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A monotonic dependence of the scattering matrix on the potential energy operator is estab­
lished. It is shown that many numerical methods yield an approximate lower bound for the 
reactance matrix. 

1. INTRODUCTION 

"VARIATIONAL calculation methods were formu­
lated for collision theory [1- 3] and used on the basis 
of the principles of stationarity of the varied func­
tionals rather than maximality or minimality [4]. 

They could therefore not be applied directly to the 
calculation of the upper or lower bounds of the 
scattering phase shifts and matrices, other than 
stating that the error in their approximate values 
is quadratic relative to the error of the trial func­
tion, with the question of the sign of the error re­
maining open. Other approximate methods (the 
distorted-wave method, the method of strong cou­
pling of a finite number of channels, the adiabatic 
approximation, the optical model, etc. [5•6]) yielded 
likewise no information whatever on the sign of the 
error. Inasmuch as the proposed methods for find­
ing the upper and lower bounds of the scattering 
phase shiftC7J turned out to be too cumbersome for 
extensive practical utilization, many papers were 
devoted to approximations by essentially the maxi­
mality or minimality methods. The Kohn method 
was found to provide an upper bound for the scat­
tering length [s,s]. In the case of scattering by a 
short-range potential that vanishes identically out­
side a certain finite region, it has been possible to 
formulate a variational calculation method which 
gives the lower bound of the scattering phase shift 
and of the reactance matrix at zero energy [ 10• 11]. 

Recently Hahn, O'Malley, and Spruch[12 ] (see 
also [10]) showed that the elastic -scattering phase 
shift calculated in the statistical approximation or 
in the strong-coupling approximation also gives a 
lower bound for the true scattering phase shift. 
They also formulated a variational method which 
gives a lower bound for the scattering phase shift 
without the need for a short-range potential [ 13 ]. 

In this article we consider the energy when in-

elastic scattering is possible in addition to elastic 
scattering. We show that a broad class of approx­
imate methods gives a lower bound for the reac­
tance matrix K, so that the scattering matrix S 
is connected with its approximate value St by a 
relation S = St exp (2iyt), where yt is a positive 
matrix 1> that approaches zero monotonically with 
extension of the trial-function space. 

Such a regular behavior is connected with two 
circumstances. First, there is a monotonic con­
nection between the potential-energy operator in 
the Schrodinger equation and the reactance matrix. 
If we subtract from the potential-energy operator 
a small positive operator, the reactance matrix is 
augmented in the form of a small positive matrix. 
Second, neglect of part of the possible intermedi­
ate states in the approximate calculations is equiv­
alent to addition of a positive operator to the po­
tential-energy operator. 

2. MONOTONIC DEPENDENCE OF THE REAC­
TANCE MATRIX ON THE POTENTIAL-ENERGY 
OPERATOR 

The reactance matrix K, which is connected 
with the S matrix by the relation 

S = (1 + iK) (1- iK)-1, (1) 

is determined by solving the Schrodinger equation: 

1 ( d2 ) L'ljl=O, L=m dr2 +k2 -2V (2) 

under the following boundary conditions at infinity: 

l) A matrix (or operator) is positive if its corresponding 
quadratic form is not negativeJ14] All eigenvalues and 
diagonal elements of a positive matrix are non-negative. 
The sum of positive matrices is positive. 
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'IJ.'(r) ~ (m I k)''•(sin p +cos p K), 

p = kr -ln/ 2. (3) 

In (2) a_nd (3) n = 1; lj! -square matrix whose col­
umns are different linearly-independent solutions; 
l, m, and k -diagonal matrices whose elements 
are the orbital angular momenta, the reduced 
masses, and the wave numbers of the channels. 

Let us consider two equations of the type (2) 
and (3) with different potentials V1 and V2, and 
let us set up the matrix 

r 

~ ('ljl2TLI'¢I- '¢ITL2\jl2) dr = 0. 
0 

(4) 

The superscript T denotes transposition. Using (3), 
we integrate by parts in (4) and add the results to 
the transposes. Since V is self-adjoint and K is 
symmetrical, we obtain 

co 

K2- KI = ~ [¢IT (VI- V2)'¢2 + '1Jl2T (Vt- V2) ¢d dr. (5) 
0 

From (5) follows the monotonic dependence of the 
matrix K on the potential V. If V 1 ~ V 2 and the 
matrix K varies continuously with continuous tran­
sition from V1 to V2, then K1 :S K2• [Matrix (or 
operator) inequalities of the type K1 ~ K2 denote 
in the present article that the difference K2 - K1 
is a positive matrix. It does not follow from this, 
for example, that all the elements of the matrix 
K2 - K1 must be positive.] 

