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The dependence of a superconductor "energy gap" and the penetration depth of a constant 
magnetic field on the field strength is investigated on the basis of a microscopic theory. 
The investigation is carried out for arbitrary temperatures; the limiting cases of absolute 
zero and of temperatures close to Tc are examined in detail for Pippard and London 
superconductors. 

A linear electrodynamics of superconductors 
within the framework of a microscopic theory was 
first constructed in the article by Bardeen, Cooper, 
and Schrieffer. [l] This enabled them to explain 
the Meissner effect and to determine one of the 
important characteristics of a superconductor­
the penetration depth of a weak magnetic field. 
Later on, Gor'kov [2] succeeded in writing down 
the equations for the electrodynamics of super­
conductors in an arbitrary magnetic field in gauge 
invariant form. However, in view of the complex­
ity of these equations, aside from the weak field 
case it has been possible to obtain concrete re­
suits for pure superconductors only in a compar­
atively small number of cases: the Ginzburg­
Landau equations, the supercooling field, and oth­
ers. Therefore, it is of definite interest to investi­
gate nonlinear effects related to the influence of an 
external magnetic field on basic characteristics of 
a superconductor, such as the energy gap, the 
Meissner effect, and the penetration depth. These 
problems are indeed the subject of the present 
article. The field will be treated by perturbation 
theory; the corresponding criteria will be evident 
from the results obtained. 

The problem is solved for an infinite supercon­
ducting half-space. It is obvious that the results 
obtained can also be directly applied to bulk super­
conductors whose dimensions exceed the penetra­
tion depth. The presence of a boundary poses the 
question of the nature of the reflection of electrons 
from a superconductor surface. In the present ar­
ticle, we shall assume the reflection to be specular. 
A separate article will be devoted to the case of 
diffuse reflection. 

1. GENERAL EQUATIONS 

According to Gor'kov, [2] a superconductor in 
an arbitrary (constant in time ) magnetic field may 

be described by a system of gauge-invariant equa­
tions for the thermodynamic functions: 

( 1 ( ie ) 2 ) , iw + 2m V- c A + fl @!"' (r, r') 

+ 11 (r) ~,+ (r, r') = o (r- r'), 

- 1 ( ie ) 2 ) (-iw+ 2m V +c-A + fl ~,+(r,r') 

- 11* (r) @!, (r, r') = 0, (1.1) 

where w = 1rT( 2n + 1) (n is an integer). The quan­
tity b.*(r) (the energy gap in the superconductor's 
spectrum in the absence of a field) is related to 
~ + by the equation 

11* (r) = I "A IT~~"'+ (r, r'), (1.2) .. 
where A. is the "superconducting" interaction cou­
pling constant. In what follows, we shall conven­
tionally call b.*(r) the "energy gap." 

It is possible to combine the system (1.1) to­
gether with its Hermitian conjugate into a single 
matrix equation 

( 
iw + L (''V' - i: A r + f1 ~ (r) ) 

1 ( ie )2 
- ~* (r) - iw + 2m '11 + c A +fl 

(
ill, - 3',) 

X =1, 
3' .. + ill.,+ 

(1.3) 

where 

~"' (r, r') = ~-.,+ (r', r), @!"'+ (r, r') = @!_.., (r', r). 

Let us denote the solution of Eq. (1.3) by 

(1.4) 
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It is possible to transform Eq. (1.4) into an in­
tegral equation with the aid of its solution in the 
absence of a field, @<0>: 

&. ( ') &. <o> ( ') 'Vw r, r = 'Vw r, r 

(1.5) 

- ~ @Uo) (r, r 1 ) ~1 (rt) @"' (ritr') dr1, 

where 6..1 denotes the correction to the energy gap, 
appearing due to the presence of a field 

~1 (r) = ~(r)- ~- (1.6) 

In Eq. (1.5), we have neglected terms of second 
order in the field, since the radius of the electron's 
helical motion, ~ cp0 /eH, is considerably greater 
than the penetration depth for the fields under con­
sideration [p0 » eA/c ~ eH6/c (p0 is the Fermi 
momentum)), and we used the gauge 'V •A = 0. 

