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Some possibilities are discussed for investigating the lifetime and the law of motion relative 
to local degrees of freedom of atomic systems by means of experiments on quasielastic in­
coherent scattering of slow neutrons and by the Mossbauer effect. In particular, it is shown 
that under conditions of "poor resolution" the dependence of the probabilities for these ef­
fects on momentum transfer and temperature of the medium differs essentially from that for 
a system without local states. For example, for large momenta one may even observe an in­
crease of the probability with temperature. 

J. It is well known that inelastic (incoherent) scat­
tering of slow neutrons in matter is an effective 
method for studying the energy spectrum of atomic 
motions and in particular for determining the en­
ergy levels of motion relative to local degrees of 
freedom such as, for example, hindered rotation 
in water. [1] Analysis of peak shapes in the energy 
distribution of inelastically scattered neutrons for 
which such degrees of freedom are excited enables 
one to obtain additional information about the na­
ture of the local motion. Thus, from the peak width 
one can evaluate the lifetime of the quanta of the 
local state; but such an estimate, strictly speaking, 
gives only an upper limit for the lifetime, since a 
broadening of the spectrum may also be caused by 
the spread of the energy level due to inhomogeneity 
of the system. 

The present paper shows that from an analysis 
of elastic (more precisely, quasielastic ) scatter­
ing of neutrons one can obtain additional valuable 
information about the energy levels corresponding 
to local degrees of freedom and, in particular, 
about their lifetime. Similar information can also 
be gotten from a study of the Mossbauer effect. 

2. The expression for the differential cross sec­
tion for incoherent scattering of slow neutrons by 
some (definite 1>) nucleus in an atomic system can 
be written in the form [2] 

(1) 

l)We shall omit the index labeling the particular nucleus. 

Here a is the incoherent scattering length from 
an infinitely heavy nucleus; Po and p are the ini­
tial and final neutron momentum; niC =Po-p, :liw 
= (pij- p 2 )/2m (where m is the neutron mass); 
R(t) is the Heisenberg operator for the coordi­
nate of the scattering nucleus. The symbol ( ••• ) 
= ~igi ( i I ... I i) denotes a quantum mechanical 
and statistical average over the states I i) ( gi is 
the probability that the system is initially in state 
I i > ). 

The elastic scattering cross section is given 
by (1) with the correlation function S( IC, t) re­
placed by its asymptotic expression for t - oo • 

For atomic systems which have no local degrees 
of freedom, the function S( IC, t) practically reaches 
its asymptotic form after a small number of mean 
periods of atomic motion, Tn. If, however, the 
system has local degrees of freedom (say one, 
for simplicity), then at large times 2> 

S (x, t) = 8 0 (x, =) + e-11 ''81 (x, = ), 

S1(x, =)=~g;j(ijei><Rii)j2 -S0 (x, oc), (2) 
i 

where T is the lifetime for the excitation of the 
local degree of freedom, and T » Tn, so that the 
approach of S( IC, t) to its asymptotic form occurs 
much more slowly. As the local degree of free­
dom becomes more and more collectivized, S1 ( IC, t) 
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2)In those cases where S(x, t) has no limit for t -> oo, as, 
for example, for the oscillator, we mean the average of 
S(x, t) over a time interval much greater than T 0 J•] 
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approaches zero. In the case of a light impurity in 
a heavy lattice with anharmonic binding, an expres­
sion of the form of (2) was obtained and analyzed 
by Krivoglaz and Visscher. [4] 

Thus the cross section for quasielastic scatter­
ing of neutrons should depend significantly on 
whether local degrees of freedom are or are not 
present. 

