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We investigate nonlinear effects that arise in the interaction of a high-frequency field and a 
stratified inhomogeneous plasma; these effects are due to the existence of a sharp maximum 
in the potential that characterizes the effective average force in the vicinity of the plasma 
resonance point. If the external field E0 is large enough, ( E0 > E~r, E~r ~ v312, v is the 
electron collision frequency) the density distribution becomes steplike in the resonance 
region. The positions of the weakly sloping (top) and steep (side) parts of the step depend 
on the history of the amplitude variation (hysteresis): if the amplitude is increasing the 
dielectric constant E is positive in the weakly sloping part and the transition through the 
point E = 0 is discontinuous; if the amplitude is decreasing the discontinuity shifts to the 
region E < 0 and E approaches zero in the weakly sloping part. The first case corresponds 
to a sharp increase in the quality factor of quasistatic resonances for objects with smeared 
out boundaries; in the second case these resonances disappear completely as a result of the 
screening effect of the layer of zero dielectric constant. Estimates show that the nonlinear 
effects considered here can be important both under laboratory conditions and in the reflec­
tion of radio waves from ionospheric strata. 

INTRODUCTION 

IT is well known[t-S] that the resonance proper­
ties of plasma objects with diffuse boundaries de­
pend quite sensitively on the slope of the electron 
density distribution in the region in which the 
plasma frequency wp approaches the wave fre­
quency w. Whether it is due to particle colli­
sions [t, 2] or to the conversion of energy into 
plasma waves, [a] (for an arbitrarily low collision 
frequency and temperature in the linear appro xi­
mation) the energy loss is the same in this region 
and is proportional to the scale size of the density 
inhomogeneity. For this reason, the quality factor 
of electron resonances can be very sensitive to 
nonlinear effects associated with the presence of 
a sharp maximum in the high-frequency poten­
tial [(-6] in the region in which wp f':! w; 1) this 
potential is given by 

e2 
CD= --IE 12 (1) 

4mw2 ' 

and plays the role of the potential energy for the 

l)Because of this effect the nonlinear interaction of the 
freld with the plasma in the region of the plasma resonance 
becomes important at much lower fields than would follow 
from the estimate given by Ginzburg (cfJ7], p. 272) on the 
basis of spatial-dispersion phenomena. 

motion averaged over a period 27r I w ( e is the elec­
tron charge, m is the electron mass, E is the 
amplitude of the high -frequency field). 

The redistribution of electron density due to 
the averaged force \lcp and the resulting change 
in resonance absorption are investigated in the 
present work for the simple case of a plane strati­
fied plasma structure at low field amplitudes. A 
similar problem, i.e., the effect of the field inter­
action on the plasma density for the one -dim en­
sional case, has been treated by Gurevich and 
Pitaevskil. [8] However, these authors assumed 
the plasma density to be uniform in the unper­
turbed state and the change in spatial distribution 
of density was not investigated. The analysis 
given below makes use of the results of [8] and is 
essentially a generalization of these results (and 
earlier results [5•6•9]) to the case of interest here, 
the problem of determining the change in the elec­
tron density gradient in the vicinity of the plasma 
reson'ance point. 

1. DENSITY DISTRIBUTION IN THE PRESENCE 
OF A FIELD 

We consider a plane plasma layer located in an 
external uniform field x0E 0eiwt perpendicular to 
the plane of constant plasma density ( x = const). 
By virtue of the continuity of the normal compo-
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nent of the electric induction the field in the plasma 
is given by 

E(x)E(x) =Eo. 