In Eq. (1.5), the coordinates r, r 1, and r' be­
long to the half -space occupied by the metal. It is 
easy to show, similarly to what was done by Abri­
kosov and Fal'kovski1, [a] that the determination of 
@ w< r, r') in the case of specular reflection can be 
reduced to the solution of Eq. (1.5) for an unbounded 
region of space, provided A(r) and b..(r) are con­
tinued, as even functions of z, for negative values 
of z: 

A(x, y, z) = A(x, y, -z), ~(x, y, z) = ~(x, y, -z). 

We have chosen the coordinate system so that the 
xy plane coincides with the interface, and the z 
axis is directed into the metal. Expanding the right 
side of Eq. (1.5) in powers of A, and then going 
over to the momentum representation, we arrive 
at the two types of vertex parts shown in Fig. 1: 

a 

b 

p 1 p+fj =- :c W~01 (p)Gz(pl/{t{J)~~o)(,p-r?) 

'I 

p Q fJ p+IJ = ;:) (p); ll,{f) ~0) (p+f) 

FIG. 1 

( g is the unit antisymmetric matrix, u z is a 
Pauli matrix). From the homogeneity of the prob­
lem in the xy plane, it is obvious that q has only 
a z-component. In the absence of a field, the so­
lution gw(P) is given by the expression 

( iro+l;(p) -/',. ) 
@"'<o> (p) = - (w2 t 6 (P)2 + ~2r1 l!. _ iro + £ (p) 
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[ ~ (p) = (p 2/2m) - Jl ~ v(p -p0 ), v is the velocity 
at the Fermi surface]. 

Finally, we write down expressions for the 
"gap" and the current density in terms of the 
Green's functions in the momentum representa­
tion: 

~ (q) = I A IT~~~ .. (p, p- q) (:~3 . (1.8) 

. 2e ~\ dp Ne2 

J (q) = - T ..::.J J p@i"' (p, p - q) (2:n:)a - mc2 A (q), 
m "' , (1.9) 

where N = p~/37T2 is the number of electrons per 
UJ).it volume. 

2. LINEAR ELECTRODYNAMICS 

In this section we present, in a form convenient 
for us, the results [tJ of the BCS theory necessary 
for the subsequent development, obtained to first 
order in A. To this approximation, the relation 
between the current and the vector potential is 
linear: 

j(q) = - ~7t K (q)A(q), (2.1) 

where the kernel K( q) is given by the following 
expression: 

1 
6:n:We2 \ (1 - f-t2) dt-t ~2 

K (q) = mc2 T ~ ~ w2 + ~2 + 1;4v2q2f-t2 y w2 + ~2 • 
"' 0 

(2.2) 

The finite radius ~ 0 ~ v /T c of the correlation of 
the electrons in the superconductor causes a de­
pendence of the kernel on the momentum q which 
means in coordinate space a nonlocal relation be­
tween the current and the vector potential ( ~ 0 has 
the meaning of a nonlocality parameter). 

The field is determined by Maxwell's equation 

~A(r) = -4nc-1j(r) (2.3) 

with the boundary condition I 'V x A lz=o = H. One 
can represent the result in the form 

IA(q) I = 2HY(q), 

Y(q) = 1 /[q2 + K(q)]. 

(2.4) 

(2.5) 

The field penetration depth is defined by the ex­
pression 

o = __!_ C H (z) dz = I A (z = O)/ 
H.\ H 

(2. 6) 

0 

or, using Eqs. (2.4) and (2.5), we find 

2 00 

o = Jt~ y (qrdq. (2.7) 

(1. 7) Depending on the temperature and the parameters 
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of the metal, the ratio between the penetration 
depth o and the coherence length may, in general, 
be arbitrary. We present results for limiting 
cases. 

A. The London case ( o » ~ 0 ). The kernel turns 
out to be constant for the significant values of the 
mofilentum, q ~ 0-1 « ~0: 

K(q) = 4:nN.e2 I mc2 = o-2, (2.8) 

i.e., the electrodynamics has a local nature. In 
this formula, Ns denotes the number of "super­
conducting" electrons at a given temperature: 

N.(T)! N = :ni'l2T2J(w2 + L'l2)-'"· (2.9) 
"' 

It is convenient to express results concerning the 
behavior of superconductors in a magnetic field 
in terms of the constant K of the Ginzburg-Landau 
(GL) theory.[(] According to Gor'kov, [2] 

_ 3:rtTcmc • / 2:rtm 
x - e V 7~ (3) Pos ' 

(2.10) 

and one can represent the result (2.8) in the form 

:rt. /76 (3) • / N I /N 
6 = 2y v-6- X~o v N. ;:::::: 1.04x~o v N. ' 

where, following BCS, we assume 

f: r v v 
so= ~-T ;::::::0.18 -T . 

