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Equations of motion are established for the current-like operators which in their ensemble 
determine the scattering matrix and which have been introduced previously [tJ. In the axi
omatic construction of the scattering matrix, these equations (which involve functional 
derivatives) play the same role as the Hamiltonian equations in the Heisenberg picture. 

1. INTRODUCTION 

IN our previous paper [i] 1> it has been shown that 
if one constructs the scattering matrix starting 
from the fundamental assumptions formulated by 
Bogolyubov, Polivanov, and the author [2] 2>, the 
scattering matrix is completely determined by the 
(finite or infinite) sequence of operators A1, ••• , 

Av, . . . • Namely, the radiative operators s(n) are 
expressed in the form of a T-product with "coun
terterms" [I, (28)) in which the current-like oper
ators Av(xio .•. , xv) have to satisfy the condi
tions of locality [I, (29)), hermiticity [I, (30)), sym
metry [I, (31)) and spacelike (or local) commuta
tivity [I, (32)), such that the first of these opera
tors is identical to the current operator [I, (33)). 

If these operators were to depend only on the 
coordinates which have been written out explicitly 
then, by virtue of Eqs. [I, (29)] and [I, (32)) they 
could be characterized as quasilocal operators in 
the sense of Bogolyubov and Shirkov [a]. However, 
all the operators j, sCv) and Av, besides the ex
plicitly written coordinates (x) v• also depend 
functionally on cp (y). (We introduce an abbrevi
ated notation: a subscript for any quantity in 
brackets denotes the repetition of l such quanti
ties with the subscript increasing from left to 
right from 1 to l, e.g.: 

(x)z =Xi, .•. , xr, ¢(x)z =¢(xi) ... ¢(xz); (1) 

a supplementary arrow in the subscript will denote 
the reverse ordering, e.g.: 

(¢(x)) +-n = ¢(xn) ... ¢(xi).) 

l)To be quoted in the following as I. We use below the 
notation of the paper I and the following papers, without 
explanation. 

2)To be quoted in the following as PTDR. 

(2) 

The purpose of the present investigation is to clar
ify the character of this functional dependence. 

2. THE EQUATIONS OF MOTION FOR THE 
OPERA TORS A11 

We consider the functional (variational) deriv
atives of the operators sCn) and Av. We start with 
the simplest operator S (1 >. The relation I, (22) 
yields for its functional derivative 

6S<1>(x) = {[S<1> (y), s< 1> (x)]_ for y?J:x (3) 
Clcp (y) 0 for y ~ x 

which can also be written as 

<'lS<il(x) /<'lcp(y) = it(y-x)[S(Ii(y), S<il(x)]-. (4) 

The second way of writing is somewhat symbolic, 
since the product of two generalized functions (the 
commutator and the J.-function) may introduce an 
ambiguity, which can be expressed by adding an 
operator of the form of a counterterm which does 
not vanish only for x = y. 

It is essential that this will be a new counter
term for s<1>, which is not included in the expres
sion s<1> (x) = - iA1 (x) which gives this operator 
in terms of the current-like operators according 
to I, (28). However this term will not be quite ar
bitrary. Indeed, from the definition of the oper
ators sCn) ( cf. I) in terms of functional derivatives 
of the S-matrix, it is easy to derive, on the basis 
of unitarity, 

(5) 

and one can use for the operator s< 2>, in place of 
the causality requirement I, (21), the more com
prehensive representation I, (28), which takes into 
account the counterterms. Then we obtain instead 
of (3) 
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6S<1l(x) I 6cp(y) = T[S<tl(x)S<Il(y)]- SC1l(x)S<tl(y) 

-&(x, y) ='l't(y-x) [S<1l(y), S<tl(x)]-&(x, y). 
(4') 

We stress that in contradistinction to (4), the mul
tiplication by the J-function in (4') does not lead 
to any new ambiguities-the second line should be 
understood only as an abbreviated notation of the 
first; as regards the indeterminacy in the T-prod
uct, from the very meaning of the derivation of the 
representation I, (28) itself, this indeterminacy in 
the symbol T ( .... ) is in some way fixed and sep
arated into the current-like operator A2, which 
plays the role of a counterterm. 