Here, E(x) is the complex dielectric constant 
of the plasma: 2> 

8 = 8r- iei., 
(j) 2 

8r = 1 - ----;-, 
(j) 

(2) 

(3) 

v is the electron collision frequency, which is as­
sumed to be small compared with w ( v « w); 
n (x) is the electron density distribution, which 
obeys the Boltzmann distribution and, under quasi­
neutral conditions, is given by ( cf. for example [!OJ) 

n (x) = n0 exp [-Ill (x) :li (x) J, (4) 

'IJf ( x) is the potential of the external free forces 
providing stability of the plasma, for a given total 
number of electrons N (per unit area of layer ) 
the constant n0 is determined by the normalization 
condition 

that the deviation of this factor from unity can be 
of importance only in the region where I E(x) I « 1 
(to which all the subsequent analysis pertains) and 
that the total number of particles within this region 
is small compared with N, for the accuracy re­
quired here we can neglect the functional depend­
ence n0 {IE 12} (i.e., J { S'}) and assign to the 
constant n0 its value in the unperturbed state (in 
the absence of field): 

-l·oo 

no= NjJ, J = ~ e-'Y/2kT dx. (8) 
-00 

Then, from Eq. (7) I E (x) I « 1 we find 

{[eo(x) +aS' (x) )2 + ~2} & (x) = 1, (9) 

which has been investigated earlier [8] for the case 
6 = 0, Eo = const ( E0( x) denotes the real part of 
the dielectric constant of the unperturbed plasma). 

Now we substitute the value iiJ = I E 12/Ea 
= 1/ ( E~ + 62 ) in Eq. (9) and assume a linear de­
pendence for E 0 ( x) 

t:o(x) = -x /lo, leo(x)J<Z;1, (10) 

+oo 
(' [_Ill (x) + ':F (x) J d _ N 

no ,\ exp 2kT x -
-oo 

thereby obtaining an equation that describes the 
(5) spatial distribution of the real part of E in the 

presence of the field: 

and is thus a functional of the field amplitude: 

no= no{IEI 2}. 

Multiplying Eq. (2) by the complex conjugate, 
and using Eqs. (1), (3)-(5) with the notation 

f ( ) - 4:rte2 N -'Y/2kT 
x - mw2 e ' 

(6) 
-00 

we obtain the following transcendental equation for 
Ee(x) 

(11) 

(This equation obviously can be obtained starting 
directly from the expression for Er(x') = 1 
- (47re2/mw 2 )/ (x, E2 ).) 

The hysteresis effect in the dependence of & (Eo) 
noted by Gurevich and Pitaevskil [8] corresponds, 
in the present case, to the ambiguity in the func­
tions If (x) and Er (x); this ambiguity is easily 
eliminated from Eq. (11). Rewriting (11) in the 
form 

x ~ a 1 
Zoo + T- 63 1 + (er/6)2 = O, 

(12) 

[ ( 1-J£1. e-a.~) 2 + (t!JS!l e-ali) 2
] tl)' = 1 

J{S'} J{S'} . 
(7) we note that the nature of the solution depends pri­

marily on the parameter 

We shall limit ourselves here to an investiga­
tion of Eq. (7) for the weak field case, requiring 
that a/£ max R:: a/ 62 « 1 and replacing the expo­
nential factor exp ( -a & ) by 1 - alt . Assuming 

2 )We assume that the resonance value of the field Emax 
(in the plane E r (x) = 0) is determined by the frequency of 
electron collisions v while effects associated with spatial 
dispersion are unimportant (for this statement to hold the 
inequalities eEmax/m « vwl and (D/l)'/, « v!w must be sat­
isfied where l is the characteristic scale length of the density 
inhomogeneity and D is the Debye radius; (cfJ7 ] pp. 272, -
279). 

a e2 Eo 2 <Drnax 

YJ = 63 = 8mw2kTo~ ~ 2k1'5 · (13) 

The curves in Fig. 1 show the function Er (x/106 )/ 6 
for various values of 1); starting at some critical 
value · ( 1J > 7Jcr ) there is a finite range x 1 ~ x ~ x 2 

for which the solution of (12) becomes ambiguous 
and gives three equilibrium states. The intermedi­
ate state (dashed curve in Fig. 1) is unstable and 
cannot be realized. Since the other two (stable ) 
equilibrium states are separated everywhere by a 
finite range of values of Er it is evident that at any 
point x in the interval x 1 ~ x ~ x 2 the functions 
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FIG. 1. The function Er(x/V3)/o for various values of the 
parameter TJ· 

er(x), n(x), l:f(x) must be discontinuous. 
Under actual physical conditions this discon­

tinuity obviously cannot be infinitesimally sharp; 
its detailed structure is determined basically by 
two effects that have not been considered: 1) spa­
tial dispersion, and 2) strong electric fields in the 
vicinity of the discontinuity due to the violation of 
plasma neutrality. Because of these effects the 
width of the sharp density drop becomes finite; 
in any case it is at least as large as the Debye 
radius. 