:rt c c 

At absolute zero N s = N and 

Oo = 1.04x~o, 
and near the transition temperature [ Ns /N 
= 2 {1- (T/Tc)}] 

6 = 0.74x t 

V1- TITc 'oO· 

(2.11) 

(2.12) 

(2.12') 

(2.13) 

Superconductors for which o0 » ~ 0 at absolute 
zero will be called London superconductors. As 
is evident from Eq. (2 .12), K » I for London super­
conductors. It is clear that their electrodynamics 
has a local nature for the entire range of tempera­
tures. 

B. The Pippard case (o « ~ 0 ). Values q » ~ 0 1 

give the main contribution to the integral in Eq. 
(2. 7). For such values of q 

K(q) = qo3 I q, (2.14) 

therefore, 

(2.15) 

where q0 is the Pippard characteristic momentum 

(2.16)* 

*th =tanh. 

which is related to the penetration depth by the fol­
lowing equation: 

(2.17) 

Using expression (2.10) for K, we obtain 

3- 18y2 f: -3 -2 i'l h i'l ~ 2 2'1:. -3 -2 i'l h i'l 
qo - 7:rt~ (3) <oo x L'lo t 2T ~ . <oo x L'lo t 2T ' 

(2.18) 

6 = ~ ( 7:rt~ (3) )'/, '/,'1:. (~ ~)-'/, 
3 V3 18y2 X <oo L'l 0 th 2T 

= 0.59x'l·~o ( !0 th 2~ r1
•• (2.19) 

At absolute zero q00 ~ 1.3 ~ 0 1 K-213 and o0 ~ 0.59 
K2/3 ~ O• 

Superconductors, for which at T = 0 we have 
60 « ~ 0 , i.e., K « I, will be called Pippard super­
conductors. Near the critical temperature 
[ I - ( T /T c ) « I] we have 

3 -- 72y3 ( 1 T ) -2t -3 ~ " 7t -s 1 - TIT c 
qo - 49~2 (3) - Tc X <oo ~v, so x2 

(2.20) 

6 = 4 (49~2 (3) )'/·~ ( 1 - TfTc )-'!• 
3 V3r 72 ° x 2 

= 0.43~o ( 1 -:;fTc rl·. (2.21) 

The validity of the formulas given above for Pip­
pard metals is limited by the condition 1- (T/Tc) 
» K2• With further increase of the temperature, 
up to critical, the penetration depth increases in­
definitely, and for 1 - ( T /Tc) « K2 the formulas 
for the London case become applicable. The ex­
pressions for the penetration depth in the Pippard 
(2.21) and London (2.13) cases become equal at 
temperatures 1- (T/Tc) ~ 27 K2, i.e., the limit-. 
ing formulas (2.21) and (2.13) are joined together 
in a fairly broad temperature range. A numerical 
calculation shows that the values given by these 
limiting formulas differ in the region of the june­
tion from the true values by roughly 10%. 

3. DEPENDENCE OF THE "ENERGY GAP" Ll(r) 
ON THE FIELD 

As is well-known, [5] the change Ll1 ( r ) in the 
gap can be made to vanish in the approximation 
linear in the field, by appropriate choice of the 
vector potential. In our case of a half -space oc­
cupied by a superconductor, it is sufficient for this 
purpose to choose the gauge Y' • A = 0. 

To second order in the field, the correction g~> 
(p, p- q) to the Green's function has graphically 
the form shown in Fig. 2. 
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Calculating the upper right-hand element of the 
matrix g~> and substituting it into Eq. (1.8), we 
find the equation for the correction to the "gap": 

[1 ~ l-1 - T ~~(2~a (@3"' (p) @3"'+ (p + q) 

- ~"' (p) ~"' (p + q))] ~1 (q) =~( · ~c r T ~~ (;:)3 

"' +oo 

X ~~ (~w~oolJoo + @}"'@}"'~"' + ~"'@}"'@}"' - @}"'~"'@}"' +) 
~ d d 

X {pA(q1)) (pA(q2)) a (q + q1 + q2) q~lt q2 • (3.1) 

Here, for brevity, the index ( 0) on the Green's 
functions is omitted. The order of the arguments 
on the right side of this formula is the same as in 
Fig. 2. 

