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The problem of the oscillation of an impurity atom in a crystal with arbitrary number of 
atoms per unit cell is considered. The value of the mass of the impurity atom is arbitrary, 
and the variation of the force constants is taken into account within the framework of per
turbation theory. A detailed analysis is made of the spectral density of the square of the 
displacement of the impurity atom, particularly in the presence of "free" local, "gap" 
local, and quasilocal levels in the perturbed frequency spectrum. The results are used to 
determine and analyze the probability of the Mossbauer effect on the impurity nucleus for 
the entire range of temperatures. The probability of infrared absorption by isolated im
purity atoms is also determined. 

1. INTRODUCTION 

THE authors have previously developed [1] (see 
also [2] ) the theory of the Mossbauer effect for 
isolated impurity nuclei in a crystal, in the entire 
temperature interval. We considered an impurity 
atom with perfectly arbitrary mass in a one -atom 
crystal lattice, and the variation of the force con
stants was taken into account within the framework 
of perturbation theory. The scattering of slow neu
trons by crystals with impurity atoms was inves
tigated in [3] 1> under the same assumptions. 

Since the publication of the first paper, many 
other works were reported, connected with the 
theory of the Mossbauer effect on impurity nuclei. 
Maradudin and Flynn C4J considered in detail the 
probability of the Mossbauer effect in the classical 
limit of high temperatures. Dzyub and Lub
chenko [5], using a formally different method, 
again obtained part of the results of I and II. 
Visscher [S] carried out computer calculations 
using for the matrix a model of a simple cubic 
lattice with allowance for the near -order interac
tions and taking into consideration the variation 
in the force constants (single-parameter approx
imation). A recent paper was also published by 
Dawber and Elliott C7J. Unfortunately, these au
thors apparently were unacquainted with paper I, 
for the results of Dawber and Elliott (and even 
the methods used) are practically equivalent to 
the results of that paper, corresponding to the 

l)References['• 2 ' •] will be sited henceforth as I, II, and 
Ill, respectively. 

case when there is no variation of the force con
stants (y = 0 ). 

In I and II, as in all the other cited papers, only 
the case of a single -atom matrix was actually con
side red. However, the transition to crystals with 
arbitrary number of atoms per unit cell leads to 
many new qualitative results. In the present paper 
we made a detailed analysis of the oscillation of 
an impurity atom, which replaces an arbitrary 
atom in the unit cell of a complex anisotropic 
crystal. The basic analysis (Sec. 2) is made for 
the case when the mass of the impurity atom is 
arbitrary, and the variation of the force constants 
can be neglected. (An account of the variation of 
the force constants, using perturbation theory, is 
considered in Appendix 1 ). It must be noted that 
the experimental results obtained recently [8- 10 ] 

give grounds for believing that this assumption 
has a rather broad range of applicability even from 
the purely quantitative point of view. 

The results of Sec. 2 are used in Sec. 3 to de
scribe the Mossbauer effect in the entire range of 
temperatures. Sec. 4 deals with the question of 
infrared absorption by isolated impurity atoms. 
It must be noted that the latter problem was re
cently considered by Dawber and Elliott [UJ for 
a single -atom matrix. 

2. OSCILLATION OF AN IMPURITY ATOM IN A 
LATTICE WITH OPTICAL MODES 

A. We consider a crystal lattice of arbitrary 
symmetry and with an arbitrary number of atoms 
per unit cell. Let one of the atoms of the ideal 
lattice be replaced by an impurity atom, the mass 
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m' of the latter being arbitrary. We neglect the 
variation of the force constants. (In Appendix 1 
we present the solution of the problem within the 
framework of perturbation theory for the case 
when the variation of the force constants is rela
tively small.) Then the general equation, describ
ing the lattice vibration, can be written in the fol
lowing form (the impurity atom is located at the 
site of the t-th atom in the unit cell rn = 0) 

w2<Di (r0 , j) = 2} (mnjmn'i')-'i•Aoj/i' (rn- rn') <Di' (rn'• j'); 
n'j' (2.1) 

Et = 1-m'fm1• (2.2) 

All the symbols used in (2.1) are standard; sum
mation over repeated superior coordinate indices 
is implied here and throughout. 

If we put Et = 0, we arrive at an equation for 
the initial regular lattice. The solutions of this 
equation normalized to unity have, as is well known, 
the following form ( s -number of atoms per unit 
cell) 

i ( ') "r-'/, i (f ) ( 'f ) 'Pr(l rn, J = 1V ei , ex: exp l rn ; (2.3) 

i=l 
as 

'V e1·i(f cx:)e-,i'•(t a)- {>ii'[> .. , .LJ ' 3 ' - JJ' 
ct=l 

et (f, a)= e/ ( -f, ex:). (2.4) 

The solution of (2.1) will be sought in the form 
of an expansion in the complete system of func
tions (2.3): 

<Di(r0 , j) = ~C(f, a)<pr<Ii(rn, j). (2.5) 
f<I 

We substitute (2.5) in (2.1), multiply both halves 
of the equation by ( 1 - Etc5noc5jt ) 112 cp ~~ ( rn, j ) and 
sum over i, n, and j. We then obtain after simple 
transformation 

[w2 - w02 (f, a)) C (f, a)= (1- e1)-'l• {e1w2 + (V 1- e1 - 1) 

x [w2 - w02 (f, a)]} <Di (0, t) 'Pt<I;• (0, t). (2.6) 

By w~(f, a) we denote here the square of the natu
ral frequencies of an ideal lattice, corresponding to 
the wave vector f and to the mode number a. 

In describing the Mossbauer effect for the infra
red absorption, we are interested only in the dis
placement of the impurity atom itself. From (2.6) 
it follows that, as in the case of the single-atom 
lattice (see I and III), <I> ( 0, t) ""' 0 only for the 
classic solutions which correspond to split fre
quencies, i.e., the frequencies which result from 
a partial lifting of the degeneracy from each mul
tiply -degenerate level in the ideal lattice (see III). 

In all the remaining cases we have w2 = w~ and 
<I> ( 0, t) = 0, and these solutions can be disregarded 
(unlike for example, the problem of the scattering 
of neutrons by impurity nuclei in a crystal-see 
III for more details ) . 

For the class of solutions of interest to us we 
obtain formulas (2.5) and (2.6), with allowance for 
(2.3) 

<Di (rn, j) = <I>k (0, t) 

1 Jetw2 'Veii(f,a)er(f,a) ('f) XV l-- L.J 2 2 (f exp l rn 1- e 1 t .N f<I ffi - ffio , a) 

+ (Vt=e; -1) f>ikf>nobjt}. (2. 7) 

We note that the solutions (27) are real, as can be 
readily verified by using (2.4). 