The position of the point x within the interval 
(xi> x 2 ) is determined by the history of the varia­
tion in field amplitude E0, that is to say, it de­
pends on the way in which a given equilibrium 
state is approached. 3 > To demonstrate this point 
it is sufficient to investigate the function Er ( 17) 
given by Eq. (12) at various points. Direct analy­
sis of the family of curves in Fig. 1 (curves cor­
responding to higher values of 17 lie above and to 
the right) leads to the following conclusion. As 
E0 increases monotonically from the critical 
value E~r ( 17 = 7Jcr) a discontinuity is formed at 
the point x =xi (i.e., at the lower boundary of the 
interval of inhomogeneity) and is displaced with 
it in the direction of positive x. When E0 is re­
duced the interval (xi, x 2 ) is displaced in the op­
posite direction and the coordinate of the discon­
tinuity x does not change so long as it does not 
coincide with the point x2; when it does coincide 
both move together. 

Certain numerical results of the analysis of 

3 )Here and everywhere below we consider only slow 
changes of E0 in time (the characteristic time for the change 
in E0 being appreciably greater than the time required to 
achieve the equilibrium Boltzmann density distribution). 

the cubic equation (12) are given below. 
1. 7Jcr = 8/3/9 ~ 1.54; 1J = 7Jcr the interval 

(xi, x 2 ) degenerates into a point Xcr =xi = x 2 

= 13 OZ0, at which Er = - o//3 and dEr /dx =co. 
2. When 17 » 7Jcr the edge of the range (xi> x2 ) 

and the values of Er on both sides of the disconti­
nuity for x = xi and x = x 2 are given by the ex­
pressions 

x1/6lo = 3 (YJ/4)'1', X2/6lo = Yf, 
Er (X-+ X1 - 0) = 6 (YJ/4)'/,, 

Er (x-+ x2 - 0) = - 6f2YJ, 

Er (x-+ X1 + 0) = - 6 (21])'/,, 

Er (x-+ X2 + 0) = - 61]. (14) 

As is evident from Fig. 1, the appearance of the 
discontinuity is accompanied by the formation of 
a weakly sloping part ("plateau") where the deriv­
ative dEr/dx is reduced appreciably. As a result 
when 17 » 7J,cr (to which we refer everywhere be­
low) the distribution Er (x) acquires a form which 
can be shown schematically as a step (Fig. 2a,b). 

a b 

FIG. 2. Simplified schematic diagram showing the spatial 
distribution of the dielectric constant in a strong field 
(TJ » 1): a) field increasing in time (x = x,); b) field decreas­
ing in time (x = X 2 ). 

On the scale length z0 the width of the plateau ~P 
coincides with the height of the step ~Er· 

X= X1 
(15) 

its height Erp above the level E r = 0 is approxi­
mately ~Er /2 and x =xi and is very close to 
zero ( Erp ~ o) when x = x2• It follows from Eq. 
(15) that for a given value of 17 the width of the 
plateau and the height of the step for x = x2 are 
17 2/ 3 times greater than for x = xi. However, it 
should be kept in mind that for a given 1J = 1Jo the 
relation x = x 2 can be satisfied only after 1J in­
creases to the value 17m ax ~ 17g » 1Jo· A subse­
quent reduction in 17 is accompanied by a reduc­
tion in the dimensions of the step; this is first 
(17m ax ~ 1J ~ 17ih3ax) due only to the reduction of 
the plateau level Erp and then ( 1J ~ 1Ji/(ax) to the 
displacement of the coordinate of the discontinuity 
x = x2 in the direction of decreasing x. 
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2. CHANGE IN JOULE LOSSES AND RESONANCE 
CHARACTERISTICS 