In the integrals over p in Eq. (3.1), let us go 
over to spherical coordinates ~, e, and cp, with 
the z axis chosen as the polar axis ( dp = mp0 x 
d~ dt-t dcp, t-t = cos e ) . The integral standing to the 
left is logarithmically divergent for large values 
of ~; the divergence is eliminated, as usual, by a 
cutoff at the Debye frequency wD. With account of 
the relationship 

(3.2) 

after simple integrations over ~ and cp, one can 
represent Eq. (3.1) in the form 0 

L (q) ~1 (q) 

+oo 
= ~~ £2 (q, ql! q2) I A (q1) II A (q2) I('\ (q + q1 + q2) dq~:q2 ' 

-00 

(3.3) 

where 

(3 .4) * 

!)Expression (3.3) for q = 0 was previously obtained by 
Nambu and Tuan[•] at absolute zero; later Tsuzuki[7] general­
ized their result to arbitrary temperatures. 

*arctg = tan -•. 

(3.5) 

Further calculations for arbitrary ratios of 6 
to ~ 0 have not been successfully carried out; 
therefore, we confine ourselves to limiting cases. 

A. London case ( o » ~ 0 ). Since, as is evident 
from (3. 5), L2 varies considerably during a 
change of the momenta by an amount ~ ~ 01, and 
the potential A has a sharp peak at much smaller 
values of q ~ o-1 « ~ 0 1 , one can set all momenta 
in L2 equal to zero in formula (3.3). Using ex­
pressions (2.4), (2.5), and (2.8) for A(q) and in­
tegrating over 11 and ql> q2, we obtain after simple 
transformations 

~t(q) = _ 2 !!__ Sa(T)- (~/~0)2S5 (T) <'\ (!!_)2. 
~ N. L (q) 4 + (q6)2 Hco 

(3.6) 

The functions Sn ( T ) are determined in the Appen­
dix. We use here also the expression for the criti­
cal field at T = 0, 

(3. 7) 

With the aid of Eq. (3.4), it is easy to obtain an 
expansion of L(q) for small values of q: 

N. ( 1 ( qv )2) 
L(q)=N 1+12T' (3. 8) 

In this formula the second term inside the par en­
theses, according to the condition q~ 0 « 1, is 
small in comparison with unity, except for tem­
peratures near critical. In the latter case 

where oL is the London penetration depth near Tc 
[see (2.13)]: 

X V X 

6L= Jf6 T::::::::: 0.74 Y1- TJTc So· (3 .1 0) 

Hence, near T c we find 

~dq) 2x26 ( H )2 
---,;r- =- (4+(q6)2)(2x2 + (q6)2) . He 

(3.11) 

or, in the coordinate representation, 

l, x ( { xJI2} ~ (z) = ~ 1- .,1 exp - -"- z 
2 r 2 (2- x2) u 

(3.12) 

which, of course, agrees with the result of Ginz­
burg and Landau. [4] Therefore, for Pippard met-
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als ( K « 1 ) it is evident that t:. varies over dis­
tances ~ oiK, which considerably exceed the pene­
tration depth. This fact was first noticed in [4] 

(see also [BJ). 

The correction to the "gap" decreases as the 
temperature is lowered. For temperatures T 
« Tc, expression (3.6) vanishes exponentially 
[ ~ exp (- t:.0 IT)] and the next term ~ ( ~ 0 I o )2 of 
the expansion becomes significant. This term ge­
gins to play a noticeable role at temperatures T 
~ Tc lln K « Tc. It is easy to show that at abso­
lute zero it is equal to 

~I(q) 1 ( v )2 60 ( H \2 
-D.- = - 15 D.o60 (q60) 2 + 4 H) 

tary. In view of the cumbersome nature of the 
final formulas, we shall not present them, and 
we only consider the limiting cases: 

Ft(Y) = 2~ { 1/ 3 (1-y), O<y~ 1' 
3V3 y-a, y':J> 1 

(3.19) 

F2(y)={ lfiz~z, O<y~1 
2nj3 f3ya, y p 1 

(3 .20) 

As far as L ( q) is concerned, in the region of 
large momenta q » ~ 01 , we have for arbitrary 
temperatures 

L(q) ~ ln q£o (3.21) 

correct to terms of order ln q~ 0 (with logarithmic 
accuracy). 

