THE ORIGIN OF TURBULENCE

A. A. VEDENOV and Yu. B. PONOMARENKO

Moscow Physico-technical Institute

Submitted to JETP editor April 11, 1964

J. Exptl. Theoret. Phys. (U.S.S.R.) 46, 2248-2250
(June, 1964)

IT is well known that in the transition from laminar flow to turbulence, motion is established in a number of systems at small supercriticality with a definite frequency and wave vector (examples are the flow of liquid between rotating cylinders^[1], strata in a gas discharge ^[3,4], screw instability in a gas discharge and in semiconductors ^[5-8], and convection between parallel planes: time-periodic motion arises also when a liquid flows around a solid ^[10]). The frequency and the wave number, and also the "waveform" of the oscillations, can be determined from the linear theory; to obtain the amplitude it is necessary to take nonlinear effects into account.

The equation for the square of the modulus of the amplitude η of unstable perturbations only slightly above criticality is of the form

$$d\eta / dt = 2\eta (\gamma + a\eta + b\eta^2 + ...) \equiv 2\eta \gamma_{unst}$$

(the phase of the stationary solution is arbitrary). Here γ , a, b —functions of the parameters of the system λ (temperature, geometric dimensions, electric and magnetic fields), γ —increment of the linear theory, while the second and third terms in γ_{unst} are connected with allowance for the non-linear effects.

The critical parameters λ_0 are determined from the equation $\gamma(\lambda_0) = 0$; the equilibrium state $\eta = 0$ is unstable when $\gamma(\lambda) > 0$.

Let the system be such that $a(\lambda_0) \neq 0$ for any value of the parameter λ_0 . If $a(\lambda_0) < 0$, then as the excess criticality $\lambda - \lambda_0$ is increased the amplitude of the stationary motion increases continuously from zero ("soft" mode); in this case we obtain from the equation $\gamma_{unst} = 0$ the expression $-(a^{-1}\partial\gamma/\partial\lambda)_0(\lambda - \lambda_0)$. If $a(\lambda_0) > 0$, then as λ goes through the critical value λ_0 the amplitude changes jumpwise from zero to some finite value ("hard" mode)^[2,4].

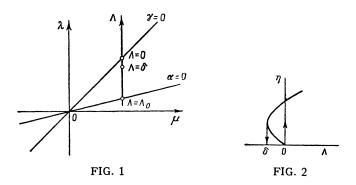
Let us consider systems for which the equalities $\gamma = a = 0$ are satisfied for certain values of the parameters λ_0 . We introduce any two parameters λ and μ ; the remaining parameters are fixed in such a way that the curves $a(\lambda, \mu) = 0$ and $\gamma(\lambda, \mu) = 0$ intersect (Fig. 1). We reckon λ and μ from the

point of intersection, and assume for concreteness that the region $\gamma > 0$ lies above the curve $\gamma = 0$, and the region a > 0 lies above the curve a = 0. When the parameter λ is varied, the oscillations occur in soft fashion if $\mu < 0$ and in hard fashion if $\mu > 0$.

We put $\Lambda = \lambda - \lambda_0$; for small values of $|\Lambda|$ and $|\mu|$ we can assume that $\gamma = \gamma'\Lambda$, $a = a'(\Lambda - \Lambda_0)$, and $\Lambda = c\mu$, where c and the derivatives γ' and a' are taken at $\mu = \lambda = 0$. In the case considered in Fig. 1 we have $\gamma' > 0$, a' > 0, and c < 0. If $b \neq 0$ when $\lambda = \mu = 0$, then it follows from the equality $\gamma_{\text{unst}} = 0$ that

$$\eta = A \left(\Lambda - \Lambda_0 \right) \pm \left(A^2 (\Lambda - \Lambda_0)^2 + B \Lambda \right)^{\frac{1}{2}},$$

$$A = -a' / (2b), \qquad B = -4\gamma' / b.$$



Let us consider the case in which b < 0; then A and B are positive. Let Λ change along the line $\mu = \text{const} > 0$ (here $\Lambda_0 = c\mu < 0$); then, for $\Lambda = +0$, the amplitude jumps from zero to the value $\eta_0 = -2A\Lambda \sim \mu$. If we now decrease Λ , then at some value $\Lambda = \delta < 0$, which is determined in equation $A^2(\delta - \Lambda_0)^2 + B\delta = 0$, a jump occurs in the amplitude from the value $\eta_0 = A(\delta - \Lambda_0)$ to zero (Fig. 2). Since $|\Lambda_0| \sim \mu$ is a small quantity, then