We put n = 0 and j = t in (2. 7). Introducing the 
notation 

«1>(0, t) = <D(t)j(t) (2. 8) 

[ j (t) -unit vector], we arrive at a system of equa
tions for the determination of the frequencies of the 
perturbed spectrum and the corresponding values 
of j ( t): 

Dtik(w2) = Etffi2 ~eti(f, a) er(t, a). (2.9) 
N t<I w2 - w0 2 (f, a) · 

For the single-atom lattice, (2.9) coincides directly 
with the corresponding expressions used in I and 
III. The difference lies only in the fact that now 
(2.9) contains the polarization vectors e!(f, a) 
corresponding to the t-th atom in the unit cell. We 
therefore can leave out here many intermediate 
steps and present only the results, referring the 
reader to I and II for details. Thus, we can show 
directly that the functions q,i(rn, j) (2. 7), corre
sponding to different normal modes, are mutually 
orthogonal. 

The condition that these functions are normal
ized to unity leads to the relation 

nj 

1 1 {e12w4 'V Jet (f, a) j (t) 12 _ } _ 1 (2•10) Xy· N L.J 2 2 f 2 Et - • 1 - e 1 f<I [ ffi - ffio ( , a) I 

On the other hand, if we recognize that w2 

= w2 ( Et) and differentiate both sides of (2 .9) with 
respect to Et, after which we multiply by Etw2ji( t) 
and use (2 .9) again, as well as the condition I j ( t) I 
= 1, we obtain after simple transformations 

dlnw2 ={e12w4 ~ Jet(f,cx:)j(t)12 -e}-1 ( 2•10,) 
det N t<I [w2 - w02 (f, a)] 2 1 ' 
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Comparing this result with (2.10), we get immedi
ately 

( dIn ro2)'/, 
<D (t) = (1 - 8t)'/. ~ ' (2.11) 

The expression for the true displacement ui ( 0, t) 
of the impurity atom in terms of the real dim en
sionless normal coordinates CJ{3 is written as 
follows 

ui (0, t) = ~fili (t) ,. / ~ <Dil (t) qil. 
il V mroil 

(2.12) 

B. The tensor nik(w2 ) (2.9), as follows from 
(2.4), is symmetrical and real. Unfortunately, the 
presence of the index t in this tensor leads in the 
general case to a situation wherein its properties 
are not determined merely by the corresponding 
crystal system, as is the case with a single -atom 
lattice. However, in order not to clutter up unnec
essarily the analysis that follows, we shall con
sider only tattices with symmetry not lower than 
rhombic, and we assume that the atom t in the 
unit cell occupies a sufficiently symmetrical po
sition to make the tensor n!k ( w 2 ) reducible to 
diagonal form in terms of the same principal axes 
as any macroscopic tensor of second rank. In this 
case Eq. (2.9) breaks up into three independent 
equations for the determination of three frequen
cies that split up each level: 

8trov2 ~ letv(f,a)j 2 = 1 
N taro}- ro02(f, a) ' 

(2.13) 

and the corresponding eigenvectors jt(t) = oiv 
( v = x, y, z ) are directed along coordinate axes 
chosen to coincide with the principal axes. We 
shall arrange the solutions of (2 .13) in increasing 
order and designate them by w2• It is obvious that 
{3 in (2.12) represents precisely the combined in
dex (p, v ). 

We make use of the fact that when n = 0 and 
j = t only the functions (2. 7) differ from zero in 
the complete system of eigenfunctions for the vi
bration problem with impurity atom. Then, in 
accordance with the completeness condition 

l)<J>(li(O, t) <J>{3i' (0, t) = 1\li', 
(l 

we have for each v [see (2.8), (2.11), and (2.13)] 

(2.14) 
p 

In I-III there is, for the case of a single-atom 
lattice, a detailed description of the limiting tran
sition from summation to integration in expres
sions of the type (2.14). Purposely omitting here 
the analogous intermediate steps, we present only 

the final results for the integral relation that re
places (2.16) in the general case of a many-atom 
lattice under consideration: 

00 

~ G/v) (ro2) dro2 = 1, 
0 

Wo2max 

x ~ gt<v>(ro2)dro2 =1. 
0 

(2.15) 

(2.17) 

In this case the correctness of relation (2.15), with 
account of (2.16) and of the normalization relation 
(2.17), can also be proved directly (see Appendix 2 ) . 

It follows from (2.14) and (2.15) that the func-
tion Gi v) ( w2 ) (in the single -atom lattice (see II) 
.the corresponding quantity was designated by 
( 1 - E ) cp v ( w 2 ) ; we use only one letter here for 
brevity) is the spectral density of the square of 
the displacement of the impurity along the prin
cipal crystal axes, normalized to unity. But this 
is precisely the quantity which determines the 
probability of the Mossbauer effect, and also the 
intensity of the infrared absorption in the entire 
range of temperatures (see below, and also II). 

C. The vibrational spectrum of the crystal with 
impurity atoms consists of quasicontinuous bands, 
which coincide with the corresponding bands of 
the ideal crystal, and a series of discrete levels. 
In (2.15) the integration is carried out over the 
entire interval of frequencies from zero to infi
nity, and not only, as usual, over the quasicontinu
ous bands. In this case the spectral density of the 
square of the impurity-atom displacement also 
contains automatically the discrete levels. Indeed, 
these levels are known to be located in the fre
quency region where gf ( w2 ) = 0. Letting gf ( w2 ) 

go to zero in (2.16), we obtain directly 

Gt<v) (ro2) = - 28t 1\ 1- 8tW2 \ • gt 2roo ~o 1 ( 
"'•'max (v)( 2) d 2 ) 

Btro .l ro -roo 
0 

= (1 - Bt) ""'Vd In rod} 1\ (ro2- rodv2), (2.18) 
~ de· 

d ' 

where the discrete frequencies wav are the roots 
of the equation 

"'•'max g (v) ( (J) 2) dro 2 
1-e1ro2 ~ 1 ro2 ~ro02 ° =0 (gt<v>(ro2)=0).(2.19) 

0 

Here 
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2 "'•'max " '2 d 2 }-1 d ln ffid, - { 2 4 \ g.t< ) ( ffio ) ffio - 8 • (2 10 ") 
d - 8t ffid, J 2 2 . t • 

8t 0 ffi - ffio 

But the roots of (2.19) (if they exist) coincide with 
the roots of (2.13) that correspond to discrete fre
quencies, i.e., when the corresponding value of w2 

lies outside the band of the quasicontinuous spec
trum (outside the quasicontinuous bands (2.13) and 
(2.19) they are simply identical). Thus, (2.16) en
compasses the entire spectrum of the crystal with 
impurity atom. 