6 . H ) 2 

;::::::: 0.6 x-2 (q6o)2o + 4 (Heo (3.13) At low temperatures, T « Tc, we obtain 

or in the coordinate representation 

x~1. (3.14) 

B. Pip pard case ( o « ~ 0 ). In this case large 
values of the momenta 2 >, qio q2 » ~ 01, are impor­
tant in the integral (3.5). The expression for L2 

can be considerably simplified for such values of 
the momenta. Since small values of 11 ~ ( q~ 0 ) - 1 

« 1 give the major contribution upon integration 
over 11 in (3.5), one can neglect the term 112 in the 
integrand in comparison with unity, and extend the 
limits of integration to infinity. One can represent 
the result in the form 

L 2 ( q, q1o q2) 

=~I ev )2~ [(s2 _ __!_ (~)2s4) /qt/ + /q2/-/q I 
8v \ c ~o 2 ~o q1q2 

_ __!_ (~ ) 2 s4 _!_ (li!_l + ll!.l) l . (3.15) 
2 ~0 q qJ q2 J 

Substituting (2.4), (2.15), and (3.15) into (3.3), 
and changing to dimensionless variables q1 I q0 

and q2 lq0 for the integration, we find 

~I(q) 1 [ ~0 J 
~ =- nq0 ~ th (~/2T) 

(2S2- (~/ ~o)2 S4) F1 (q/qo)- (M ~o) 2 S4F2 (qfqo) 
.X L(q) 

X (-H )2. 
'Heo ' 

(3.16) 

r xdx 
Ft (y) = ~ (xa + 1) ({x + y)a + 1)' 

0 

(3 .17) 

1 C x(y-x)dx 
F 2 (y) = 2y ~ (x3 + 1) ((y- x)3 + 1) 

0 
(3.18) 

for y > 0. For negative values of y, we have 
F 1, 2 (y) = F 1, 2 (- y). These integrals are elemen-

2 )The contribution of smaller values of the momenta, q,, 
q2 ( ~~', turns out to be (of ~0)2 times smaller. 

~1 (q) __ _!__ F1 (q(qo)- F2 (q(qo) _!__ (!!_) 2 (3.22) 
~ - n L (q) qo Heo ' 

and near T c in the Pippard region ( K2 « 1 
- (TIT c ) « 1 ) 

~~ (q) = - ~ Ft (qfqo). _!_ ( 1- .!_ l ( !!_ r. (3.23) 
~ n L(q) q0 Te; He, 

As already noted, a Pippard metal goes over 
into the London region at temperatures 1 - (TIT c ) 
~ K2• Under this condition o ~ ~ 0 and q 0 ~ ~ 01 in 
the region of momenta q ;S Klo, i.e., at distances 
z ~ oiK, and the formulas for the Pippard (3.23) 
and London (3.11) cases are close in order of mag­
nitude. At smaller distances, the dependence of 
the "gap" turns out to be different. In the coordi­
nate representation 

+;:o d 
~(z)= ~ ~(q)eiqz 2~. (3.24) 

-00 

Far from Tc (for this, as we shall see below, the 
condition 1 - (TIT c) » K415 must be satisfied) we 
obtain with logarithmic accuracy [see (3.21)] 

~1 (z) ~o 
--x- =- ~ th (~j2T) 

X (2S2- (Mf..o)2 S4) <Dt (zqo)- (MD.o)2 SiD2 (zqo) ( !!___ )z 
In qoso Hco 1 

(3 .25) 

for z « ~ 0 • We have introduced here the functions 

1 +~ . 
<Dt,2 (z) = 2n ~ Ft.2 (y) e•Yz dy. 