The step approximation for the function E r ( x) 
provides a simple way to estimate the change in 
power loss in the resonance region R (I E I « 1 ) 

(16) 

as compared with the loss at small field amplitudes 
(77«1) 

For a given field amplitude E 0 that is suffi­
ciently greater than E~r ( 171/ 3 » 1 ) the quantity W 
falls off strongly or increases sharply depending 
on the value of Er in the region of the plateau (i.e., 
on the direction of the previous change in amplitude 

f ro E 21 -•;, . . f ld .;;:: 21t 0 oT] , mcreas1ng 1e , T] """" Tlmax 

W:::::: . (18) 
t 8: E0210T], decreasing field, T] <;;; TJ~x 

Before investigating the resonance properties 
of a layer we should point out that the results given 
above are not fundamentally limited to the one­
dimensional case; in systems with more compli­
cated field and density distributions (two or three­
dimensional objects, plane layer irradiated by a 
wave at oblique incidence) the component of E par­
allel to 'VE in the region of the point Er = 0 is, as 
a rule, determined by the same equation (2). In 
general, the important feature of inhomogeneous 
systems is the dependence of the constant E0 on 
the nature of the distribution of E and this depend­
ence can generally be taken into account within the 
framework of a one -dimensional problem. We shall 
assume that the layer is located inside a plane con­
denser to the plates of which is applied an ac volt­
age with amplitude V0• Then, as before the field in 
the plasma is described by Eq. (2) while the con­
stant E0, whose magnitude determines the nature 
of the distribution E r ( x), can in turn be a func­
tional of this distribution: 

(19) 

where L1 and L2 are the coordinates of the con­
denser plates; the plate separation 6-L = L2 - L 1 

is assumed to be fairly large in the estimates we 
make below (6-L .. ~ Z0 ). The impedance of the sys­
tem is equal to the denominator of Eq. (19) multi­
plied by 47r/iw. Setting the imaginary part equal 
to zero (i.e., the real part of the denominator) we 

obtain the resonance condition 

(20) 

It then follows in particular, that resonance is pos­
sible only for a function Er(x) that changes sign 
and that the number of resonances can be greater 
than unity. The resonance amplitude E5'es 
( w = Wres ), the width of the line v and the quality 
factor are determined by the magnitude of the in­
tegral 

1:• dx 
K = ~ e 2 + 62. 

L, r 

(21) 

It is clear from Eq. (16) that the power loss for a 
fixed Eij is proportional to the same integral 
(W ~ KE5). Hence, all that has been indicated 
above concerning the increase and decrease in 
W /E5 also applies completely to the width of the 
resonance line v: when 171/ 3 » 1 the resonance 
in an increasing field (x = x 1 ) is much more pro­
nounced (v/v0 r::; 77-1/3 ) and is much weaker (v/v0 

r::; 17) in a decreasing field (x = x2 ) than in the ab­
sence of nonlinear effects (v = v0 r::; wresZ0 /6.L). 
In the first case the power loss W, is always small 
far from resonance as in any system with a high Q 
( W /W 0 r::; 17 1/ 3 ) and increases sharply at resonance 
(E5es ~ 1/K ~ 77 1/ 3, W/W0 r::; 772/3 ). In the second 
case the maximum value that E 0 can assume falls 
off sharply ( Eijes ~ 17-1 ) and W always remains 
small 4' (W/W0 r::; 17-1 ). 

The deformation of the plasma structure not 
only changes the line width v but also shifts the 
resonance frequency wres given by Eq. (20). In 
the absence of nonlinearity this condition is given 
by 

t• Eo 
~ Eo2 + 62 dx = 0, 

L, 

(22) 

while when 771/ 3 » 1 and x = xi> as can be easily 
shown using the step approximation, 

(23) 

Comparing the two expressions we see that the en­
tire distribution E0(x) must be shifted toward 
negative values so that the resonance frequency is 
reduced. As 17 increases this relative change ap-

4 >Actually this is the manifestation of the screening of the 
field by the layer with zero dielectric constant["] (the plateau 
characterized by Er"' 8 plays this role). 
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proaches a field-independent limit: 

L1w -- = -lofL1L + 0 (r(1). (24) 
Ulres 

Thus, the resonance characteristics of a layer 
are sensitive to the magnitude and direction of the 
field change. As a result, amplitude modulation of 
the voltage on the condenser plates will cause the 
impedance to change over wide limits and lead to 
marked nonlinear distortion of the current enve­
lope over a modulation period. As applied to an 
inhomogeneous system this means that at some 
critical field amplitude the envelope of a signal 
reflected by a plasma should exhibit strong non­
linear distortion. 