The discrete frequencies, which are the solu
tions of (2.19), can in the general case appear both 
above the limiting frequency of the phonon spec
trum of the ideal matrix w0 max ("free" discrete 
frequencies), and in the gap between the quasi
continuous bands ("gap" discrete frequencies). 
It turns out, from the point of view of the behavior 
of the function Gi v) ( w2 ), and conaequently also of 
the Mossbauer effect and of infrared absorption, 
that these discrete frequencies behave differently. 

In order to simplify the notation, we introduce 
the symbol 

(2. 20) 

and rewrite (2.19) in the form 

1 

~ gt<."> (x') dx' 
1- BtX I = 0. 

X-X 
0 

(2.19') 

It is obvious that "free" discrete frequencies 
occur under the condition ( Et > 0 ) 

(2.21) 

which is the analog of the known condition for the 
single -atom lattice (see I, III, and [t2]). By 
( • • • ) ( v) we denote here averaging with the func
tion giv)(x) (2.17). (The maximum number of 
"free" discrete frequencies, neglecting the vari
ation of the force constants, is equal to 3, of which 
two coincide in a uniaxial crystal and three in a 
cubic crystal.) 

It follows from (2.21) that the possibility of ap
pearance of a "free" discrete frequency depends 
essentially on the place in the unit cell on which 
the impurity atom has landed. The heavier the 
cell atom replaced by the impurity atom, the eas
ier, other conditions being equal, it is to satisfy 
the inequality (2.21). Thus, for example, in a 
two-atom lattice with strongly different masses, 
if m 1 < m' < m 2, the replacement of the light 
atom by an impurity atom does not lead at all to 
the occurrence of "free" discrete frequencies, 
whereas replacement of the heavy atom may lead 
to the appearance of such frequencies. 

It must be specially noted that Eq. (2.19) and 

the inequality (2.21) differ essentially from the 
corresponding expressions for the single -atom 
lattice, owing to the dependence on the polariza
tion vectors of the replaced atom. Thus, the 
stronger the relative coupling of the t-th atom in 
the ideal lattice to the low-lying acoustic modes, 
the more difficult it is to satisfy (2.21). Con
versely, (2.21) is easier to satisfy if the t-th atom 
vibrates principally in the high-lying optical modes. 
Therefore, with decreasing mass of the impurity 
atom, the' 'free'' discrete frequencies can first ap
pear in principle when the substituted site corre
sponds not at all to the maximum value of Et (for 
given m' ). 

If inequality (2.21) is satisfied, then, obviously, 
all the considerations which held in the case of 
the single-atom lattice remain in force. Thus, in 
particular, as Et --.. 1 (see I, II) we have 

_ ffidv2 _ (X)t<") [ -1- _ (x2)t(")- (X)t(")2 ] 
Xd,- 2 - 1 1 ' (L 8t) < > (")2 

ffiomax -Bt Xt 

(2.22) 
and 

(1 _ ) d ln ffidv2 = 1 _ (1 _ ) (x2)t<")- (X)t<")2 ( 2 23) 
Bt det Bt (X)t<")2 . • 

Thus, taking (2.15) and (2.18) into consideration, 
we see that the impurity atoms will actually oscil
late under these conditions in the "free" discrete 
frequencies. 

We now consider a case when the spectrum of 
the frequencies of the matrix contained forbidden 
bands. We consider one such "gap" and denote by 
x 1 = w~ I w5 max the upper limits of the lower en
ergy band, and by x 2 = wVw5max the lower limit 
of the upper energy band. Bearing in mind the 
solution corresponding to the discrete frequency 
inside the "gap" in question, we rewrite (2.19') 
in the form 

[ c' f?t(") (x') dx' c gt(") (x') dx' ] 
lltX J X _ x' + J X - X 1 

0 x, 

(2.24) 

If Et > 0, then the necessary condition for the 
occurrence of a "gap" discrete level is the in
equality ( Et < 1) 

(2.25) 

which is also sufficient if 

I /2 (x2) I> /1 (x2)· 

In the opposite case the band Et, for which the 
discrete frequencies take place, is bounded from 
above by the condition 

(2.26) 
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If Et < 0, then the necessary condition for the 
occurrence of a "gap" discrete level is the in
equality 

x2[jl2(x2) j-J!(x2)] > 1 I let!, 

which is sufficient if 

l1(xi) > lh(x!)l. 

(2.27) 

In the opposite case, the discrete frequencies ap
pear only when I Et I is bounded from above by the 
condition 

xr[ll2(x1) j-J!(xi)] < 1/ jet!. (2.28) 

In a three -dimensional crystal I1 ( x) and I I2 (x) I 
are bounded in magnitude. By virtue of this, con
ditions (2.25)-(2.28) limit the possibility of occur
rence of "gap" discrete frequencies. Let us ana
lyze the character of the oscillations of the impur
ity atom in "gap" discrete frequencies. We use 
for this purpose expression (2.10"). 

A characteristic feature of the "gap" frequen
cies is their boundedness from above (x2 ) and be
low (x 1). If we take this into consideration, then it 
follows directly from (2.10") and (2.11) that both 
for very light impurity atoms ( Et - 1 ) and for 
very heavy ones ( Et - -co) we have 

(2.29) 

(This quantity, of course, vanishes also when Et 
= 0.) At all other intermediate values of Et, sat
isfying conditions (2.25)-(2.28), the quantity <~>av(t) 
will have a value different from zero. However, in 
all cases these quantities will be noticeably smaller 
than unity. Thus, the "gap" localized oscillations 
cannot take on, under known values of Et, the main 
fraction of the oscillation energy of the impurity 
atom. In this lies their essential difference from 
the "free" discrete frequencies. 

Along with the truly discrete frequencies, the 
oscillation of the impurity atom is characterized 
by the appearance of quasi discrete frequencies. 
Indeed, if in some frequency interval .0.x of the 
quasicontinuous spectrum the function g(v) (x) is 
small and at the same time the equation t 

1 g gt(v) (x')dx' 
1- etX = 0 

x -x' (2.30) 
0 

has a solution x = xfv) lying in the same interval, 
then the spectral density GfV)(x) (2.16) will be 
large within the limits .0-x, and this section of the 
spectrum can have a relatively large statistical 
weight in the oscillation of the impurity atom. If, 
moreover, the width of the spectral distribution 
afv) (x) in this section, which width is defined by 

the function gfv) (x ), turns out to be smaller than 
.0-x, then GfV)(x) will have within the interval .0.x 

a Lorentz form with sharp localization near xiv), 
denoting indeed the appearance of the quasidiscrete 
level. (If (2.30) does not have a solution in this in
terval, then Q(l1 (x)"' gfv)(x).) 