-00 

Using the limiting values of these functions 

{
4nj27- 1/ 9 n-1 1jl' (1/ 3);:::; 0.108, z = 0 

<D (z)-
1 - 2fSj27z2, zp1' 

{
5n/216 z 0.073, z = 0 

<D2 (z) = • 4;nz6, z p 1 

(3.26) 

(3 .27) 

(3 .28) 
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one can write the following expressions for the cor­
rection to the "gap" 

~1 (0) = _ 0,21682 ~ (~/~0)2 ·0.18184 ~o (!!_) 2 

~ ln qo~o ~ th (M2T) Hco ' 

~I (z) 
~= 

x(fLr· 

(3.29) 

(3.30) 

(q01 « z « ~ 0 ), i.e., for distances smaller than 
the nonlocality parameter ~ 0 , the correction to 
the "gap" decreases according to a quadratic law. 
For distances exceeding ~ 0 • the decrease is basic­
ally exponential in nature. For 1- (T/Tc) ~ K4/ 5, 

according to (3.9) the contribution of small q 
~ K/ 6L to the integral (3.24) becomes significant, 
and in the limit K2 « 1 - ( T/T c ) « K4/ 5 it becomes 
the main contribution: 

~1 (z) , ( T ) •;, { V2x } ( H )2 --= -0.069xi• 1-- exp ---z - . 
fi Tc ()L ·He 

(3.31) 

From a comparison of formulas (3.29) and (3.31) 
one can see that their values become the same 
order of magnitude for 1- (T/Tc )~ K4/ 5• Expres­
sion (3. 31) agrees with the corresponding expres­
sion for the London region (see Eq. (3.12) for K 

« 1) for 1 - ( T /Tc) ~ K2• 

4. DEPENDENCE OF THE PENETRATION DEPTH 
ON THE FIELD 

The third order (in powers of A) correction to 
the Green's function is shown in Fig. 3. 

+ p 

I q, I '~z I "J 
;~3'(p;p-q) = P P+'l, P+'l,+'l2 P-'1 + 

+ p-v 
FIG. 3 

a 

p-'f 
c 

Here a loop denotes the second order correction 
.6-d q) to the gap, which was determined in the pre­
ceding Section. With regard to the third-order 
correction, it ·vanishes like the first order correc­
tion because it is impossible to construct a scalar 
of the appropriate order in A from the vectors q 
and A ( q) ( q • A ( q) = 0 in the chosen gauge ) . 

We write the expression for the current (Fig. 3) 
in the following form: 

-00 

The kernel K3 describes the contribution of dia­
gram a, the kernel K2 describes the contribution 
to the current from diagrams b and c, which are 
related to the change in the "gap" (see Fig. 3 ). 
By definition 

Ka (qi, q2, qa, q4) = - Sn ( e; r T h ~ (pa)4 

"' 
X [@P+ ~2@)2+ @)2i}2+ iJ4+ @1~2@1 

+ ~@1+2~ -@1~@1+~ -~@1+~@1] ~ (4.2) 
(2n)3 ' 

where a is a unit vector in the direction of A; the 
order of the arguments is determined by diagram 
a of Fig. 3. For example, 

Integrating over ~ and q;, we arrive at the ex­
pression 

Ka (qt, q2, qa, q4) 

3 4 1 +I 

= -zimp0~2 (e;) T h w2 ~ (1- f.l2)dfl 
"' -1 

X ( [ 1- ~: ) (2iw- vqlflt1 (2iw + v (qt + q2) flt1 

X (2iw- vq4f1t1 + (1231) + (13) (24) + (4321) 

+ (123) + (432) + (12) + (34) - ~2w-2 ((2iw + vq1f.lt1 

X (2iw- vq4f.lt1 (2iw- vq2flt1 + (13))], 

(4.3) 

Here (abc) denotes permutation of the arguments, 
with the aid of which the appropriate term can be 
obtained from the first. For example, ( 123) de­
notes the substitution q1 - q2 - q3, q3- q1. As 
we will see below, all arguments are equivalent 
in the expression for the correction to the pene­
tration qepth, so that the contributions of all the 
terms obtained by means of permutations are iden­
tical. As far as the kernel K2 is concerned, it 
turns out to equal, to within a coefficient, the ker­
nel L2 [see Eq. (3.5)] with permutation of the ar­
guments: 

mpo 
K2 (qi, q2, qa) = 2n 2 16nL2 (qa, q2, qi)· (4.4) 

With the aid of Eqs. (4.1), (4.4), (2.4), and (2.6), it 
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is easy to obtain the following expression for the 
correction o1 to the penetration depth: 

+= 
ll1 = 8H2 m~~ Ka (q1q2qsq4) Y (qi) Y (q2) Y (qa) Y (q4) 

In the derivation of Eq. (4.5), we used Eq. (3.3) 
for ll1(q). 

Now let us consider the limiting cases. 