3. Suppose that the apparatus resolution is a 
gaussian of width .:::l. Then the experimentally 
measured cross section for quasielastic scatter­
ing is actually the quantity 

( drs) el r dQ exp en J dt e-A't' [S0 (x, oo) + e-ltii'Sl(x, 00 )] 

-00 

(3) 

In particular for TLl » 1 (poor resolution) 

( drs) el Vll: 
dQ exp cnT [S0 (x, oo) + S1 (x, oo)J, (4) 

for T Ll « 1 (good resolution) 

(5) 

Thus by studying the quasielastic incoherent 
scattering of slow neutrons with different resolu­
tions (or by measuring the shape of the quasi­
elastic peak in the case of good resolution), one 
can determine the lifetime of the excitation of the 
local degree of freedom. If we take T"" 10-11-10-12 
sec (for crystals at relatively high temperature or 
for liquids), such experiments require a resolution 
of nil"" 10-5-10-4 eV, which can already be 
achieved with present day equipment. 

A similar situation also exists for the Moss­
bauer effect. The cross section for recoilless 
absorption of a y quantum (with momentum p) is 

rs(p) = ~~ r dtexp (- r ~~I_ it pc;, Eo) lim S(p, t), (6) 
-oo !->OO 

where a-0 is the resonance absorption cross sec­
tion, and E 0 and r are the position and width of 
the resonance level. Substituting (2) in (6), we get 

( ) - rsor2 { so (p, oo) 
rs p -4 r 2J4+(pc-E0) 2 

(1 + 1ij1T)Sl(p, oo) } 
+ r 2/4 (1 + 1i,j'rr)2 + (pc- E 0) 2 ' 

(7) 

i.e., the cross section is a superposition of two 
Lorentz shapes with different widths. Since W is 
the probability for the Moss bauer effect (for a 
thin sample), and is thus quadratic in u(p ), for 
the case where rr/n » 1 ("poor resolution"), 

W <Z) [So(P, oo) + S 1 (p, oo) )2, 

while for rr/n « 1 ("good resolution") 

W N [So(P, oo) ]2. 

(8) 

(9) 

Therefore by making experiments with short­
lived and longlived Mossbauer isotopes embedded 
as impurities in a lattice, one can also determine 
the lifetime of the local excitation. The Mossbauer 
effect has been observed in isotopes for which 
n/r is in the range from 10-7 sec (Fe 57 ) to 1 o -11 

sec (Re 187 , Ey = 134 keV). 
Thus the ranges in which one can do experi­

ments on elastic incoherent scattering and on the 
Mossbauer effect practically overlap. 

4. Now let us estimate the expected effect. For 
harmonic oscillations, with frequency w0 and po­
larization vector e, 3> of an atom with mass M at 
temperature T, 

(10) 

F'harm(~, y) = exp [- y2 cth ~]. (10') * 
Thus in the case of neutron scattering the effect is 

S1 (x, oo) =I ( (xe)2 1 ) 1 
S0 (x, oo) 0 21iffi0M sh (1iffi0 j2kT), - (11) 

and, in particular, for the torsional oscillations in 
water [1] ( Meff = 2.32 m, nw 0 = 0.06 eV kT = 0.025 

2 2 . ' ev, n K /2m= 0.18 eV, l.e., So(K, 00) = 0.2 ), we get 
S1 ( K, oo )/S0(K, oo) = 0.2, i.e., a quite sizable value. 

In the case of the Mossbauer method, for the 
classical Mossbauer nucleus Ir 191 (Ey = 129 keV, 
lifetime 10-10 sec), with nw 0 = 0.024 eV and kT 
= 0.008 eV, i.e., for S0( K, oo) = 0.11, we have 

(St(x, oo)/ So(x, oo)+ 1)2 -1 = 0.5. 

Similar results are found for other laws of mo­
tion relative to the local degree of freedom, such 
as strongly anharmonic vibrations, rotation, etc. 
It should be noted that one can treat in similar 
fashion atomic systems with collectivized degrees 
of freedom for which the spectral density is lo­
calized in a narrow frequency range ow, small 

3)The value of e2 determines the contribution of the local 
vibration to the total motion of the given atom. For vibration 
of a light impurity atom in a heavy lattice, e2 "'1. The devia­
tion of e 2 from unity can be taken into account by introducing 
an effective mass Meff• 

*sh = sinh, cth = coth. 
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compared to the average frequency w of collective 
motion. Then if the apparatus resolution is poor 
(~ >ow), such a collective motion has the same 
effect on the experiment as a local mode. Exam­
ples of such "quasilocal" motions are the optical 
vibrations of a crystal lattice containing markedly 
different masses in a unit cell, and the vibration 
of a heavy impurity atom in a light host, for which 
it is known [G] that one can have the condition 
ow« w. 