Since the operator A1 differs from s<1) only 
by a factor, we now obtain for it the expression 

Mt(x) I 6cp(y) = -iT[At(x)At(Y)] 

+ iAt (x) At (y) + A2 (x, y) 

= -i'l't(y- x) [At(Y), At(x)]- + A2(x, y), (6) 

which can be called an equation of motion not only 
because of the external analogy with the Heisenberg 
representation equations, but also because the func
tional dependence on the asymptotic fields serves 
here in fact as a description of the temporal evo
lution. 

We go over now to the consideration of opera
tors of higher order. Owing to the resultant com
binatorial difficulties, this will be considerably 
more complicated. Therefore, for the sake of 
clarity of exposition we will recast the following 
discussions in the "mathematical" form of sev
eral consecutive lemmas. 

Lemma 1. The radiative operators s<n) satisfy 
the equations of motion 

M~: ~~))n) = s<n+1l ((x)n, y) - s<nl ((x)n) s<1l (y). (7) 

The proof can be obtained directly from the defini
tion of the radiative operators. 

We will now be interested in the equations for 
the current-like operators An. We first introduce 
the definition: 

S<nl((x)n) = .S<nl((x)n)- iAn({X)n), (8) 

i.e., we separate from s<n) the "last counterterm" 
iAn and denote by s<n) all the rest. Then we can, 
by regarding An as the difference between s<n) 
and sCn), derive from Lemma 1 the corollary: 

IIAn({X)n) . 
6cp (y) = - zT [An {{x)n) A1 (y)] 

+iAn {{x)n) A1 (y) + An+l ((x)n, y) 

- i [ 6s<n) ((x)n) + s<n) ((x) )s<1l (y) 
{)cp {y) n 

- s<n+1l ((x)n, y)- iT (An ((x)n) s<1l (y))]; (9) 

we have separated in the first line those terms 
which are analogous to the right hand side of (6), 
leaving the remainder of the terms in the second 
line, which necessitated also a splitting of the op
erator s<n+ 1l by means of (8). 

The idea of the following reasoning consists in 
proving that the second line in (9) vanishes. We 
will use as a starting point the circumstance that 
it is sufficient for this purpose to learn how to 
compute the functional derivatives of T-products 
of the operators A, each of which is of order not 
higher than (n -1 ), since only such operators oc
cur in s<n). This was exactly the meaning of the 
definition (8). We shall carry out the proof induc
tively. 

Hypothesis 1. The current-like operators A 
satisfy equations of motion of the form of the first 
line in (9). 

By means of this hypothesis, which is a direct 
generalization of the equation of motion (6) to v > 1, 
we prove the following lemma. 

Lemma 2. If hypothesis 1 is true for v ::; n -1, 
the functional derivative of the T-product of oper
ators Avi ( ~i ), where no ~i joins more than n -1 
points x, has the following expression: 

m 

= ~ T [Av, (£1) ... Av .. _1 (s .. -1)Av"'+l (£ .. , y) ... Avm (sm)l 
<I=1 

(10) 

(for the sake of brevity ~a denotes the ensemble 
of va coinciding points Xi+ 1, ••• , xi+ va ). 

For the proof we note first that the T-product 
can be written by means of symmetrizing opera
tors in the form 

T [Av, (sJ) ... Avm (sm)] 

= P (sb ... , sm) 'l't (£1 - £2) 

••• '1't (sm-1- sm) Av, (£1) ..• Avm (sm), (11) 

where the symmetrizing operator takes care of the 
summation over simultaneous permutations of the 
~a and the corresponding va. Applying the hy
pothesis 1 to each Avi we get 

liT [Av, (£1) ... Avm (sm)l 
6cp (y) 

= P (£1> · · ., Sm) '1't (£1- £2) · · · '1't (sm-1- Sm) 
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m 

X { ~ 'fr (y- sex) A., (sx) .•• A ... _1 (s .. -d s<t> (y) A ... (s .. ) 
CZ=l 

m 

<X=l 
m 

•.• A.m (sm) + ~ A., (sx) .•. A ... +I (s .. , y) ... A.m (sm)}. 
<X=l 

Here the last line is simply the T-product of the 
first line in the right side of (10) and, adding to 
the first two lines the product T [ A ... A ] S < 1 > ( y ) 
and collecting together terms with the same order 
in both sums, we obtain from these two lines the 
T-product 

This proves Lemma 2. 
Lemma 2 has taught us how to differentiate T

products. Let us now compute the functional de
rivative of s<n). We will show that the following 
lemma holds: 

Lemma 3. If hypothesis 1 is true for all v :5 n 
-1, then the functional derivative of the operator 
s<n) has the expression 

6S<n>( (x)n) I llcp(y) + s<n>((x)n)S(l>(y) 

= s<n+1>((x)n,y) + iT[An((x)n)S(I>(y)]. (12) 

For the proof we recall first that (12) is by defi
nition a sum of T-products of operators Av of or
der not higher than n -1; therefore we can apply 
Lemma 2 to all T-products in the sum, and the 
whole problem is exhausted by combinatorics. 