In the spectrum of the regular lattice gf v) ( x) 
vanishes regularly at x = 0 and on all the bound
aries of the quasicontinuous bands. Therefore, 
for definite values of Et, quasidiscrete levels can 
occur in principle both in the limiting low fre
quency region of the spectrum and near the limits 
of the bands; at least there will occur a noticeable 
increase in the statistical rate of the correspond
ing sections of the spectra. 

However, gfv)(x) can also be small in a broad 
interval of frequencies inside the energy bands. 
This occurs when the t-th atom of the principal 
lattice oscillates relatively weakly in some modes 
of the phonon spectrum (i.e., in these modes the 
corresponding polarization vectors are small). It 
is remarkable that in this case quasilocal levels 
can arise inside the energy bands at arbitrary val
ues of x, which are the solution of (2.30), or else 
a noticeable increase will again occur in the sta
tistical weight of these sections of the spectrum. 
Of greatest interest is in this case the occurrence 
of a quasidiscrete level at I Et I » 1 in the region 
of small x. In the case of a single -atom lattice 
we have already encountered the appearance of a 
sharp localization of the spectral density of the 
square of the displacement of the impurity atom 
(i.e., the quasidiscrete level), when the mass of 
the impurity atom was large compared with the 
mass of the atom of the principal lattice (see I, 
II). The same result was later pointed out by 
Brout and Visscher [ 13 ]. 

In a complex lattice with I Et I » 1, there also 
exists always such a level, with 

(2.31) 

and 

(2.32) 

Here dfv) -constant connected with the low fre
quency limit for the spectrum 

gt<'"l(x) = dt<v>-yx. 

If we integrate (2.32) over the region near (2.31), 
then we readily obtain 

~ G1<v> (x) dx = 1. (2.33) 
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It follows therefore that a sufficiently heavy impur
ity atom, when substituted in the unit cell for the 
t-th atom, for which I Et I » 1, oscillates essen
tially in a narrow frequency region near (2.31). 

Expression (2.32) is valid only when the root 
x<v) of (2.30) is sufficiently small. It is easy to 
c~nclude from (2.30) and (2.31) that the situation 
depends radically on the predominant oscillation 
frequencies of the replaced atom. If it is coupled 
principally to the acoustic modes, then the occur
rence of a quasidiscrete level is facilitated; how
ever, if it oscillates predominantly in the high
lying optical modes, then this increases radically 
the minimum value of I Et I necessary for the ap
pearance of such a level. (This picture is the op
posite of the condition for the appearance of "free" 
discrete frequencies.) 

It must be noted that the result (2.33) can be 
realized only for low-frequency quasidiscrete lev
els. In this sense these levels are analogous to the 
"free" discrete levels. The remaining quasidis
crete levels are analogous to the "gap" discrete 
levels-the amplitude of oscillation of the impur
ity atom tends in them to zero both when Et - 1 
and when Et - -co • At intermediate values they 
can serve as a center for a considerable part of 
the oscillation of the impurity atom. 

3. PROBABILITY OF THE MOSSBAUER EFFECT. 
DISCUSSION OF RESULTS 

A. We now proceed to determine the probability 
of the Mossbauer effect. We use for this purpose 
the procedure described in I and II. We confine 
ourselves to an examination of cases when the 
width of the discrete levels, due to the interaction 
between the normal oscillations resulting from 
the usual anharmonicity, is much larger than the 
natural width of the y line. Then the Bessel func
tion no longer arises in the expression for the 
Qrobability of the Moss bauer effect proper (see 
[ 14]), and for the impurity nucleus that replaces 
the t-th atom in the unit cell we obtain from (2.12) 

W 1 = exp {- Z1}, (3.1) 

Z = R' ~(xj~ (t))2 <D 2 (t)cth Tiro~ (3.2)* 
1 ~ 1iro~ ~ 2T · 

Here R' = n2k2/2m' -recoil energy on the free im
purity nucleus; K = k/k -unit vector in the direc
tion of the y-quantum momentum; T -temperature 
in energy units. The summation in (3.2) is carried 
out over all normal oscillations of the perturbed 
spectrum, including the discrete frequencies. 

In the general case the probability of the Moss
bauer effect will be determined by the expression 

*cth = coth. 

L] Ct = f, (3.3) 
1=1 

where Ct is the relative probability that the im
purity atom will be in the site t of the unit cell. 

If the system (2. 9) separates into three inde
pendent equations of the type (2.13), the polariza
tion vectors for the three frequencies which split 
off from each degenerate level form a fixed sys
tern of unit vectors that coincide with the principal 
axes of the crystal. In this case, if we use (2.14)
(2.16) and go over in (3.2) from summation to inte
gration, we obtain directly 

r Gt<v) (x) th (1iroomax Yx) d 
X J -.;- c 2T x. 

o r x 
(3.4) 

This is indeed the final expression which must be 
analyzed by using the results of the preceding sec
tion. 

However, one result can be obtained from (3.4) 
without any specific analysis -the classical limit 
corresponding to T ~ liwmax• where Wmax is the 
limiting frequency of the perturbed spectrum. It is 
easy to show (either as was done in II or by using 
the explicit form (2.16) of the function Gi 11)(x)
see Appendix 2 ) that in this case 

Z = 2T Rt ~ ~ C d3f I xe1 (f, rt)i2 + !I_ 
1 1i2 (2:n:)3 .L..J J ro02 (f, rt) 6T ' 

a.=L 

(3.5) 

It follows from (3.5) that at such temperatures, if 
the force constants do not change, Wt is practic
ally independent of the mass of the impurity atom 
and coincides with the corresponding expression 
for the ideal crystal. (The dependence on the mass 
of the impurity atom remains only in the small sec
ond term on the right in (3.5).) This result has al
ready been given in I and II. 

