure 

~ _ &E ~ 4rt: [N2/ (0, 0) 32 N 2 (. N )';,] 
p ~ &V ~ m 2V2 + 5 y;:t·V2 /o V fo3 ·(22) 

As should be the case, the velocity of sound c de
termined from the spectrum agrees with that de
termined thermodynamically. We note that at the 
critical density, the pressure p is negative, indi
eating that this state is metastable. The pressure · 
becomes positive when 

N =/o-a(5Vrt/(0,0))2 =25Ncr. 
V 64 / 0 16 V 

If terms of order 1/ ( n0f0 ) 112 R are neglected, 
the quantities 1:11 ( p) and 1:02 ( p) can be approxi
mately described by the formulas 

4rt:N 64 N I N )''• 
1:o2(P) = mV f(p, 0) + m. fov ( rcfo3V ' 

, 4rt: N 4rt: N 
:211 (P) = m v t (o, o) +my t (p, o) 

320 N N )';, 
+3mV!o(rcto3 V-

in the entire momentum interval, since the rapid 
variation occurs only in the scattering amplitude, 
i.e., in the terms of lowest order in the density. 
The corresponding formulas for the spectrum will 
describe a gradual transition from E = cp for 
p « 1/R and for a value of c calculated from 
(19), to formula (12) for E ( p) for p » 1/R. 

The obtained formulas (19)-(21) are similar to 
the results of Huang [2], but the numerical coeffi
eients in the corresponding formulas differ greatly. 

Thus, the presence of even weak attraction 
leads to the "sticking" of Bose particles, so that 
no stable homogeneous states exist at densities 
below critical. There exists also a metastable 
region of densities with negative pressure, which 
is stable against infinitesimally small density per
turbations but is unstable relative to the occur
rence of voids of finite radius. A phase transition 
should exist in our model at a finite temperature. 
The energy spectrum of the system consists of a 
straight-line (phonon) section for k « 1/R with 
a sound velocity on the order of ((3f0N/m2v) 112 and 
a gradual transition to another almost linear sec
tion for 1/R « k « 1/a with a larger slope, on 
the order of (f0N/m2V) 112, which goes over into 
the free -particle spectrum. 

In conclusion we note that the relative ease with 
which the long-range and the short-range forces 
ean be taken into account in the Bose -gas problem 
is apparently connected with the fact that the so
ealled plasma approximation in the Bose gas is 
taken into account already in a lower perturbation
theory order in 1:, since any closed ring made up 
of the zero Green's function causes the correspond
ing diagram to vanish. 

The author is grateful to N. N. Bogolyubov and 
S. V. Tyablikov for a discussion and for interest 
in the work. 
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