Thus, according to (8) (cf. I,(28)) and Lemma 2, 

1\s<n> ((x)n) + s<n> ((x)n) s<t> (y) 
llq> (y) 

(- i)m 
--1- P (xl,···• x .. ,J ... J ••• , Xn) m. 

2~m<n 
v1+ ... +vm=n 

m 

X ~ T[A., (x1 ,. • • , x.,) ... Av"'+t 
a=l 

+ ~ 
2~m<n 

v1+ ... +vm=n 

(- i)m+l 
..:..._----'-;1-P(x1 , •• • , x.,J ... J .. . , Xn) 

m. 

X T[A.,(x1, ... ,x.,) •.. A.m( ..• ,xn)A1 (y)]. (13) 

We shall now transform the right side of (12). 
Using a more detailed notation for the sums which 
intervene in the definition of the operator s<n+ 1> 

we can write: 

X ~ P(Xto···oXv,J ... Jxv,+ ... +•m-1+1,••••Xn0 Y) 
v1+ ... +vm=n+l 

•{;;>1 

X T [Av, (xto .. . , x.,) •.. Avm (xv,+ ... +•m-1+1> ... , Xn, y)]. 
(14) 

The aim of the planned transformations is to ex-
hibit explicitly all permutations of the variable y, 
leaving only the summations with respect to the 
permutations of xt> .•. , Xn· Obviously, the sum
mations over permutations in (14) will be effected 
if we first add the results of substituting y for one 
of the variables 

x,_, Vt + ... + 'Vrx-1 < /, ~ Vt + ... + Vrx 

of each group, and then sum over all permutations 
of the variables x. 

Thus, 

p (Xt. •• • , Xv1 J .•• J Xv2+ ... +Vm-t+l•. ·• ., Xn 1 y) 
m 

X T [Av, .•. Avm ( .•. , Xn, y)] = ~ p (x1, .. . , x.,J 
ot=l 

••• , Xv.+ ... +va+r-11· •• Jxv.+ ... +vm-1' • •• , Xn) 

X T [Av,• ..• Ava. (xv,+ ... +•cx-1 +1• ... , Xv,+ ... +vcx-h Y) 

• • • Avm (xv,+ ... +vm-1' • .. , Xn)] (15) 

Let us now carry out in (14) the summation over 
the numbers vj for fixed m. Depending on the 
value of va, we encounter two cases: the case A, 
when va ~ 2 and the case B, when va = 1. 

In the case A, making the substitution 

Vi = v/ for j =/= ot, 

we arrive at 
m 

~ ~ P(xr,•••,Xvt'I···IXv1'+ ... +v'a-l+l, ••• ,Xv/+ ... +va'J 
v{+ ... +vm'=n a=I 

•{>1 

.•. Jxv,'+ ... +v'm-1+1 , ... ,Xn) T [Av,' ... Avcx'+l 

X (xv,'+ ... +v'«-1 +lo • .. , Xv,'+ ... +vcx'' y). • • Avm'] 

(in the following we omit the primes). In the case 
B the a-th group will in general not participate in 
the permutations; as a result both the number of 
groups and the sum over all v decrease by one 
unit and we obtain the contribution 

m ~ p (x1, .. . , x •• l •. ·I Xv,+ .. ,+Vm-2+1' ... , Xn) 
v1+ ... +vm-r=n 

•{>1 

X T [A., .•. A•m-t At (y)l 

(the factor m is due to the fact that the .case B is 
realized once for each of the 1 :5 a :5 m ). 

Thus, 
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~ P(Xt 1 .. • , Xv, I·. ·I· .. , Xn 1 y) 
V1+ ... +vm=n+l 

Vj >t 

X T [Av,• .. A.m ( ... , Xn, y)] 

~ p (Xt, ••• , Xv,l] ••• 1 Xv,+ ... +Vm_2 +1• ••• , Xn) 
"'+ ... +vm-t=n 

•;>t 

m 

+ ~ ~ P(xlt .. . , x.,l . .. 1 ... , Xn) 
v1+ ... +vm=n a=t 

•; >t 

(16) 

Therefore, performing the remaining summation 
with respect to m, we obtain 

S(n+l) (Xt 1 • • ., Xn, Y) 

~ (- i)m 
..:::.J--m 

m=2 m! 