B. Let us analyze now (3.1), (3.3), and (3.4) in 
detail. We first put Ct = 1. When T = 0 the prob
ability Wt of the effect depends on the value of 
w - 1 = 1/ w0 max-fX averaged over the spectrum, 
and the role of the probability density is assumed 
by the quantity 

3 

G, (x) = :2] (xjv)2 G,<v) (x), 
V=l 

which, in accordance with (2.15), is normalized to 
unity. It is clear that the probability of the Moss
bauer effect depends in decisive fashion on the 
character of the behavior of the spectral density 
Gt (x ). 
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Let m' > mt. Then there are no "free" discrete 
frequencies and the entire perturbed spectrum lies 
in the range 0 :s x :s 1. For values of m' close to 
mt there are likewise no "gap" discrete frequen
cies, and the frequency distribution of the oscilla
tion is close to the distribution of the ideal lattice. 
With increasing m', the "gap" frequencies begin 
to appear' and the spectrum GP') (x) is deformed 
and moves towards smaller x. At the same time 
the quantity Zt /R' increases continuously. The 
shift of Gf v) ( x) towards the lower frequencies 
causes the temperature dependence to become 
sharper-the probability of the Mossbauer effect 
decreases more rapidly with increasing tempera
ture. 

In the limiting cases of large m', when I q I 
» 1, Gill)(x) assumes the form (2.32) and we ar
rive at the following simple expression for the 
probability of the Mossbauer effect at T = 0: 

Wt = exp {- TiroR' I e1 1'/, ± (xjv)2 ( ! )(v}} . (3.6) 
omax v=l t 

The appearance of the large quantity I q 1112 in the 
exponent in conjunction with the obvious inequality 
( x-1) ~v) 1/ 2 > ( x-1/ 2) ~v) causes the probability of 

the effect to decrease appreciably compared with 
the case of the regular lattice in which all the 
atoms mt are replaced by m', and the oscillation 
spectrum is close to the initial spectrum. On the 
other hand, in the general case (3.6) greatly ex
ceeds the probability of the effect for the initial 
regular crystal, produced if y quanta of the same 
energy were to be emitted by the t-th atom. 

The decrease of the effect with the temperature 
becomes particularly abrupt in the case under con
sideration, because now the characteristic fre
quency for the spectrum is given by (2.31). Using 
again (2.32), we readily obtain for Wt 

Wt = exp {- R' ± (xjv)2 cth 1iroomax 'JIX;M} . 
1iroomax v=l V Xt (v) 2T 

(3. 7) 

The transition to the classical limit (3.5) is re
alized in our case at low temperatures 

T ;;;::; 1iroomax v Xt(v) = 1iroomax I I Et I'/, < x-l )t(v)'i•. 

We now consider the case m' < mt. With de
creasing m' the spectral density of the oscilla
tions of the impurity atom shifts continuously into 
the region of higher frequencies. "Gap" local and 
possibly also quasilocal levels appear. Then Zt /R' 
decreases, and the temperature decrease in the 
probability of the effect becomes continuously 
weaker. With further decrease of m', the values 

of function G~v)(x) cluster more and more near 
the upper limit of the spectrum of the ideal lattice, 
''free'' discrete frequencies appear, and transfer 
of the entire spectral density into these frequencies 
begins [see (2.23)]. All is now determined by the 
frequency (2.22), and we have as a consequence a 
large effect at T = 0 and a weak decrease with the 
temperature. 

We give here the limiting value of (3.1) corre
sponding to 1- Et « 1 at T = 0: 

W _ {1 _ )'/, " XJv { 
R' a ( • )2 

1 - exp - ""' Et .LJ < ) <•>'/ 
nffiomax v=I X t 2 

[ 3 (x2)t(v) - (X)t(v)2J} 
X 1 - -2 ( 1 - Et) / ) (v)2 • ,x t 

(3. 8) 

The low value of the argument of the exponent in 
(3.8) is connected primarily with the appearance 
of the factor ( 1 - q )1/2 and, in addition, with the 
fact that (x)iv>-112 < (x-1f2)p'>. The temperature 
dependence will be determined in the case in ques
tion by expression (3. 7) with the substitution xill) 
....... xd. Now the transition to the classical limit 
will occur already at high temperatures, which 
are determined by the inequality [see (2.22)] 

T ;2; 1iroomax Vxdv = 1iroomax (x)/v)'/, I (1 - Bt)'l•, 

We note that all the results of this section co
incide in the case of the single -atom lattice with 
the results of I and II. In the case of lattices with 
two identical atoms in the unit cell, both positions 
of these atoms are equivalent. In each normal os
cillation, the squares of the polarization vectors 
coincide for both atoms, by virtue of which we can 
reduce (2.13) and consequently also the succeeding 
formulas to a form equivalent to the case of the 
single -atom lattice (eliminate the index t). The 
difference will lie only in the oscillation spectrum 
itself. 

We shall not stop specially to determine the 
probability of the single-quantum excitations for 
a y transition in the nucleus. By using the result 
of II and of the present work it is easy to derive 
all the final relations. 

C. If the impurity atom can replace different 
atoms in the unit cell, then the value of the Moss
bauer-effect probability [see (3.3)] and its tern
perature variation can display a very complicated 
and in some cases utterly anomalous picture. Let 
us consider, for example, a two-atom lattice with 
m 2 >> m 1, and let m' have some intermediate 
value. In addition, let c1 and c 2 = 1-c1 be quan
tities of the same order. In this case it may turn 
out that W2 (T = 0) » W1 (T = 0) and the decrease 
in W 1 with temperature will be much more rapid. 
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The result is an unusual over-all picture. Indeed, 
when T = 0, W will have a relatively low value, 
but at the same time it will decrease slowly with 
temperature (a relatively small interval can occur, 
in which W decreases rapidly by a small amount 
at the expense of W 1 prior to going over to the 
slowly varying curve connected with W2 ). If the 
force constants change following the intrusion of 
the impurity atom, then the appearance of two dis
tinctly different sites in the unit cell with respect 
to the Moss bauer effect can occur also for com
parable values of the masses of all atoms. (If one 
of the two atoms of the regular lattice oscillates 
primarily in the low-frequency part of the spec
trum and the other in the high frequency part, then 
an anomalous picture can occur also when the force 
constants remain unchanged and the relation be
tween all three masses is relatively arbitrary. ) 

It must be noted that the occurrence of an an om
alous temperature variation of the Mossbauer-effect 
probability is not an exclusive privilege of the 
single-atom crystals. Thus, if two or several non
equivalent positions can exist in a single-atom 
crystal (for example, a site and an interstice or 
a position on the surface and in the volume in a 
finely dispersed polycrystal, particularly when the 
impurity atoms are poorly soluble, etc.), then we 
can obtain an analogous picture 2>. In our opinion 
it is possible that this is why the results ob
tained by Craig et al. [15 ] (in measurements of the 
probability of the Mossbauer effect on Fe57 nuclei 
imbedded in an indium matrix) showed~ low value 
of the effect for T = 0 and a very weak tempera
ture dependence of the effect up to room tempera
ture. 