(4.5) 

A. London case. In analogy to what was done 
in the calculation of the "gap" it is legitimate, by 
virtue of the weak momentum dependence of the 
kernels K3 and L 2 (in comparison with Y) to set 
all the arguments in Eq. (4.5) equal to zero. Then 

Ka (0, 0, 0, 0) = 1;: mpo!-. 2 c~o r (So - ( !o r S1) , 
(4.6) 

L2 (0, 0, 0) = ~ ( e; r t-.102 ( S 3 - ( !J 2 S5 ) • (4. 7) 

With account of (3.8), after elementary integrations 
in (4.5) we find 

Near T c the correction to the penetration depth 
has the form 

~ = ~ X+ 2 V2 (!!__)2 
6 8 (x+V2)2 He ' 

which agrees, of course, with the result of the 
phenomenological G L theory. 

(4.9) 

At temperatures near absolute zero we have, 
with exponential accuracy s3 ~ s5 ~ s7 ~ 1, ll ~ llo, 
so that (4.8) vanishes. Therefore, for the London 
case near T = 0, it is necessary to consider the 
next higher terms of the expansion in powers of 
~ 0 /o. In this connection it turns out that upon in­
tegration over the momenta in (4.1), values of 
q ~ ~ 0 1 begin to play a role, i.e., nonlocal effects 
appear and the relative correction in units of 
( H/Hc )2 at absolute zero is approximately K4 

times smaller than at Tc: 

(4.10) 

Superconductors belonging to the limiting London 
case for T = 0 apparently do not exist in nature. 

Therefore, we shall not study this problem in more 
detail. 

B. The Pippard case. In this limiting case we 
proceed in a fashion similar to the determination 
of the kernel L2 (see the preceding section). Thus, 
for the kernel K 3 we obtain 

+ the permutations indicated in Eq. (4.3) 

_ _i3_ ( ~)2 sa I q1l +I qsl-1 q2!- I q41J . 
4 ~o (ql+q2)(q2+qs) 

(4.11) 

Substituting this expression and the asymptotic 
form (3.15) for L2 into the general expression 
for the correction of> and using formula (2.15) 
for Y, we find 

8 1 r dx [ ( 1 ( !! \ 2 ) + ;:(3 qoth2 (t!j2T).\ L(qox) S2- 2 (t-,o) S4 F!(x) 
0 

(4.12) 

where 11 and I2 are numbers given by the follow­
ing expressions: 

00 

I1 = m (x + y + :)(x + y) (:Y (x) ¥ (y) f (z} f (x + y + z) 
0 

+ Y (x) Y (z) Y (x + y) Y (y + z) 

+ Y (y) Y ( x + y) Y (y + z) Y ( x + y + z)] dx dy dz, 

[2 = ~IH (x + y)~x + z) y (x) y (y) y (z} y (x + y + z) 
0 

+ x+~+ z Y(y)Y(z)Y(x+z)Y(x+y)Jdxdydz, 

Y(x) = q02Y(q0x). 

The values of these integrals were obtained by nu­
merical integration: I1 ~ 0.056, 12 ~ 0.069. 

At temperatures not very close to T c (it will 
be evident from what follows that this is valid for 
1- (T/Tc) » K415 ), values of x ~ 1 make the main 
contribution to the integral in Eq. (4.12). In this 
region L - 1 ( qoX ) ~ 1/ln q0~ oX is a slowly varying 
function; therefore one can bring it outside the in­
tegral with logarithmic accuracy, after which the 
remaining integral reduces to a number. As the 
result of numerical integration, we find: 
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00 

~ F 12 (x) dx ~ 0.066, 
0 

00 

00 

\ F 22 (x)dx::;:;;;0,011, 
·' 0 

~ F 1 (x) F 2 (x) dx ~ 0,010. 
0 

Taking what has been said into account, it is 
easy to write out a general expression for od o, 
valid for the entire temperature range 1 - ( T /T c ) 
» K4/5. Because of the cumbersome nature of this 
expression, however, we shall only consider limit­
ing formulas. At absolute zero 

<\ [ -4 '! 7,2·10-3 J (} 
If~ 2.2-10 x-·+ ln(1jx) (4.13) 

The origin of each of the terms inside the 
square brackets of this formula is different. The 
first term is obtained from diagram a of Fig. 3, 
which does not take the change in the gap into ac­
count. The contribution to the penetration depth, 
related to the change in the gap (Fig. 3b), is given 
by the second term. Although the second ("gap") 
term is formally smaller than the first in the 
limiting case K « 1, owing to the (numerically) 
large coefficient, it is just this term which gives 
the essential contribution for real superconduc­
tors. 