The proof is readily obtained if the potentials 
V1 and V2 differ by a very small quantity 6V 
= V2 - V1• If at the same time the matrices K1 

and K2 also differ by a very small quantity 6K 
= K2 - K1, then we obtain from (5), accurate to 
second-order terms in 6V, 

co 

f>K = - 2 ~ 'IJliTfJV\jlidr. 
0 

(6) 

The fact that 6V is negative indicates that 6K is 
positive. 

We prove analogously the monotonicity of the 
matrix K-1• If V1 ~ V2 and the matrix K-1 varies 
continuously under continuous transition from V 1 

to V2, then K11 ~ K21• 

Continuity is an essential requirement, for ex­
ample, in the case of only one open channel K 
= tan TJ, where TJ is the scattering phase shift. If 
the phase shift TJ goes through (2n+1)11/2 on go­
ing from V 1 to V 2, then K becomes infinite and 
the inequality K1 :S K2 may not hold. We observe 
the same in the case of many channels. It is typi­
cal that violation of the continuity of the matrix K 

leaves the matrix K-1 continuous, and vice versa. 
This makes it possible to establish the monotonic­
ity of the S matrix irrespective of the continuity 
of K or K-1• 

If K2 = K1 + 6K, we obtain from (1), accurate 
to second-order terms in 6K, 

S2 = (1 + iK1) (1- iK!)-1 

or 

S2 = S1 (1 + 2if>y) """ S1e2i 6•', 

(7) 

«''y == (1 + iKI)-16K(1- iKI)-1• (8) 

From 6K ~ 0 follows 6y ~ 0. We can prove anal­
ogously that when K21 = K11 + o(K-1 ) it follows 
likewise from o(K-1 ) :S 0 that 6y ~ 0. Repeated 
application of these inequalities shows that V 1 

~ V2 implies S2 = S1 exp (2iy) with y ~ 0 even if 
the difference V2 - V1 is not small. 

3. APPROXIMATE EXPRESSIONS FOR THE OP­
TICAL POTENTIAL 

Let us consider a calculation method in which 
the approximate expression for the closed-channel 
part of the wave function is sought among the finite­
dimensional family of functions, and the open­
channel part is determined in the same form as in 
the strong-coupling method. We shall show that 
the approximations of this method are equivalent 
to replacing the true optical potential wC15•16 ] by 
the integral operator Wt (20), and we shall inves­
tigate the conditions under which W :S Wt. If this 
is satisfied, then the results of the preceding sec­
tion lead to the inequalities between the approxi­
mate and exact values of the matrices S and K. 

Let us study the scattering of particle 1 by a 
target containing particle 2 in the bound state. We 
assume that particles 1 and 2 are different, and 
that the energy of particle 1 is sufficient to excite 
the m lowest states of the target with energies 
Ep and wave functions I/Jp(r2 ), but is insufficient 
to excite other states of the target. Following [t2], 

we introduce the projection operators P and Q 
= 1- P, which separate the open- and closed­
channel parts of the wave function. The operation 
of P on any function f(r1, r 2 ) is defined by 

m 

Pj (rt. r2) = ~ 'ljlp (r2) ~ '¢p (r2) f (rio r2) d-c2. (9) 
P=l 

According to (9), the open-channel part P..Y in the 
wave function is of the form ~~1 up ( r 1 ) l{Jp ( r2). 
For an approximate representation of the closed­
channel part in the form of the sum ~P=t ci <I>i, 
we choose n independent square-integrable func-
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tions .Pi ( r 1, r 2 ) orthogonal in the argument r 2 to 
the target functions for arbitrary r 1: 

~ '¢v (r2) ID; (r1, r2) dr:2 = 0, p = 1, ... , m. (10) 

We introduce a projection operator R, which sepa­
rates from the entire function space the functions 
of the form 

m n 

P=l i=l 

with different functions up(r1 ) and coefficients ci. 
We seek an approximate solution of the equation 