We have considered here only one type of anom
aly connected with the presence of nonequivalent 
sites in the crystal. However, an analogous analy
sis can be carried out also for any other case. 

4. INFRARED ABSORPTION 

If the impurity atom occupies the position of 
the t-th atom in the unit cell of an ideal lattice, 
then we have in the rigid-ion approximation for 
the Hamiltonian of the interaction between the ex
ternal electromagnetic field and the individual im
purity atom 

(4.1) 

( eeff -effective charge of the impurity ion). Let 
us use expression (2.12). Then the probability of 

2 ) A temperature dependence of a type described above can 
also occur in a polycrystalline specimen if the Mossbauer ef
fect in the single crystal has a strong anisotropy. 

photon absorption per unit impurity atom turns 
out to be proportional to the following expression 
(we have left out inessential factors): 

e2 ~ 
ef! .L.J <D{l2 (vj13 (t)) 2 fJ (ffio- ffiB)· 

m 13 
(4.2) 

Here v -unit vector of photon polarization and w0 

-photon frequency. We change over from summa
tion to integration. Taking into consideration (2.14) 
-(2.16) and (2.20), we readily obtain 

This is indeed the final expression for the absorp
tion probability. We note that the probability of the 
single-quantum excitations in y decay of the nu
cleus is determined by an analogous expression 
(see II). 

Measurement of infrared absorption by isolated 
impurity atoms, as can be seen from (4.3), un
covers the attractive possibility of directly deter
mining GiVl(x). (In the case of an anisotropic lat
tice, the measurements must be made with a single 
crystal, using (depending on the symmetry) two or 
three orientations of the single crystal relative to 
the photon incidence direction.) We can thus find 
the positions of the "free" and "gap" local levels, 
the quasilocal levels, and the relative intensity of 
the oscillation of the impurity atom at all the fre
quencies. For the analysis of Gtvl(x) we can use 
here the results of the preceding sections. (We 
note that, as was already noted many times, the 
local levels in the crystal will have a finite width. 
Because of this, afvl(x) will have near the dis
crete levels a Lorentz form with a width deter
mined by the width of the local level; see II.) 

Experiments on infrared absorption by impur
ity atoms could uncover still another interesting 
possibility. We have in mind here the determina
tion of the spectral characteristics of the ideal 
matrix. Indeed, experiments on the determination 
of the Mossbauer effect on impurity atoms have 
shown that, at least for a definite type crystal, the 
force constants "vary very little [8- 10]. But then, 
measuring the intensity of the infrared absorption, 
and at the same time also GtVl(x), we can obtain 
gfvl(x) :tnd consequently, in particular, 

1 3 

gt (x) = 3 2; g1(v) (x). 
V=l 

In a single-atom crystal and in crystals with two 
identical atoms in the unit cell, the latter quantity 
yields simply the distribution function of the square 
root of the frequencies of the matrix-the funda
mental spectral characteristics for all the thermo-
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dynamic quantities. We shall not dwell in detail 
here on the analysis of all the aspects of this prob
lem, inasmuch as a corresponding discussion was 
carried out in II and III in connection with the 
single-quantum excitations for y transitions in 
nuclei and for scattering of slow neutrons. 

APPENDIX 1 

In the general case of a crystal with a complex 
unit cell, one of the sites of which ( 0, t) contains 
the impurity atom, the force-constant matrix can 
be written in the form 

A ii' (r0 , j; r 0 •, j') 

(Al.1) 

where yAH:t><rn, j, rn_, j ) is the perturbation 
operator, which satisfies the usual invariance re
lations and usually attenuates rapidly with increas
ing distance from the impurity atom, particularly 
with increasing I rn I and I rD. 1. In this case the 
equation for the oscillations assumes in lieu of 
(2.1) the form 

n'j' 

+ r ~ (mnimn·l)-'I·A~~.t> (r0 , j; r0 •, j') 'If~~'- (r0 ·, j'). 
n'j' (Al.2) 

Here and below, the tilde over a letter denotes 
that the corresponding quantity pertains to the 
system described by Eq. (Al.2). 

If we assume that m '/mt is arbitrary and that 
the change in the force constants is small, then, 
taking as the zeroth approximation the solutions 
of (Al.2) for y = 0 [i.e., the solutions of (2.1)] 
and using usual perturbation theory, we can cal
culate the corrections to expressions for the 
Mossbauer-effect probability and the infrared ab
sorption obtained in Sees. 2 and 3 and linear in y 
(analogous calculations for single -atom crystals 
can be found in II, Sec. 3 ). 

In the case under consideration, the expression 
for the probability of the Mossbauer effect can be 
written in the form (see II) 

Wt = exp (- Zt), 

i; = R' ~ (xtPpp. jO, t))2 cth 1iwP~'-, 
PP. 1iropp. 2T 

(Al.3) 

which is valid for any y. For small y, to calcu
late (A1.3) in the required approximation it is suf
ficient to calculate the linear (in y) corrections 
to >¥ht-t<o. t) and wp (actually only to w~, since 
the corrections to the frequencies of the quasi con
tinuous spectrum are proportional to N-1 ). It is 

important that in this case there is no need for 
using other solutions of (2.1) except (2.7), for only 
the latter differ from zero in the site ( 0, t). 

When y = 0 each level p degenerate in the ideal 
crystal splits into at most three frequencies, which 
are solutions of Eq. (2.13) and to which the func
tions (2. 7) correspond. As a result of the symme
try, two or all three frequencies may coincide. In 
this case we can always choose, by means of an 
orthogonal transformation, linear combinations of 
the functions ~~v<rn, j) -the functions >l!~t-t(rn, j) 
( v, t-t = 1, 2 or 1, 2, 3 -depending on the degree of 
degeneracy), such as to cause the vanishing of the 
matrix elements of the operator A, corresponding 
to the transitions between the degenerate levels. 
We shall use as the unperturbed functions the set 
of functions >¥ht-t ( rn, j ) . 

We seek the solution of (Al. 2) in the form 

'¥~~'- (rn, j) = 11'~~'- (rn, i) +' rw;~'- (rn, j), 

w~~'- =.ro~~'- + rro;;~'-. (A1.4) 

Using ordinary perturbation theory we readily ob
tain 

'i "'' Ap'p.'. PIJ. i 1f pp. (0, t) = LJ 2 2 1f p'p.' {0, t), 
p'p.' Cilpp.- Cilp'p.' (A1.5) 

A "' nri' ( '') A;~~t) (rn•, j'; rn, j) nri ( ') 
p'p.',pp. = LJ Tp'p.' ru•, I V Tpp. rn, I • 

m···m · 
n'j'nj n 1 D1 (Al.6) 

In (Al.5) the summation is over all the (p', t-t') 
which are not equal to ( p, t-t). Let us substitute 
(A1.4)-(A1.6) in (Al.3). As a result we obtain 

Zt = Zt +rz;. 
Zt = R' ~ (x'llpp. {O, t))2 cth 7iropp. 

