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We analyze the role of Coulomb effects and of the contribution from inelastic processes in 
calculations of the parameters and phase shifts of low-energy rrN scattering. We show, with 
a determination of the s-wave phase shift as an example, that a noticeable role is played by 
the rr-mesic atom. The main deduction is that we cannot claim high accuracy for the results 
obtained with the aid of the theoretical reduction of the experimental data [2•3] without a con­
sistent account of the Coulomb effect. 

1. The calculation of the parameters and phase 
shifts of low-energy rrN scattering was made es­
sentially by a group of physicists in Dubna [tJ and 
by British physicists [2•3J. The method of calcula­
tion can be traced back to the work of Chew et 
al. [(I whose notation will be used here. We con-
sider here the elastic scattering 

:n;+ + p-+ :n:+ + p, 
:n:- + p-+:n:- + p 

(I) 
(II) 

in the interval of low kinetic energies ( WL - f1) 
of the incident meson in the laboratory system. 
For what follows we note that in the energy re­
gion under consideration the reaction (II) has two 
inelastic channels 

:n:- + p -+ :n:o + n, 
:n:- + p-+y + n 

(III) 
(IV) 

-scattering with charge exchange and a process 
of the K-capture type. It was found [t- 3] that an 
analysis of the elastic scattering (I) and (II) is 
best carried out with the aid of the dispersion 
relations (d.r.). 

To this end, [4] in order to determine the para­
meters and the phase shifts, the real parts of the 
amplitudes for processes (I) and (II), which are 
located in the right sides of the d.r., are ex­
pressed in terms of the phase shift of purely 
nuclear scattering. The integrals of the total 
cross sections, contained in the right sides of the 
d.r., are approximated by using the experimental 
data and other premises [1- 3J. This yields a sys­
tem of relations for the determination of the 
quantities of interest to us. 

For example, when we determine the s-wave 
phase shifts [2•3] in the region 0 < ( WL- f1) < 45 
MeV, we obtain 

sin 261 + 2 sin 26a w ( 2 ) c<+) 2 
2q M + 1 = a1 + aa + qL, 

where c~+.J = -0.096 ± 0.026, c(-) = -0.094 
± 0.013 and a 1 = 0.171 ± 0.005, a 3 = -0.088 
± 0.004-in accordance with the data of Hamilton 
and Woolcock [3] 

w = ( q2 + 1) '(, + ( q2 + Jl12) 1/, 

-total energy in the c.m.s., M-mass of the 
nucleon (in pion mass units). 

(1) 

Many authors [1-s] indicate that an analysis of 
this type is incomplete, particularly at very low 
energy. This incompleteness, in particular, con­
sists in the fact that account is taken only of 
strong interactions satisfying charge invariance, 
and the Coulomb interaction is neglected. We 
note that the role of the Coulomb effects (a) were 
not explained with sufficient completeness and (b) 
were studied essentially in connection with other 
problems at a time when there were no good ex­
perimental data in the low-energy region. Now 
that such data are available, the Coulomb problem 
is of interest for determining the parameters and 
phase shifts, and also for the derivation of an in­
terpolation formula for a precise reduction of 
the experimental data in the low-energy region. 
We shall show how the method of analysis varies 
in this case, and we shall make suitable estimates 
with (1) as an example. 

2. A convenient method for the analysis of the 
Coulomb problem is the analysis of the so-called 
"nuclear scattering amplitude," defined as the 
difference between the total amplitude and the 
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amplitude of pure Rutherford scattering. It is ob­
vious that, in addition to pure nuclear scattering, 
there is left in this case a non-additive contribu­
tion from the interference of the two types of 
interactions. 

To determine the "nuclear amplitude" we 
make use the model of van Hove [7]. We assume 
that the radius of interaction of the nuclear 
forces is r 0 ~ h/f.lC. In order to carry out the 
7rN-scattering analysis in the usual fashion, i.e., 
with the aid of purely nuclear phase shift o2J, 2r, 
it is necessary to assume the charge invariance 
hypothesis for the nuclear part of the interaction. 
We shall therefore neglect the Coulomb interac­
tion for r < r 0, and the nuclear interaction for 
r > r 0• At the same time we neglect the mass 
difference inside the pion and nucleon isomulti­
plets. Violation of the isotopic invariance in this 
model is the consequence of an interference be­
tween two types of interaction on the boundary of 
a sphere of radius r 0• We note that in the model 
no assumption is made at all whether the poten­
tial of the nuclear interaction is real or complex. 
This fact will be used below to take into account 
the contribution from inelastic processess. 