CONCLUSION 

The results that have been obtained can be sum­
marized as follows: In an inhomogeneous plasma 
interacting with a time-increasing high-frequency 
field the transition through the point Er = 0 occurs 
discontinuotisly; if the field is decreasing the dis­
continuity is shifted toward negative values of Er 
and the plasma "surrounds" itself by a screening 
layer with dielectric constant equal to zero. 

If there is a density discontinuity at the point 
Er = 0 the resonance effects which are weak at the 
boundary in a plasma with a smooth distribution of 
E r can be intensified greatly. In particular, it be­
comes completely possible to realize resonance 
interactions of the field with higher multipole mo­
ments of a plasma structureC1•2•12 J (in the absence 
of nonlinear effects the multipole resonances of 
higher order are especially weak [ 1•2] because of 
the diffuseness of the boundary). In a plasma 
screened by a layer of zero dielectric constant 
the quasi static resonances (which can be treated 
only on the basis of a particular model) become 
impossible. 

Here we have neglected completely the effect 
of the deformation of the spatial distribution of 
plasma on the plasma resonances associated with 
the excitation of longitudinal (plasma) oscillations. 
The quality factor of these resonances is increased 
markedly, as indicated earlier, [3] because of a dif­
ferent nonlinear effect-the "equalization" of the 
electron velocity distribution function in the region 
in which the electrons are synchronized with the 
travelling plasma wave. [ 13 ] 

The possibility of controlling the resonance 
properties of plasma objects by changing the sig­
nal amplitude is an extremely interesting one in 
a number of applications in which resonance ef­
fects in a bounded plasma are used (resonance ac­
celeration of plasmoids, diagnostic methods, pro-

duction of controlled transmission filters, and so 
on). It is also noteworthy that the nonlinear ef­
fects treated here are not limited to laboratory 
experiments but can also manifest themselves in 
reflection of radio waves from the ionosphere; in 
this case, under certain conditions, the vertical 
component of the electric field has a sharp maxi­
mum at the point Er = O.[l4] We show below that 
the nonlinearity becomes appreciable starting at 
relatively low levels of high-frequency power. For 
example, let v = 108 sec-1, w = 1010 sec-1, 

T = 104 oK (parameters that are typical for labo­
ratory conditions ) . Then the critical field value 
E~r = (12.3 mkTv3/e2w) 112 r::::J 1 V/cm. To produce 
such fields in wave guides with transverse cross­
section ~ 10 cm2 requires a power ~ 10-2 W. 
Under ionospheric conditions the role of the con­
stant E 0 at small angles of incidence is played by 
1. 2 ( c/27Twl0 ) 112 Ei [14 ] where c is the velocity of 
light and Ei is the amplitude of the incident wave 
on entry into the layer. In the F -layer ( v r::::J 3 x 103 

sec - 1, T r::::J 103 °K, Z0 r::::J 107 em) the critical value 
of the amplitude is Efr = 7 (Z0mkTv3/e2c )112 r::::J 10-4 

VI em. At the height of the F -layer (approximately 
3 00 km) a field of intensity of this kind can be re­
alized with an isotropic radiator with a power of 
approximately ~ 105 W. If two waves at approxi­
mately the same frequency are reflected from the 
ionosphere the resulting change in electron density 
gradient should lead to cross-modulation which 
would be especially strong if the point of reflection 
of one wave were close to the resonance point of 
the other. 

The author is indebted to M. A. Miller and I. G. 
Kondrat'ev for valuable discussion and important 
remarks. 
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