PP. 1iropp. 2T 

= R' "'{x<Dpv (0, t))2 h 1iropv 
LJ 1iro ct 2T ' 
pv pv 

z; = R'xix,i' ! ~ 1¥~~'- (0, t) 1¥~'~'-' (0, t) 
PP-'P'p.' 

(Al. 7) 

(Al.8) 

X Ap'p.',pp. (-1-cth 7iropp.- - 1- cth 7irop'p.') 

ro~~'-- ro~'p.' Cilpp. 2T rop'p.' 2T 

= R'xix,i' ! ~ <D~v (0, t) <D~·v• (0, t) 
pvp''IJ' 

x -ct -----ct --. Ap'v', pv ( 1 h 1iropv 1 h nrorfv' ) 

Cil~v - Cil~'v' Cilpv 2T Cilp'v' 2T 
(A1.9) 

The second equality in (A1.8) and (A1.9) is a direct 
consequence of the orthogonality of the transfor
mation ~rom the functions ~hv<rn, j) into the func
tions >¥bt-t (rn, j) [ Ap'v' ,pv is determined by ex
pression (Al. 6) if we replace in it the functions 
>¥hJ.I<rn, j) by ~hv<rn, j )]. The final expression 
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in (Al. 8) then simply coincides with (3. 2). 
At high temperatures T > fiwmax expression 

(Al. 9) is transformed into 

z; = _ 2TR'xiyf1i_2 hh <D~v(O,t)A;-v··~"<D~·v·(O, t) . 
pv p'1/ Wpv ffip'\l 

(Al.lO) 
It must be noted that at high temperatures we 

can obtain for Zt a certain general expression 
(see II) 

sum contained in (Al.lO) into 

~ <Dpvi (0, t) <D~'v' (0, f) ~ <D~v (rn, j) Jf mnjmn'j' 
pv, p'•/ r-n'ntm' 

j j' as' 

[ A-1 ( )lk" ( )-'!, Ak'l' ( ., ') X ojj' rn - Tn· mu'j'mm's' (0, t) rn'• I 'Trn•, s 

A 1 A A 1 '"# 

= m' (A~ AA~ .)~'n=•n•=o, 
i=i'=t 

Z1 =2TR'm'[A-1 (0, t;O, t)]ii'xix,i'. (Al.ll) q.e.d. (see (Al.ll)-(Al.12)). 

Thus, the problem actually reduces to finding a 
matrix which is the reciprocal of the matrix (ALl). 
At relatively small y, this problem can be solved 
in the usual fashion, and the final solution is rep
resented in the form of a perturbation-theory 
series 

00 

(Al.l2) 
m=o 

To find the quantities of the type [ AO]~' ( rn - rn)) kk', 
which are contained in (Al.l2), we multiply both 
sides of the equation for the ideal lattice [ (2.1) with 
Et = 0) 

Wo2 (f, a) cpira (r,, p) = 2] (mpmp.f'1• A~~P' (r,- r,·)cpi'ra (r1·, p') 
l'p' 

by 

•;, -2 (f ) k* ( .,) [ A-1 ( ) ki mp Wo ' a crra Tn•, I Ojp rn - r, l 

and sum over 1, p, i, f, and a. As a result, using 
the explicit form (2.3) for the functions qJta<rn, j ), 
we have 

-1 kk' 1 
:[Ao;drn- Tn·)J = , 

(m;my)" 

xexp [if(rn- rn·)]. (Al.l3) 

Finally, using (Al.ll)-(A1.13), we find 

co m+l 

Z 2T Rt . 1, "' m [ v0 ] 
t = ---,;,r x'x m-=o (- r) (2n)3 

X 2] ~ · · · ~d3/1d3/2· • .d8frn+l 
a.tcx2···am+l -

eti (fh al) Ar,cx, r,a,Ar,a, r,a, ••. Arm"m• tm+l"m+le/* (fm+l• am+l) 

X Wo2 (fh al) Wo2 (f2, a2) · • · Wo2 (fm+h am+l) ' 
(Al.14) 

where 

(Al.15) 

The term m = 0 in (A1.14) does not contain A and 
corresponds to the case of invariant force con
stants, whereas the term m = 1 coincides exactly 
with (Al.lO). To verify this, we transform the 

APPENDIX 2 

Leaving out the indices t and v from (2.16) and 
(2.17) so as to simplify the notation, and going over 
to the dimensionless frequency x (2.20), we con
sider the integral 

r dx 
ln = ~ G (x) xn , 

0 

n = 0.1; 

{[ ' g(x')dx']2 
·G(x)=(1-e)g(x) 1-e.T 5 x-;' 

{Xi} 

(A2.1) 

(A2.2) 

The integration in (A2.2) is carried out over all 
the segments X 1 = (O,xi), X 2 = (x2x2), ... , Xa 
= (xa, 1) which correspond to the quasicontinuous 
bands of the ideal crystal (a< 3s, inasmuch as 
some of the bands overlap, as is customarily the 
case ) , and which define the only region where the 
function g(x) differs from zero. 

With respect to the function g(x) which is nor
malized to unity 

~ g (x) dx = 1, 
{Xi} 

we can show, using the results of van Hove [ts], 

that in the closed intervals Xt. X2, ••• , Xa it sat
isfies the Lipschitz condition with exponent %. 
Then, as is well known, the improper integral 
contained in (A2.2) exists and defines in the closed 
intervals Xt. X2, ... , Xa a function of x satisfy
ing the Lipschitz condition with the same exponent 
Yz; consequently the integral (A2.1) exists for both 
indicated values of n. 