(H-E)'¥= 0, H = H 1 + H2 + V(r~, r2) (12) 

among the functions (11). To calculate up(r1 ) and 
Ci we use the equation 

R(H- E)R'Vt = 0, (13) 

which is a projection of Eq. (12) on the space of 
functions (11). In explicit form, Eq. (13) is a sys­
tem of differential and algebraic equations 

m n 

~ LpqUq (rt) = ~ ~ '¢p (r2) V (r1, r2) ID; {rio r2) dr:2c;, 
q=l •=1 

n 

i=l 
m 

= ~ ~ ID; (r1, r2) V (r1, r 2) '\jlq (r2) llq (r1) dr:1dr:2, 
Q=l 

Lpq = 6pq (E- H 1 - ep) ·- Vpq (r1), 

ll;j = ~ ID; (r1, r 2) HCD3 (rt, r2) dr:1d-r2, 

N;i = ~CD; (r1, r2) Clli (rio r2) d-r1dT:2, 

V pq (r1) = ~ '¢v (r2) V (r1, r 2) '\jlq (r2) d-r:2• (14) 

In addition to the coefficients ci in (11), the 
functions <Pi ( r 1, r 2 ) themselves can depend both 
linearly and nonlinearly on other parameters (for 
example scale parameters). The values of these 
parameters in (11), (13), and (14) are assumed 
fixed. They are determined not from (14) but from 
other considerations. A possible criterion for the 
best choice of the parameters may be formulas 
(22)-(25). 

The system (14) can be simplified by eliminat­
ing the coefficients Ci. Following [15 J, we obtain 
the eigenvalues rgCA.) and the eigenvectors cj'') of 
the equation 

n 

~ (H;i- rg< 1->N;i) c/'> = 0. 
i=l 

We normalize the functions by 
n 

(Dp.) (r1, r2) = ~ cP>CDi (r1, 1"2). 
J=l 

(15) 

We write the second sum in (11) in the form 
n 
.0 bA..p(A.)(r1, r 2 ) and determine bA. from the 
A.=1 
second equation of (14) 

b" = (E- rg<">r1 ~ ~ vq<"> (r1) uq (rt) d-r1, 
q=l 

Vq (),) (ri) = ~ ClJ<"l (r1, r2) V (rh r 2) '¢y (r2) d-r2• (16) 

Substituting (16) in the first equation of (14) we ob­
tain for the functions up(r1 ) an integra-differential 
equation with degenerate kernel 

m [ " Vp(/..){rt).\d-riVq(),)(rt)] 
~1 Lpq- ~1 E _ rgP-l Uq (r1) = 0. (17) 

Let us compare (1 7) with the equation from the 
theory of the optical potential [15• 12]. We write (12) 
in the form 

P (H - E) (P + Q) 'I' = 0, 

Q (H - E) (P + Q) '¥ = 0. (18) 

Eliminating Q>lt from (18), we obtain for P>lt the 
equation 

P{E- H- HQ [Q(E- H)Q]-1QH}P'V = 0. (19) 

Equation (17) differs from (19) in that the optical 
potential 

W = PHQ [Q(E- H) Q]-1QHP 

is replaced by its approximate value 
n 

Wr = ~ (E- rg<">rtvU·> (r) ~ d-r:vu-> (r) 
),=1 

= PllQR (RQ (E -H) QR) -I RQHP. (20) 

Thus, the approximate solution of the Schrod­
inger equation is equivalent to replacing the true 
optical potential by Wt -an integral operator with 
degenerate kernel. 

Let us investigate the conditions when W :5 Wt. 
We introduce T = 1 -R and M = Q(H- E )Q. From 
the operator identity 

M-1- R [Rl11R]-1R = Jll-1T [TM-1T]-1TM-1 (21) 

it follows that the inequality W :5 Wt is satisfied 
if TM-1T::::: 0. 

The energy E lies always below the continuous 
spectrum of the operator QHQ. If E is lower than 
the lowest eigenvalue of QHQ, then the operator M 
is positive and the inequality W :5 Wt is satisfied 
for any choice of the functions <Pi. All the de nom­
inators E - g(A.) in (20) are in this case negative 
and all the terms Wt correspond to attraction. If 
E is larger than the lowest of the eigenvalues QHQ, 
some terms of W correspond to repulsion, and the 
inequality W :5 Wt can be proved only by limiting 
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the choice of the functions <Pi. It is easy to prove 
that in order to satisfy the inequality TM-1T ~ 0 
it is sufficient to choose the functions <Pi such that 
(15) gives as many eigenvalues &(A.) lower than E 
as there are eigenvalues of the operator QHQ lower 
than E. 