Using the usual procedure of nonrelativistic 
scattering theory and neglecting the spin flip of 
the nucleon in the Coulomb field, we can obtain 
for each of the reactions (I), (II), and (Ill) the 
scattering amplitudes, without and with change in 
the nucleon polarization: 

co 

co 

g = ~ [/1+- / 1_] ei"' sin OPz' (cos 0), (2) 
1=1 

where the ± signs correspond to the total angular 
momentum J = l ± t;2, and Pz is the derivative of 
the Legendre polynomial with respect to cos e. 

The partial amplitudes fz± can be readily re­
constituted from the s-wave amplitude written 
below, by affixing the indices Z± to all the phase 
shifts and the index l to the quantities A, B, C, 
and D, and by adding l to the argument of the r 
function. In the c.m.s. for each of the three re­
actions (I), (II), and (Ill), the s-wave "nuclear 
scattering amplitudes" are equal to 

I ( + +) = _!__ r (1 + icxfq) [A exp (2i6a) + B _ i] (3) 
p -+ p 2iq r (1 - icxfq) C exp (2i63) + D ' 

- - 1 r (1 - icxjq) 
f(p -+p )= 2iqf(1 + icxfq) 

[ A (2/ 3 exp (2i61) + 1/ 3 exp (2i6a)) + B _ 1 ] 
X li(2f3 exp(2i61)+ 1/ 3 exp(2i6a))+D ' 

(4) 

_ 0 1 [r (1 - icxfq)]'J, 
f(p ~n) = 2iq r (1 + icxjq) 

Y2 [ exp (2i63)- exp (2i61 ) ]/3 
X 

i [C (2/ 3 exp (2i61)+ 1/ 3 exp (2i63 )) +DJ/2~1 • 

Here q-momentum of the incident pion in the 
c.m.s. (we used ti = c = f.1 = 1), and a = e 2/nc is 
the fine-structure constant. This result is ob­
tained in the usual manner by joining the solu­
tions of the Schrodinger equation for the regions 
r < r 0 and r > r 0• The final result (3), (4), and 
( 5) contains only the phase shifts of the purely 
nuclear interaction. The following expressions 
are obtained for A, B, C, and D 

D =-A*, 

B = - (Gt'- iFt') (Go- iFo) + (Gt- iFt) (Go'- iFo'), 

(5) 

C = -B*. (6) 

where G1 and F 1 are solutions of the Schrodinger 
equation in the Coulomb field [S], which are 
"singular" and "regular" at zero, respectively, 
and which have asymptotic values 

( nl rJ. ) cos qr- T ± q ln 2qr + Clz , 

. ( nl ex 1 2 \ sm qr - -2 ± q n qr + Clz J , 

Oz = arg r ( l + 1 ± ia I q) ; 

G0 and F 0 are the corresponding solutions of the 
Schrodinger equation without the interaction. All 
the functions in (6) are taken at the point r = r 0, 

and the complex conjugation does not affect the 
functions G and F themselves. The functions 
A, B, C, and D for reactions (II) and (III) are ob­
tained from the corresponding expressions for 
reaction (i) by making the substitution a - -0', 

which corresponds to the sign of the interference. 
We note that A and D - -2i and B, C - 0 as 
a- 0, and we then obtain the well known expres­
sions for the amplitudes of purely nuclear 7rN 
scattering. In expression (5) the quantity ~ 1 
= G 1Fj- GjF 1 is the Wronskian determinant 
taken at r = r 0• A prime denotes a derivative with 
respect to qr. 

Thus, we should substitute the real parts of 
the amplitudes (3) and (4) in the left side of the 
d.r. 

3. The amplitude f (p- - p-) has poles cor­
responding to the energy levels of the 7r-mesic 
atom, which are shifted by the nuclear interac­
tion. All the poles are located on the imaginary 
axis in the upper half of the complex q plane if 



1476 V. F. PLESHAKOV 

the potential of the nuclear interaction is real. 
This can be proved directly, although by a cum­
bersome method. Assuming the nuclear level 
shift to be small, i.e., ~ = ia ( 1 + ~~ )/n (here 
I q I ~ a, n = 1, 2, ... ) which is indeed the case, 
we obtain 

flqn c= 2~a [ 1 - 2ar0 ( 1 - ! ) J , (7) 

where a = 2a/3 + a 3/3-length for scattering by 
the proton, or a = Zap + (A - Z) an (an = a 3 ) for 
not too heavy nuclei. Formula (7) offers good 
corroboration of the result of Deser et al. [9], ob­
tained by a cruder method ( ~qt = 2 a a) and ex­
perimentally supported. Using the data of Hamil­
ton and Woolcock for at and a 3, we obtain for the 
level shift of the 1r-mesic atom (oE = -2a 3a/n3 ) 

and hydrogen a value oE = -9 eV (attraction). 
For all other elements these data, as well as the 
data of Orear (at= 0.16, a 3 = -0.11) lead to a 
positive value of oE (repulsion). 