For temperatures K 415 « 1 - ( T/Tc) « 1 
'I• ~ = [o.95·10-2 .(1- TfTc) o · x'/, 

+ 6.6-10-2 ( 1- ~) /ln 1 -x~/Tc] (:cr. (4.14) 

As already noted earlier [see Eq. (3.9) of the 
preceding section], for small values of x 
(x « ( q0~ 0 ) - 1 « 1) the function L - 1 ( qijX) in­
creases like { 1- (T/Tc) }-1 as the temperature 
approaches Tc· Because of this, small values of 
x give the major contribution to the integral in the 
immediate neighborhood of Tc. In this region, as 
a consequence of the slow variation of F 1 (x ), its 
argument may be set equal to zero. Then using 
expansion (3.9) for L(x), in view of the converg­
ence of the integral, the upper limit of integration 
can be extended to infinity. After elementary cal­
culations we arrive at the result 

TfT '1• ' T )'/•] ~ =[0.95·10_2 (1 -x% c) +0.046x'i•(1-Tc 

(4.15) 

From a comparison of (4.14) and (4.15), it follows 
that the domain of applicability of the latter is 
given by the inequality K2 « 1 - ( T /T c ) « K4/ 5, 

which justifies the assumption made above. From 
Eq. (4.15) one can see, in addition, that in there-

gion K2 « 1 - ( T /T c ) « K817 the second term is 
the principal term, which for 1- ( T/Tc) ~ K2 

naturally agrees with the Ginzburg-Landau result 
[see Eq. (4.9) for K « 1]: 

61 I 6 = 0.18 x(H I Hc)2, X« 1. (4.16) 

Up to the present time, the dependence of the 
penetration depth on a static magnetic field has 
apparently been determined only for tin in the ex­
periment by Sharvin and Gantmakher. [s] How­
ever, it is impossible to make a quantitative com­
parison with the limiting formulas we have ob­
tained, since tin belongs to the intermediate case 
( K ~ 0.16). Therefore, measurements of the pene­
tration depth and its dependence on the field for 
strongly pronounced Pippard metals (for example, 
for Al we have K ~ 0.01) would be of definite in­
terest, since for such metals the nonlocality that 
is characteristic of the BCS theory appears over 
the entire temperature interval, except for an ex­
tremely narrow region at Tc. 

In conclusion, the authors take this opportunity 
to express their gratitude to L. P. Gor'kov for 
helpful discussions and comments, to I. M. Khalat­
nikov for interest in the work, and to Yu. V. 
Sharvin for a discussion of the existing experi­
mental data. 

APPENDIX 

Temperature coefficients of the type T~ ( w) -n 
(where n is an integer ) are often encountered in 
various problems in the theory of superconductiv­
ity. In this connection, it is convenient to intro­
duce dimensionless temperature functions Sn ( T, 6..) 

in such a way that Sn goes to unity at absolute 
zero: 

S _ (n- 2) !! 1\ n-1 1' '\;1 _1_ { :n:, n- odd (A. 1) 
n- (n-3)!! 0 L.J (;)n 2, n- even 

"' 
It is easy to express Sn in terms of well-known 
functions, using the recurrence relation 

S - - (n- 3) i\o2 f!§n-2 (A.2) 
n- 1\ 811 

and the known values for n == 2 and n == 3: 

S - ( 1\0 ) 2 .!'!!._ 
a- 11 N' (A.3) 

We present the values (used in the text) of Sn for 
T == Tc: 

S (T ) = (n- 2) !! 2~ (n) (1 _ 2_n) { 1, n- odd (A.4) 
n c (n _ 3) ! ! yn-1 2/rt, n- even , 

where ln y == C ( C is Euler's constant), t(n) is 
the Riemann t -function. 
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In particular, for the first few values of n we 
have 

n 
S2 (Tc) = 2-( z 0.88, 

1 ( n )a s4 = 12 r zo,s5, 

7S(3) 
Sa(Tc) = ~:::;::::0,66, 

L!Y 

93 ~ (5) 
Ss(Tc) = 32~=0.30. 
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