If these conditions are satisfied, it follows from 
the results of Sec. 2 that the exact and approximate 
values of the S matrix are related by the equation 

(22) 

where yt ~ 0. If furthermore the matrix K varies 
continuously on going continuously from Wt to W, 
then the following inequality is satisfied 

(23) 

If the matrix K-1 varies continuously, the follow­
ing inequality is satisfied 

K-1<;: Kt-10 

Assume that there are two sets of functions 
<I>i 1 and <Pi2 with n2 > n1, and that the second set 
contains all the functions of the first set. If the 
functions of the first set satisfy the conditions 
under which (22) is satisfied, then the functions 
of the second set also satisfy these conditions and 
S = S1 exp [ 2iy1 ] = S2 exp [ 2iy2 ] with y1 ~ 0 and 
y2 ~ 0. Replacing in (22) R by R1 and M by 
R2MR2, we get 

V1~ V2;> Oo (24) 

If the continuity conditions are satisfied, we have 
also 

(25) 

4. CONCLUSION 

1. In the preceding section, particles 1 and 2 
were assumed different. The results remain true 
also if the particles are identical. It is merely 
necessary to choose the functions <Pi symmetrical 
or asymmetrical, and replace (11) by 

Ill n 

P=l i=l 

The results of Sec. 3 remain true also if both 
the target and the incident particles have additional 
internal degrees of freedom. This causes increases 
in the number of variables in (11). It is merely im­
portant to be able to excite at the energies in ques­
tion only a finite number of states of the target and 
of the incident particle, and for the first sum in 
(11) to contain the wave functions of all these states. 

2. In Sec. 3 there is a considerable degree of 
arbitrariness in the choice of the functions <Pi, so 
that many approximate methods are equivalent to 
the solution of Eqs. (13) and (14). In particular, 
Eqs. (13) and (14) follow from the variational prin­
ciples of collision theoryC4•6J, if the trial functions 
are chosen in the form (11) and the derivatives 
6/ oup ( r 1 ) and a; aci of the varied functional are 
equated to zero. In this connection, the results of 
the variational calculations with trial functions of 
the form (11) satisfy inequalities (22)- (25). The 
equations of the method of strong coupling of a fi­
nite number of channels [s,s] are a particular case 
of (13) and (14), so that the results also satisfy the 
inequalities (22)- (25). It is essential to take into 
account here the coupling of all the open channels. 
The results obtained by allowance for a different 
number of closed channels are connected by in­
equalities (24) and (25). The equations for the co­
efficients Q'~~t• obtained from the variational prin­
ciple [13 J, likewise coincide with (14) once up ( r) 
is eliminated from the latter with the aid of the 
Green's function. 

3. The numerical solution of (17), like the so­
lution of any integra-differential equation with 
degenerate kernel, reduces to a solution of the 
differential equations 

"' m 

~ Lpqvq<tl (r) = vP<ll (r), 0 0 o' 
Q=l 

m 

~ Lpq~oq(n) (r) = V P (n) (r) (26) 
Q=l 

and of the algebraic equations for the determina­
tion of the coefficients of the v~ ,\) ( r ) in up ( r). 
The need for repeated solution of the equations 
calls for a margin of accuracy in the intermedi­
ate calculations. If we first tabulate the Green's 
function of the equation ~; 1 Lpq v q ( r ) = 0, the 
solution of (26) reduces to an evaluation of inte­
grals. We can solve the system (14) directly with­
out first transforming it into (17). 

4. Resonances appear in the calculated cross 
section near those values of &(A.) [ (15), (17)] which 
lie in the interval of the energies E in questionP5J 
The requirement that Eq. (15) give as many eigen­
values below E as there are eigenvalues of the 
operator QHQ is a requirement that the number 
of the calculated resonances below E coincide 
with their actual number. 

5. Let n functions <Pi be the first functions of 
some total set of functions. According to (24), the 
matrix yt decreases monotonically with increas­
ing n. If only the matrices K and K-1 exist at 
the energy in question, we can always choose n 
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such that on going continuously from Wt to W the 
matrices K and K- vary continuously. Conse­
quently, at sufficiently large n, the inequalities 
(25) are always satisfied, Kt approaches the true 
value from below, and Kt from above. 

I am deeply grateful to R. Peterkop, R. Dam­
burg, E. Iolin, and E. Karule for numerous dis­
cussions. 

Note added in proof (29 May 1964). A recently published 
article[17 ] contains deductions that are close to ours. 
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