5. Now let us consider other possible ways of 
detecting and studying local motion of atoms. From 
here on we shall be talking about quasielastic neu­
tron scattering and the Mossbauer effect under 
conditions of "poor resolution" (probability pro­
portional to S ( K ) = S0 ( K, oo ) + S1 ( K, oo ) ) , since the 
locality can manifest itself only under such con­
ditions. 

It follows directly from formulas (10) and (10') 
that the temperature dependence of the function 
S ( K) is essentially different for local and collec­
tive degrees of freedom. Thus the contribution 
to the total function S( K) from a local vibration 
(formula 10) decreases much more slowly with 
increasing temperature T than the contribution 
from a collective vibration (formula 10' ), while 
under certain conditions (when ( K • e )2/2Mnw 0 > 2) 
in the low temperature region it even increases 
initially with increasing T. This peculiar behavior 
of S(K) is illustrated in Fig. 1, which shows the 
dependence of Fharm. ({3, y) on {3 for a few values 
of y 2; the curves for y2 > 2 have a definite maxi­
mum. 

The occurrence of this maximum is not a spe­
cial property for harmonic vibrations. To see 
this we consider the function S ( K) for an arbi­
trary system in the limit of low temperatures. 

F·harm 

O.~fl 

0 0.2 #.~ 0.6 0.8 f.O I.Z l~ l6 
p 

FIG. 1 

Considering that under conditions of poor resolu­
tion S ( K ) for one degree of freedom ( q, e ) is 
given by the general formula 

S (x) = ~ g; \ (i I exp (ixeqj'li) \ i) j2 , 

' 

g; = [f exp (- E;JkT) r exp (- E;fkT) (12) 

(where gi is the probability that the motion rela­
tive to the coordinate q is described by the wave 
function I i) with energy Ei ), we obtain, for 
T---... 0, 

S(x) = I<Oiexp{ixeq/1i}IO>I 2 

+ exp(- (Et- Eo)/ kT)s, (13) 

s= l<1lexp{ixeq/1i)I'DI 2 -I<Oiexp(ixeq/li}I0>\ 2• (14) 

From this we see that S decreases with tempera­
ture (s < 0) if the probability for "elastic" inter­
action in the first excited state is less than in the 
ground state, while S increases if the probability 
for elastic interaction in the first excited state is 
greater than in the ground state. 

Consider s as a function of K. For low mo­
mentum transfers 

(15) 

Since the dispersion of the displacements Di as a 
rule increases with increasing excitation (for ex­
ample, for the oscillator D1 = 3D0 ), in the limit 
of low momenta s < 0, and consequently S de­
creases with temperature. But systems are pos­
sible for which D1 ~ D0 (for example, for the rigid 
rotator, treated later in Sec. 6 ) , and then this 
statement is incorrect. With increasing K, the 
quantity I ( 1 I exp ( iK • eq/n ) 11) 2 usually de­
creases more slowly than does 
I ( 0 I exp ( iK • eq/n) I 0 )2 , since the first quan-
tity is the Fourier component of a more rapidly 
oscillating function. Thus as K increases the 
quantity s may change sign, i.e., starting from 
some value for the momentum transfer, S will 
increase with temperature (for example, for the 
oscillator when (K•e)2/2Mnw 0 > 2). The corre­
sponding value is Kcrit. "' n/Ro, where Ro is the 
effective size of the region within which the prob­
ability density is significantly different from zero. 

We should emphasize that these arguments are 
not absolute; it is possible to have systems for 
which s is always less than zero (for example, 
motion in an attractive Coulomb field). Strictly 
speaking, an increase of S ( K) with temperature 
will be observed for systems where the effective 
size Ro in the first excited state is not markedly 
greater than the value of R0 in the ground state. 
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6. Let us consider some examples. 