$$\delta \approx -(A\Lambda_0)^2/B = -(Ac)^2\mu^2/B \sim \mu^2;$$

inasmuch as $|\delta| \ll |\Lambda_0|$ for small μ , then $\eta_0 = -A\Lambda_0$, and

$$\eta_0 / \eta_\delta = 2. \tag{1}$$

In the region $\delta < \Lambda < 0$ there exist three stationary solutions

$$\eta = 0, \quad \eta_{\pm} = -A\Lambda_0(1 \pm \gamma 1 - \Lambda / \delta);$$

the values $\eta = 0$ and $\eta = \eta_+$ correspond to stable motion (as observed by experiment). For $\delta < \Lambda$ < 0, a system found initially in the state $\eta = 0$ can undergo transition to the state $\eta = \eta_+$ if we impose a perturbation of sufficiently large amplitude.^[2,4]

The slope of the curve $\eta = \eta(\Lambda)$ at the point

 $\Lambda = +0$ is equal to $d\eta \ d\Lambda = D/|\mu|$, D > 0; this expression is also valid for the soft mode.

The frequency ω and the mean value of any observed quantity x (the mean temperature, magnetic induction, electric current, particle flow, etc.) change upon the change of the amplitude of the stationary motion; for small amplitudes of motion, the corresponding dependences have the form

$$x = x_{eq} + x_i \eta + \dots, \qquad \omega = \omega_{eq} + \omega_i \eta + \dots \quad (2)$$

(if the stationary motion is periodic in space, then a similar relation holds for the wave number: $k = k_{eq} + k_1\eta + ...$). The quantities x, ω on the left hand sides of the equations are functions of Λ ; x_p corresponds to the equilibrium stated in this system $\eta = 0$, ω_{eq} is determined from linear theory. Taking it into account that $|\delta| \sim \mu^2$, we get

$$\begin{split} \omega_0 - \omega_\delta &= (\omega_{eq} + \omega_1 \eta)_0 \\ &- (\omega_{eq} + \omega_1 \eta)_\delta \approx (\omega_1)_0 (\eta_0 - \eta_\delta) \sim \mu. \end{split}$$

A similar relation $x_0 - x_{\delta} \sim \mu$ is obtained in the presence of stationary motion for the mean value of the observed x; if the motion is absent $(\eta_0 - \eta_{\delta} = 0)$, then $x_0 - x_{\delta} = (x_{eq})_0 - (x_{eq})_{\delta} \sim \delta \sim \mu^2$.

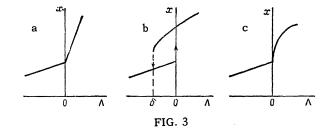
For $\Lambda = 0$ and $\Lambda = \delta$ the mean value of any observed quantity changes discontinuously. Denoting the amplitude of the jump (the difference between the value of x in the presence of oscillations and in their absence or for fixed Λ) by Δx , we have for small μ , by virtue of (1) and (2),

$$(\Delta x)_0 / (\Delta x)_\delta = 2.$$

Thus the amplitudes of the jumps of the mean values of Δx and the square of the variable quantities x^2_{\sim} of the observed values should satisfy the relations

$$(x_{\sim}^2)_0 / (x_{\sim}^2)_{\delta} = (\Delta x)_0 / (\Delta x)_{\delta} = 2.$$
(3)

The dependence of x on the parameter Λ can be of three types: for $\Lambda = 0$, one can observe: a) a



kink; [8] b) a jump; [6,7] c) a root singularity (Fig. 3; case c) corresponding to a change of Λ along the line $\mu = 0$.

The experimental study of the transition from the soft excitation of turbulence to the hard mode is of interest; a test of the relations (3) and a study of the various types of the dependence $x = x(\Lambda)$ shown in Fig. 3 would be of particular value.

¹G. I. Taylor, Phil. Trans. Roy. Soc. (London) A223, 289 (1923).

²J. W. Lewis, Proc. Roy. Soc. (London) A177, 388 (1928).

³W. Pupp, Phys. Z. 33, 844 (1932).

⁴A. A. Zaĭtsev, DAN 84, 41 (1952).

⁵J. J. Paulikas and R. V. Pyle, Phys. Fluids 5, 348 (1962).

⁶ R. R. Johnson, Proc. 6th Int. Conf. on Ionization Phenomena in Gases, Orsy, France, 1963.

⁷ B. Anker-Johnson, Appl. Phys. Lett. **3**, 104 (1963).

⁸ F. C. Hoh and B. Lehnert, Proc. 4th Inst. Conf. on Ionization Phenomena in Gases, Uppsala, 1959.

⁹ H. Benard, Ann. Chem. Phys. 23, 62 (1901).

¹⁰ L. D. Landau, DAN **44**, 339 (1944).

Translated by R. T. Beyer 332