~ X P (xt, ... , Xv,l·. ·I Xv,+ ... +V +1• ••• , Xn) vl+ ... +vm-1=n m-2 
•;;;.t 

X T [A., ... A•m-t At (y)] 

n+t (- i)m 
+ ~ ---m! ~ P(xt, ... , x.,l .•• I ... , Xn) 

m=2 v1+ ... +vm=n 

"i::>t 

m 

X ~ T [Av,• . · Ava +I (sex, y) . · . Avml· 
a=t 

We note now that in the second sum the summa
tion goes in fact not up to n + 1, but only to n, since 
for m = n + 1 all Vj = 1 and case A is not realized. 
In the first sum it is convenient to make the sub
stitution m = m' + 1 and to separate the term with 
m' = 1 (we omit the primes in the following). We 
obtain finally 

S(n+l) (Xt, • , • , Xn, y) = (-i)m 
- 1- P (x!t ... , Xv,l m. 

+ 
2<;;m..;:n 

••+···+•m=n 
v;:;;>t 

m 

2<;;m<n 
••+···+•m=n 

•;>t 

(-i)m 
mr-P(xlt .. ·I·. ·I· .. , Xn) 

X ~ T [Av, (st) • • · Ava+I (Sa• y). ·. Avm (Sm)] 
a=] 

- T [An((x)n)At(y)]. (17) 
Carrying over the last term to the left we see that 
the right side of (17) then coincides with the right 
side of (13). This concludes the proof of Lemma 3, 
since according to I, (33) At (y) = is0 > (y ). 

We can now conclude the planned induction and 
prove the following theorem: 

Theorem 1. The current-like operators Av sat
isfy (for any v) the equations of motion assumed 
in hypothesis 1: 

8Av (x11 ••. , x.)j6cp (y) = - iT [Av (sv) At (y)] 

+ iA. (sv) At (y) + Av+I (s., y) 

= -itt (y- sv) [At (y), Av (sv)L + Av+I (s., y). (18) 

For the proof we assume that Theorem 1 is true 
for any v ~ n - 1; we then find that Lemma 3 will 
be true for v = n, and therefore the second line in 
(9) will vanish. Thus from the corollary of Lemma 
1 follows the validity of Theorem 1 for v = n. Since 
for v = 1 the Theorem 1 is true [ Eq. (6)], it will 
be true by induction for any v. 

3. SOLVABILITY CONDITIONS 

Thus, we have established that the current-like 
operators A1o ••• , Av, •.• which determine the 
scattering matrix via the expansion I, (28), must 
satisfy, beside the conditions I, (29)- (32), also the 
equations of motion (18). Therefore, in distinction 
from the apparently analogous situation when the 
scattering matrix is constructed in the form of a 
functional expansion in terms of the "intensity of 
switching-on the interaction" g(x) [a], these op
erators cannot be given in an entirely arbitrary 
manner, taking into account only the conditions 
I, (29)-(32), since the current-like operators of 
different orders are coupled with each other. We 
can even take, as we shall do in the present sec
tion, a different point of view, namely that the 
equations of motions (18) are recurrence formulas 
which determine each operator Av+ t in terms of 
the preceding one. 

At first sight it might seem that the problem 
of arbitrariness in these operators is exhausted 
by these requirements: one could prescribe an 
arbitrary hermitian (I, (30)) and space-like-com
mutative (I, (32)) ·current j(x) which could serve 
as the operator At (x); then one could determine 
successively all other A by means of the equations 
of motion (18), and this, in turn, will determine via 
I, (28) all the coefficient-functions of the scattering 
matrix. However, in reality, as in the integration 
of the ordinary equations of motion, the situation 
is not so simple. Each of the operators Av must 
obey a set of conditions I,(29)-(32) "of its own," 
which, as is easy to see, do not follow automatic
ally, if one accepts (18) as the definition of higher 
current-like operators in terms of the lower ones. 
Therefore the conditions I,(29)-(32) impose for 
each v new restrictions, which must also be ap
plied to the operator At, in order to follow the 
point of view developed here. 
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We start this program with the construction of 
the operator A2 and with the derivation of the sup
plementary conditions which impose on the opera
tor A 1 the requirement that A2 satisfy the condi
tions I, (29)-(32). According to (18), 