A. The rigid rotator. 

00 

F r.r (~, y) = [LJ (2l + 1) e-1(1+1)~] - 1 

1=0 

ex: 00 

X LJ LJ (2l + 1 )2e-1<1HlfliL2 (y) (LO il0l0)2 , (16) 
1=0L=O 

where Ro is the distance of the nucleus from the 
center of inertia of the rotator, J is its moment 
of inertia, while j L ( x) is a spherical Bessel func­
tion. For low temperatures ({3 - oo) 

Fr.r (~, Y) =jo2 (y) + 6e-2~h2 (y), 

i.e., it increases with temperature for all values of 
the momentum. 

The expression (16) simplifies in the limiting 
cases of large and small momenta: 

F r,r (~, Y) = io2 (y) + i22 (y) A(~), Y-->- 0, 

A(~) = 5 [~ (2l + 1) e-l (l+I>f31-1 ~ l (l + 1) (2l + 1) e-l (l+I)fl· 
l=O • l=0(2l-1)(2l+3) ' 

F r.r (~, y) = y-2 sin2yB (~), y ~ 1, 
00 00 

B (~) = [~ (2l + 1) e-l (Z+Illl] - 1 ~ (2l + 1 )2 e-l(l+Illl. 

l=O l=O 

Graphs of the dependence of the functions A and 
B on {3 are given in Fig. 2 (the dashed curves are 
the asymptotic forms of A and B: A({3) = %, 
B({3) = (rr/{3) 112 for {3- 0; A({3) = 6e-f3, B({3) = 1 
+ 6e-2f3 for {3- oo ). We see that Fr.r. ((3, y) in­
creases with temperature up to large values of 
T ({3 ~ 0.1 ). 
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O.J 
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B. Square potential well with infinitely steep 
sides (width a). 

S (x) = Fanharm (~, Y) 

00 

<Dm (~) = ~ 1m e-fln'' 
n=1n 

xe 
Y = 2n7i a, 

In particular, for low momentum transfers 
(y « 1) 

2 [ n;2 2 <D2 (~)] 
F anharm(~, y) = 1 - Y 3 - <Do(~) , 

(17) 

i.e., it decreases with increasing T, while for 
large y » 1, and under the condition {3y 2 » 1, 

3 sin2 ny 
F anharm(~, Y) = 4 n;2y2~2 , (18) 

i.e., it increases with temperature. As is easily 
verified, in the low temperature region ({3- oo) 

the quantity Fanharm· increases with tempera­
ture for y > .J 8/5 , and decreases when y < ..f875. 
Figure 3 shows the function F anharm ( {3, y ) in its 
dependence on {3 for a few values of y. As ex­
pected, for sufficiently large momenta (y .<: 1.5) 
one finds a temperature maximum. With increas­
ing y this maximum shifts toward higher temper­
atures. Formula (18) is very instructive in this 
respect, indicating that for large y the quantity 
Sanharm. increases like T2 over a wide range of 
temperatures. 

It is possible that the peculiar temperature de­
pendence of the Mossbauer effect on krypton em­
bedded in organic compounds [7] can be explained 
by this effect. Unfortunately the lack of detailed 
data prevents a more thorough analysis. 

7. In practice the observation of the peculiari­
ties in the temperature behavior of S ( K), when 
local degrees of freedom are present, is made 

Fanharn 
(7,20 

0,15 

0 0,! 0.2 O.J 0.5 

FIG. 3 
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difficult by the necessity for separating this effect 
from the background produced by the large number 
of collective degrees of freedom. This difficulty 
can be overcome by observing the dependence of 
the probability on the square of the momentum 
transfer, since the collective degrees of freedom 
give a contribution to this probability which is 
proportional to exp (- const • K2 ) , and the whole 
of the deviation from such a dependence is asso­
ciated with local degrees of freedom. 

In the case of quasielastic scattering of neu­
trons there is the additional difficulty that one 
must separate the quasielastic incoherent scat­
tering. 
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