Let us transform the expression (A2.2) for the 
function G (x), recasting it in the form 

G (x) = - ~niee ~ {[ 1 -ex Y g ~~ !~' + inexg (x) r1 

- [ 1- exJg~~~~'- inexg (x)r1
} 

= ---- 1m - ex --"--'--"-~ 1-e1 1. {[1 \g(x')dx' ]-1 
2nie x s .... +o .x- x' + ifl 

-[ 1- ex~xg~x;,~'i{J rl}. (A2.3) 
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Inasmuch as the integrand in (A2.1) does not have 
any singularities at all ( n = 0), or has an integra
ble singularity ( n = 1 ) , we can, after first shifting 
the lower limit of integration to the point x = p 

(p- + 0 ), break up the integral (A2.1) into two 
parts corresponding to the two terms in (A2.3). In 
the first of the integrals resulting from this split
ting we can slightly deform the path of integration 
from the real axis into the upper half-plane (this 
is equivalent to introducing an integration variable 
z = x + io ), while in the second we can deform the 
path to the lower half plane (z = x -io ). We thus 
have 

1 -e . \ 
ln =- -2-.- hm j Fn(z)dz, 

:rtle p, s .... +o i. 
(A2.4) 

where 

Fn(z) = z-(n+l) [1- ez ~ gz(x)~]-., 
{Xi} 

(A2.5) 

and the integration in (A2.4) is carried out along 
two horizontal lines -from p + io to oo + io in the 
upper" half plane and from oo - io to p- io in the 
lower half plane. 

The Cauchy-type integral in (A2.5), as is well 
known, defines a regular function of the variable z 
outside the segments X1, X2, ••• , X even under 
the most general assumptions with respect to the 
function d ( x) (the latter need merely be continu
ous on the segments {Xi}). Therefore the func
tion F n ( z ) is analytic in the entire plane of the 
complex variable z, with the exception of the seg
ments {Xi} of the real axis, and perhaps also the 
poles z = xd corresponding to the roots of the 
equation 

1-ez ~ g(x)dx = Q, 

{X;} z-x 
(A2.6) 

which coincides with the equation (2.19') for the 
determination of the discrete frequencies (cor
responding to the indices t and v, which are 
omitted here). Therefore, the integrals taken in 
the opposite directions along the straight-line seg
ments (p +io, oo +io) and (oo-io, p-io) (where 
g( x) = 0 and, consequently F n ( z) is analytic) 
cancel each other and the integration can be car
ried out over the contour 

shown by the solid line in the figure; this is indi
cated in (A2.4) by the corresponding symbol on 
the integral sign. The integration over the circles 
cbdil with small radius p is carried out only near 
the discrete frequencies ("gap" and "free") which 

(t I) 

I 

actually exist for the given E. 

Let us consider the integral 

1-e ~ Kn=--
2nie 

L+Cp (O)+C 

Fn (z) dz, (A2.7) 

where the integration is carried out over the com
bined contour made up of L and the small-radius 
circle c<O> with center at the point x = 0, circuited 
in the clockwise direction (shown dashed in the .fig
ure), and also over the circle CR of radius R- 00 

in the counterclockwise direction. It is obvious 
that 

1-e ·· 1-e~ Jn = Kn + -2-.- \ Fn(z)dz + -2-.- Fn(z)dz. (A2.8) 
me J me 

Cp (o) CR 

On the other hand, it is also obvious that inasmuch 
as the function F n ( z ) is analytic in the region 
contained between the contour L + c<O> and the 
circle CR, the integral assumes the value 

Kn=O. (A2.9) 

When I z I « 1, as can be readily seen, the func
tion F n ( z) can be represented in the form 

Fn(z) = z~+l { 1 + z [ fz ( 1- ez ~gz(x):xr 1 l=o} 
(1- ze(x-1 )) 

zn+l 

where we introduce the usual notation 

Thus, we have 

1- e ~ 1- e ~ dz -2-.- Fo(z)dz = --
me ' 2nie • z -

1-e 
e 

Cp (0) Cp (0) 

12--: e \ F1 (z) dz = 12---: e \ dz (i_- _!_ e <_..!_>) 
me ~ me J z2 z x 

Cp (0) Cp (0) 

=(1-e)<!>· (A2.10) 

Finally 

1 - e \' {e-1 for n = 0 
2nie .\ Fn(z}dz = . (A2.11) 

cR 0 for n=i 

Taking (A.8)-(A2.11) into consideration, we ob
tain ultimately 

00 

10 = ~ G(x)dx= 1, 
0 

00 d <1> 11 = ~ G (x) : = (1- e) x . 
o (A2.12) 
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The first of these relations obviously coincides 
with (2.15), whereas the second corresponds to 
the classical limit for Zt (3.5). 

The result (A2.12) is of interest also from the 
mathematical point of view. We see that a rather 
complicated functional such as J 0 turns out to be 
utterly independent of E or of the concrete form 
of the normalized function g(x ). The final expres
sion for J 1 turns out to depend on E and on the 
concrete form of the function g(x), but it is 
striking because of the universality of this de
pendence and because of its extraordinary sim
plicity. 

1 Yu. Kagan and Ya. Iosilevskil, JETP 42, 259 
(1962), Soviet Phys. JETP 15, 182 (1962). 

2Yu. Kagan and Ya. Iosilevskil, JETP 44, 284 
(1963), Soviet Phys. JETP 17, 195 (1963). 

3 Yu. Kagan and Ya. Iosilevskil, JETP 44, 1375 
(1963), Soviet Phys. JETP 17, 926 (1963). 

4 A. M. Maradudin and P. A. Flynn, Phys. Rev. 
126, 2059 (1962). 

5 I. P. Dzyub and A. F. Lubchenko, DAN SSSR 
147, 584 (1962), Soviet Phys. Doklady 7, 102 (1963); 

JETP 44, 1518 (1963), Soviet Phys. JETP 17, 1021 
(1963). 

6 W. M. Visscher, Phys. Rev. 129, 28 (1963). 
7 P. G. Dawber and R. J. Elliot, Proc. Roy. Soc., 

London A273, 222 (1963). 
8 Bryukhanov, Delyagin, and Kagan, JETP 45, 

1372 (1963), Soviet Phys. JETP 18, 945 (1964). 
9 Bryukhanov, Delyagin, and Kagan, JETP 46, 

825 (1964), Soviet Phys. JETP 19, 563 (1964). 
10 V. I. Nikolaev and S. S. Yakimov, JETP 46, 

389 (1964), Soviet Phys. JETP 19, 264 (1964). 
11 P. G. Dawber and R. J. Elliott, Proc. Phys. 

Soc. 81, 453 (1963). 
12 I. M. Lifshitz, Nuovo cimento 3, Suppl. 4, 716 

(1956). 
13 R. Brout and W. Visscher, Phys. Rev. Lett. 9, 

54 (1962). 
14 M. A. Krivoglaz, JETP 46, 637 (1964), Soviet 

Phys. JETP 19, 432 (1964). 
15 Craig, Taylor, and Nagle, Nuovo cimento 22, 

402 (1961). 
16 L. Van Hove, Phys. Rev. 89, 1189 (1953). 

Translated by J. G. Adashko 
321 