A2(x, y) = Mt(x) I 6ip(Y) 

+ iT[At(x)At(Y)]- iAt(x)At(y). (19) 

It can be seen directly from here that in order that 
I, (29) be satisfied for v = 2, it is in any event nee
essary that the condition 

Mt(x) l6ir(Y) = 0 for y~x (20) 

hold, for otherwise A2 would not vanish for such 
values of the arguments. Thus, it is not sufficient 
to impose on A only the Lehmann conditionC4J of 
space-like commutativity; it is necessary that it 
satisfy the Bogolyubov causality condition [3] (as 
we shall see, it is exactly the Lehmann condition 
which need not be imposed as a special require
ment). 

Without touching for the moment upon the prob
lem of the vanishing of A2(x, y) for y > x, let us 
see how to check that the symmetry condition 
I, (31) is satisfied. Writing (19) with x and y in
terchanged and subtracting the new equation from 
the original one, we should obtain zero if symme
try is satisfied. Thus, in order to satisfy I, (31) 
for v = 2 it is necessary that the following con
dition hold: 

Mt(X) I Oip(Y) - 6At(Y) I 6ip(X) 

- i[At(x), At(Y)] = 0, (21) 

which will be called in what follows the solvability 
(integrability) condition. It is easy to see now, 
that it is sufficient that the causality condition (20) 
and the solvability condition (21) be satisfied for 
the operator A1, in order that the operator A2 

satisfy conditions I, (29) and I, (31), and the opera
tor A1 satisfy the Lehmann condition of space-like 
commutativity (I, (32)). 

Thus, in order that all conditions I, (29)-(32) be 
satisfied up to second order in v, it is necessary 
and' sufficient that the operator A1 ( x) satisfy, be
side the condition I, (30), also the requirements of 
causality (20) and solvability (21) 3>. 

Let us now consider the situation for higher or
ders, i.e., let us see, whether no new "solvability 

3 )0bviously, if we were not constructing the scattering 
matrix out of the operators A, but conversely, the operators A 
in terms of a known scattering matrix satisfying all the con
ditions in PTDR, Sec. 2, then the solvability condition (21) 
would be automatically satisfied (the causality condition 
(20) differs from the one used in PTDR only by a factor i). 

conditions" for A1 appear because of the require
ment of symmetry of higher operators Av, v > 2 
(there is no reason to fear that the other condi
tions I,(29)-(31) are violated in higher orders). 
We note first that owing to the solvability condi
tion the operator A2 can be written clearly in the 
symmetric form: 

1 (oA1 (x) oA1 (y)) "T A ( ) A ( )I 
A2 (x, y) = -2 Oip (y) + .Sip (x) + z I 1 x 1 Y 

i - 2 [A1 (x), A1 (y)]+. (22) 

The following rather cumbersome calculations 
consist in forming the difference of operators A3 

with permuted arguments, on the basis of (22) and 
(18). In order to prove that this difference van
ishes one has to get rid consecutively of functional 
differentiations, making use of the solvability con
dition and of Lemma 2 for the functional deriva
tives of T-products. As a result only products 
of operators having all possible orders are left 
over, and such that each term appears twice, with 
opposite signs. 

Thus, from the requirements imposed previ
ously on A1 it follows automatically that 

(23) 

i.e., in third order there appear no new solvability 
conditions. We will not generalize this proof to 
higher orders, which would involve only the use of 
cumbersome combinatorics, but would not yield 
anything new. 

Remembering now that the operator A1 is sim
ply the current j, we can formulate the result we 
have obtained in the following manner: the scatter
ing matrix is completely determined by prescribing 
the current operator j ( x), which is hermitian, and 
satisfies the conditions of causality (20) and solva
bility (21); if these conditions are satisfied (to
gether with the condition of relativistic covariance, 
which can be formulated for the current in an ob
vious manner) the current operator can be chosen 
completely arbitrary, and to each choice of cur
rent operator there will correspond an appropri
ate scattering matrix, satisfying all the require
ments of PTDR, Sec. 2. 