Since there are inelastic processes (III) and 
(IV), the potential of the nuclear interaction is 
complex. The width of the levels of the 1r-mesic 
atom can be estimated near the threshold with the 
aid of the relation [9,toJ Im a= (arq) 0/47r, where 
ar-total cross section of the inelastic processes 
(Ill) and (IV), and the zero subscript denotes that 
the quantity is taken at q = 0. We obtain for the 
level width r = -Im o E near threshold 

(8) 

where P-Panofsky ratio; at threshold P = 1.5. 
An estimate (for n = 1) shows that the width is 
r = 0.4 eV, i.e., small compared with the level 
shift. Obviously here, as in (10), for estimates 
near the threshold we must take q2/2f.J, = oM, 
where oM-relative mass difference of the ( 1r-p) 
and ( 1r 0n) systems. 

4. The integrals of the cross sections in the 
d.r. are preceded by additional pole terms cor­
responding to the 1r-mesic atom; The contribution 
to the real parts of the amplitudes of reactions (I) 
and (II) due to the 1r-mesic atom is equal to 

(Re fc,:. (qL)) ~ _2!}__ 2J (-1)n . (9) 
fl \ r0 -±aaWL-1 n;;;,.on! (n+1)! 

We confine ourselves to the following remarks: 
A. If we neglect the change in the polarization 

of the nucleon in the Coulomb field, then the 
crossing symmetry, which ensures the usual form 
of the d.r., remains the same as before, although 
isotopic invariance is violated. To prove this it 
is necessary to determine in suitable manner [3] 

the amplitudes A(±) and B (± l in terms of the real 

amplitudes, and to use the C- and T-invariance. 
B. Usually the subtractions in the d.r. are 

made at the point wL = f.l, in which the amplitude 
now has an essential singularity. The correctness 
of the procedure which leads to the result (9) can 
be demonstrated, however, by cutting off the 
Coulomb field at large r = R0• Then the number 
of levels in such a "well" will be N 0 < -v'2aR0 

- 1, and the correction itself depends on R0: 

~qn = 2aa/n - (n + 1 )2/4naR0• By calculating the 
contribution and then letting R0 - 00 we obtain 
again the result (9). 

5. An account of the pole terms (9) in the right 
sides of (1) causes the constants cC±l to depend 
on the energy. To contribution to the absolute 
values of the constants cC±l in (1), due to the 
mesic atom, changes from 40% at (wL- f.J,) = 1 MeV 
to 4% 1atl0 MeV. In accordance with the foregoing 
reasoning, the right side of (1) will contain phase 
shifts that include a non-additive contribution from 
the interference. The correction for the interfer­
ence can be obtained from our formulas by expand­
ing the functions A, B, C, and D in terms of the 
parameter a/q » 1, which corresponds to ( WL 
- /.1) » 200 keV, i.e., to energies now in practical 
use (see also the paper by Van Hove [7] ). The con­
tribution from the interference is particularly 
large when (WL- J.t) < 15 MeV. When (WL- J.t) 
= 15 MeV it amounts to 20% of the absolute value 
of the phase, and at higher energies it decreases 
rapidly. Finally, it follows from the sum rule'of 
Goldberger et al. (see, e.g., [3]) modified withal­
lowance for (9), that the contribution due to the 
mesic atom to I at - a 3 I amounts to 11%. 

Account can also be taken of an "inelastic com"­
ponent," which contributes to the elastic scatter­
ing amplitudes (I) and (II). To this end we note 
that, owing to the inelastic processes (Ill) and 
(IV), the total elastic scattering cross section can 
be interpolated in the low-energy region by the 
formula 

(10) 

which, compared with the usual formula, contains 
a term linear in the momentum [to]. With the aid 
of the d.r. it is possible to determine the contri­
bution from this term to the real part of the 
amplitudes. Calculation has shown that this con­
tribution is very small, although it is opposite in 
sign to the contribution from the mesic atom and 
can play a -role only near threshold. A character­
istic feature is that for ( WL - f.1) > 20 MeV the 
contributions from the inelastic processes and 
from the mesic atom cancel each other with high 
degree of accuracy. 
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Our estimates show that it cannot be stated 
conclusively that the parameters and phase shifts 
have by now been determined with as high a 
degree of accuracy as indicated by Hamilton and 
Woolcock [3]. For final conclusions it is necessary 
to construct a precision formula describing rrN 
scattering in the low-energy region. From the 
point of view of precision reduction of the experi­
mental data, all the indicated effects must be con­
sistently accounted for, particularly for ( WL- f.-!) 
< 20 MeV. 
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