1518
THE ORIGIN OF TURBULENCE

A. A. VEDENOV and Yu. B. PONOMARENKO
Moscow Physico-technical Institute
Submitted to JETP editor April 11, 1964

J. Exptl. Theoret. Phys. (U.S.S.R.) 46, 2248-2250
(June, 1964)

IT is well known that in the transition from lami-
nar flow to turbulence, motion is established in a
number of systems at small supercriticality with
a definite frequency and wave vector (examples
are the flow of liquid between rotating cylinders [1],
strata in a gas discharge [3’43, screw instability in
a gas discharge and in semiconductors [5‘8], and
convection between parallel planes: time-periodic
motion arises also when a liquid flows around a
solid [103). The frequency and the wave number,
and also the ‘“‘waveform’’ of the oscillations, can
be determined from the linear theory; to obtain
the amplitude it is necessary to take nonlinear ef-
fects into account.

The equation for the square of the modulus of
the amplitude 7n of unstable perturbations only
slightly above criticality is of the form

‘dn/dt = 2n(y + an + bnZ + ...) = 2nyunst

(the phase of the stationary solution is arbitrary).
Here v, a, b —functions of the parameters of the
system A (temperature, geometric dimensions,
electric and magnetic fields), y —increment of
the linear theory, while the second and third terms
in yypst are connected with allowance for the non-
linear effects.

The critical parameters A, are determined
from the equation y(\;) = 0; the equilibrium state
n = 0 is unstable when y(A) > 0.

Let the system be such that a(A;) = 0 for any
value of the parameter A, If a(Ay) < 0, then as
the excess criticality A —A, is increased the am-
plitude of the stationary motion increases contin-
uously from zero (‘‘soft’’ mode); in this case we
obtain from the equation vy, = 0 the expression
—(a™19y/80)g(A —Ay). If a(ry) > 0, then as A goes
through the critical value A, the amplitude changes
jumpwise from zero to some finite value (‘‘hard’’
mode) (%47,

Let us consider systems for which the equalities
v=a =0 are satisfied for certain values of the pa-
rameters A,. We introduce any two parameters A
and u; the remaining parameters are fixed in such
a way that the curves a(A,u) =0 and y(A,u) =0
intersect (Fig. 1). We reckon A and u from the
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point of intersection, and assume for concreteness
that the region y > 0 lies above the curve vy = 0,
and the region a > 0 lies above the curve a = 0.
When the parameter A is varied, the oscillations
occur in soft fashion if u < 0 and in hard fashion
if u>o0.

We put A = A —Xy; for small values of | A| and
|u| we can assume that y = y'A, a=a’(A-Ay),
and A = cu, where c and the derivatives 7y’ and a’
are taken at u = A = 0. In the case considered in
Fig. 1 we have y' >0, 2’ >0, and ¢ < 0. If b =0
when A =y = 0, then it follows from the equality
Yunst = 0 that

n = A(A — Ao) & (A2(A — Ao)? + BA)",

A= —a'|(2b), B= —4y'/b.
a A 7=0
A=0
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Let us consider the case in which b < 0; then
A and B are positive. Let A change along the
line p = const > 0 (here Ay=cu < 0); then, for
A = +0, the amplitude jumps from zero to the
value ng = —2AA ~ u. If we now decrease A, then
at some value A= 6 < 0, which is determined in
equation A%(6 —A,)% + Bd = 0, a jump occurs in
the amplitude from the value ny= A(6 —Ay) to
zero (Fig. 2). Since | Ay| ~ u is a small quantity,
then

0 &~ —(ANo)* /B = —(Ac)*w?/ B ~ p%

inasmuch as | 6| < | Ay| for small u, then 7,
= —AAy, and

No/Ms = 2. 1)

In the region 6 < A < 0 there exist three stationary
solutions

=0, mz=—AA1E£V1—A/d);

the values n =0 and n =7, correspond to stable

motion (as observed by experiment). For 6 < A

< 0, a system found initially in the state n =0 can

undergo transition to the state n = n, if we impose

a perturbation of sufficiently large amplitude. [2:4]
The slope of the curve n = n(A) at the point
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A =+0 is equal to dn dA = D/|u|, D > 0; this
expression is also valid for the soft mode.
The frequency w and the mean value of any ob-

served quantity x (the mean temperature, magnetic

induction, electric current, particle flow, etc.)

change upon the change of the amplitude of the sta-

tionary motion; for small amplitudes of motion,
the corresponding dependences have the form

r = Zeq+ M + ... ® = Weq+ oM+ ... (2)

(if the stationary motion is periodic in space, then
a similar relation holds for the wave number: k =
keq + km +. . .). The quantities X, w on the left
hand sides of the equations are functions of A; xp
corresponds to the equilibrium stated in this sys-
tem n =0, weq is determined from linear theory.
Taking it into account that | 6| ~ u?, we get

0o — 0 = (weq+ ®1M)o0
— (weqt 01M)s = (01)o(No— M) ~ W.

A similar relation xy—x5 ~ u is obtained in the
presence of stationary motion for the mean value
of the observed x; if the motion is absent (7, —ns
= 0), then xy-Xg5 = (Xeq)g — (Xeq)s ~ 6 ~ 2.

For A=0 and A =6 the mean value of any ob-
served quantity changes discontinuously. Denoting
the amplitude of the jump (the difference between
the value of x in the presence of oscillations and
in their absence or for fixed A) by Ax, we have
for small u, by virtue of (1) and (2),

(Az)o/ (Az)s = 2.

Thus the amplitudes of the jumps of the mean
values of Ax and the square of the variable quan-
tities x2, of the observed values should satisfy the
relations

(%2 )0/ (x2)s = (Az)o/ (Az)s = 2. (3)

The dependence of x on the parameter A can be
of three types: for A = 0, one can opserve: a) a
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kink;[” b) a jump;[s’ﬂ c) a root singularity
(Fig. 3; case c) corresponding to a change of A
along the line u = 0.

The experimental study of the transition from
the soft excitation of turbulence to the hard mode
is of interest; a test of the relations (3) and a study
of the various types of the dependence x = x(A)
shown in Fig. 3 would be of particular value.
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