One should not, however, overestimate the value 
of this result; it is not much simpler to find a cur
rent satisfying the conditions (20) and (21), than to 
find an S-matrix satisfying the PTDR requirements. 
These conditions are operator equations and in go
ing over to matrix elements they become an infi
nite set of coupled equations, that has been stud
ied by Polivanov and the author C5, 6J. Our result 
indicates the equivalence of such a system with 
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those systems which are obtained directly from 
the S-matrix. Our result occupies here the same 
place as the well known theorem of perturbation 
theory [3 J which states the equivalence of require
ments imposed on the scattering matrix or on the 
Hamiltonian. 

4. SPINOR RADIATIVE OPERATORS 

If the theory under consideration involves not 
only a boson field cp (x ), _but also fermion fields, 
say the fields zJ;(x) and zJ;(x ), then determination 
of the scattering matrix and of the radiative oper
ators is subject to an additional complication due 
to the noncommutativity of the spinor field oper
ators and of the functional derivatives with re
spect to these: one must take care everywhere to 
maintain the order of factors and to take into ac
count the sign changes introduced by changes in 
this order. 

It will now be convenient to write the expansion 
of the S-matrix in terms of normal products 
(1,(10)): 

oo ( ")l.+)J.+v 
S = i.~ v ;, ~! v! ~ (dx)A (dy)l'" (dz)v <Dl.!J.v ((x)A; (y)l'"; (z)v) 

x :('IJ(z))-v(<:p(y))+-!J.(-ii)(x))+-1.:, (24) 

and to define the radiative operator of order l + m 
+ n by the equality: 

l)l+m+nS 
s<lmn) ((x). (y) . (z) ) - s+ (25) 

l> m• n - (l'l'IJ(x))l(l'l<:p(y))m(l'l'IJ(z))n . 

It can be seen from (25) that s<···><···> is sym
metric with respect to the arguments of the mid
dle group, but is antisymmetric with respect to 
the arguments of each of the extreme groups. A 
permutation of arguments between the groups is 
obviously meaningless. The same symmetry prop
erties are of course assumed also for the func
tions q,ltpv in (24). The choice of opposite order
ing of the arguments of (24) and (25) will save us 
a large number of sign changes. 

Thus the contents of Lemma 1 in I remains un
changed: 

QJimn ( (x),; (Y) m; (z) n) 

-- ;I+m+n<OIS<Imn)((x) 1·, (y) · (z) ) IO> ' m, n · (26) 

In order to formulate the causality requirement, we 
have to impose now not only one, but a whole series 
of conditions: 

l'JS(lOO) (x'· _. _) 
----=--' --' -----'- = 0 for x G; x'; 

l'l'IJ (x) . 

l'JS(lOO) (x'· _. -) 
l'lqJ(y) ' = 0 for yG;x'; ... ; 

l'JS(om) ( -; -; z') 
l'l'IJ(z) =Ofor zG;z'. (27) 

Lemmas 5 and 6 of I, which follow from these, are 
also unchanged, and contain only functional deriva
tives with respect to arbitrary fields. 

A less trivial result will be obtained in carrying 
out the functional differentiations in the left side of 
Lemma 5 in 1: there will appear some additional 
sign changes which are maintained in the analogues 
of the equations of motion (7): 

l'JS(Imn)((~~;{~~)m; (z)n) = (-1)'S(l+lmn) ((x), £; (Y)m; (z)n) 

-(-1)l+ns(lmn)((x)t; (Y)m; (z)n)S(lOO)(£; -; -); (28) 

the second of these equations remains unchanged: 

!'JS(Imn) (r~~~TJ~Y)m; (z)n) = S(l m+l n) ((x)t; (y)m, T]; (z)n) 

- S(lmn) ((xi); (Y)m; (z)n) S(OlO) ( -; Tj; -), 

and the third one takes on the form 

l'JS(Imn) ({x)z; (Y)m; (z)n) 

il'IJ (s) 

(29) 

= (-1)1+ns<Zmn+r>((x)z; (Y)m; (z)n, s) 

-(-i)l+ns(lmn)((x)t; (Y)m; (z)n)S(OOl)(-; -; s). (30) 

We recall that according to Eq. (25) and the defini
tions of currents adopted in PTDR 4>, 
8(100) (£; -)=it(£), S(OIO) ( -; T); -) = -ij (TJ)' 

s<oOJ) ( -; -; s) = -it (s). (31) 

The equations of motion (28)-(30) allow one to 
construct a proof for a lemma of the type of Lemma 
7 in I. We will not do this however, since it is 
elear that the differences from the pure boson case 
can appear only through signs, which can be rees
tablished if one takes care which derivatives have 
been permuted when going from the left to the right 
side. Therefore the integral causality conditions 
will read 

S(lmn) ((x)t; (Y)m; (z)n) = (-f)(l-l.)vS(l.!J.v) ((x)A; (y)l'"; (z)v) 

X sU-1. m-l'" n-v> (x1.+1, ... , xz; (Y)m-l'"; (z)n-v), 

if 

{(x)A; (y)l'"; (z)v} d {(X)t-1., (Y)m-l'"' (z)n-v}. (32) 

In order to derive representations of the 
type of I, (28) for the scattering matrix in terms of 
current-like operators A, one also needs the uni-

4 )For typographical convenience we will represent here 
the Georgian letter "in" used in PTDR by the Greek "iota." 
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tarity condition in a form similar to I, (27). In or
der to formulate this requirement we must intro
duce first conjugation rules for radiative operators 
s<Zmn). Naturally, it is not convenient to use for 
this ordinary hermitean conjugation, since it is 
necessary that under such a conjugation the form 
of the condition I, (27) be conserved. It turns out 
that such a generalized conjugation, which we will 
call in the following "taking the adjoint," is con
veniently defined by the equation 

S=F(lmn)( (x)z; (Y)m; (z) n) 

= (-1)n+l(y0] 1[S<nml)( (z) ,._n; (y),._m;(x)..--z[+(v0 ] 11 • (33) 

It is easy to see that this definition is chosen so as 
to compensate for the non-hermitian character of 
the operators ljJ(x) and ~(x ). The only change in 
the unitarity condition will then be the appearance 
of sign -factors (- 1 )<Z-A.)V of the same type as in 
(32). It is clear that one must impose on the 
current-like operators, in place of the hermiticity 
requirement which held in the boson case, a con
dition of self adjointness; then adding to s< Zmn), 
with known lower order s< ... )' of a term 
- iAzmn (. .. ) will not destroy unitarity in the 
order Zmn. 

Thus we introduce the sequence of operators 

with the conditions of: 
a) locality 

(35a) 

excluding the case x1 = · · · = Xf... = y 1 = · · · = z 11 ; 

b) self-adjointness: 

A"'\·1'-" ((x)A; (y)fL; (z).,) = A1.fLv ((x)~.; (y)fL; (z)v); (35b) 

c) symmetry: 

(35c) 

according to whether the permutations ( a 1, ••• , O!f...) 

and ( y 1, ••• , Yv) are even or odd; 
d) space-like commutativity (local commutativ

ity): 

[A1.1'-v ((x)>.; (y)fL; (z)v), A'1.1J-'v' ((x'h·; ('l/')1'-'; (z')v·)l+ = 0, (35d) 

for 

with 
A10o (x) = -t(x), Ao10 (y) = j (y), 

Aoot (S) = t(S}. (36) 

Then, on the basis of the same arguments as in 
the Bose-case, the following representation holds 

for the radiative operators s<Zmn) 

s<lmnJ((x)z; (Y)m; (z)n) = ( -i)1+m+nT 

X [A roo (xr) ... A,no'(xz) Aoro ((Y)m) Aoor ((z)n}l 

(- i)N + ~N!P(xi> ... , x~.,J ... ) ... , x1) 

N 

X P (?Jr, • • · • YiJ-, J · · ; J. · · • Ym} 

X P(zr, · · ·, Zv,)· .. J ... , Zn) (-f)KT 

X [A1.,1J-1v1 ((x)A,; (y)fL,, (z)v,} - iAtmn((x)z; (Y)m; (z)n)· 

(37) 

Here 

K = vr(A2 + ... +AN)+ 'V2 (Aa + ... +AN) 

+ ... + 'VN-2 (AN-1 +AN)+ 'VN-rAN, (38) 

and the sum N is calculated over all the ways of 
breaking up the three natural numbers ( l, m, n) 
into a set of N groups of three natural numbers 
(A.j,Jlj• vj), includingzero, j=Z, ... ,N, suchthat 

N 

~ Ai = l, 
i=I 

N 

~ !li = m, 
i=I 

N 

~ 'Vi= n, 
[i=I 

The following reasoning is carried out exactly 
as in the boson case: one can define "incomplete 
radiative operators" s<lmn) and prove for these, 
starting from (28)-(30) equations of the type of 
the corollary to Lemma 1, one can formulate hy
pothesis 1 and then consecutively prove Lemmas 
2 and 3. All these points do not suffer any modi 
fications of principle, the only difference being 
the sign-factors which we already know, and 
more complicated combinatorics. Therefore we 
will not repeat here all this reasoning and will 
formulate the result directly in the form of the 
following theorem: 

Theorem 2. In the case where spinor fields are 
present, the current-like operators Azmn (for any 
l, m, n) satisfy the equations of motion: 

<'IAzmn ((x)l; (Y)m; (z)n) 
<'l1jJ (£) 

= (-1)1+n {T [Atmn(· .. )S(Ioo)(£; -; -)] 

- Azmn ( ... ) s(lOll) (£; -;-)} + (- 1)1At+I m n((x)z, 

£; (Y)m; (z)n), (40a) 

Mzmn ((.r)z; (Y)m; (z),) _ T [A ( ) s<orol (-· . -)] 
<'lcp (TJ) - lmn · · · ' TJ, 

-Azmn(· . . )S(OlO)(-; Tj; -)+Atm+rn((x)z; (Y)m, Tj; (z)n}, 

(40b) 
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Mrmn((x)r; {Y)m; {z)n) 
ll~m 

= (-f)l+n{T[Armn(·· .)S(ooll(-; -; W 

- Armn(· . . )S(OOl) (-; -;~)+Arm n+1 ((x)r; 

(Y)m; (z)n, m. (40c) 

In particular, the most important equations, those 
for the three currents, are: 

liL 11 (x) . -
ll\j);>. m = - dt (~- x) {L .. (x), L;>. <m+ + AlOl/Cly (x; -; \;), 

(41a) 

~~~~) = i'lt (TJ- y) [j (y), j (TJ)L + Ao2o ( -; y, TJ; - ), (41b) 

~Y (z) = W (~- z) {L;>. (~). Ly (z)}+ + A101/AB (~; -; z), (41c) 
ll\j);>.m . 

where the spinor indices have been explicitly writ
ten. 

It is not difficult to generalize the results of 
Sec. 3, also. The only difference will consist in 
the fact, that in order to fix the theory it will be 
necessary to specify a current for each field. The 
different currents can be specified independently, 
as long as the "crossed" solvability conditions 
are satisfied. 

The main result of the present paper are the 
equations of motion (18) [or (40)]. Since in the ap
proach which had been chosen in PTDR for the 
construction of the theory the time evolution of 
the system can be expressed only in terms of 
functional differentiations (we have no other way 
of distinguishing different points in space time), 
these equations are called upon to play the role 
of the Heisenberg equations of motion and there
fore possess a fundamental significance. 

One can look for further applications of these 
equations in different ways. If one takes the point 
of view developed in Sec. 3, these equations can 
serve for an ordering of the introduction of coun
terterms in the system of previously considered 
equations [5, 6], which is essential, since the con
stants which intervene in the individual equations 
of this system are not independent. In some prob
lems, however, it is more convenient not to elim
inate the higher-order operators, but rather to 
operate with the whole ensemble, taking specific
ally into account the fact that, as it seems, in a 
renormalizable theory their number has to be fi
nite, on the basis of considerations of growth of 
the matrix elements. This treatment seems in
dicated in cases when one distinguishes between 
matrix elements of current-like operators on and 

off the energy shell, since it allows to character
ize very conveniently the arbitrariness involved 
in extensions off the energy shell. 

The most radical approach would be, of course, 
an attempt to free these equations of nonlinear 
terms by means of a canonical transformation 
carried out by means of an operator of the type 
of a "halved" S-matrix S(oo, u(x)). Indeed, 
neglecting complications due to indeterminacies 
with coinciding arguments (divergences), this 
procedure permits to solve the transformed equa
tions of motion and to "prove" the theorem of 
equivalence of the theory based on the axioms of 
PTDR, with the usual theory, which starts from 
a Lagrangian ( cf. [7], where this result is obtained 
in a similar approximation from the axioms of [4J). 
A more detailed consideration, which will be car
ried out elsewhere, shows however, that taking 
into account the counterterms such a program 
seems impossible to carry through, which is 
connected with the difficulties in the definition 
of the "halved" scattering matrix (cf. [8J), and 
there remains only the possibility to work with 
the Eqs. (18) in their original representation. 

In conclusion the author would like to express 
his gratitude to N. N. Bogolyubov, M. K. Polivanov 
and B. M. Stepanov for a discussion of the results 
which were obtained. 
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