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An analysis is given of the amplifying properties of a medium based on the phenomenon of 
stimulated Raman scattering. In contrast to reports available in the literature, we consider 
cases when the waves are propagated along various directions. The interaction efficiency 
of Stokes and Rayleigh wave components of the field is determined in this case by the 
angle between the electric field of the Rayleigh component and the wave vector of the Stokes 
component. Interaction of the three wave components (Rayleigh, Stokes and anti-Stokes) is 
possible only for certain mutual orientations of their wave vectors. As a rule, however, this 
interaction is much less efficient than the interaction of two components, Rayleigh and 
Stokes. 

1. The phenomenon of stimulated Raman scatter
ing may be described as follows: when certain 
organic liquids are irradiated by intense light of 
frequency wp, a very intense coherent Stokes 
component of the light is generated. The frequency 
of this component we is related to the frequency 
of the incident light by the relation wp - we = w 0, 

where u.: 0 is a molecular vibration frequency 
present in the ordinary Raman spectrum. The 
coherent anti-Stokes component of the light, of 
frequency wa = wp + we, has not been observed 
in the first experiments [1•2J, but it has been ob
served later [3] that it also occurs under definite 
conditions. 

The quantum mechanical theory of stimulated 
Raman scattering has been developed in a number 
of papers [4-s]. 

The mechanism of this phenomenon has also 
been studied from the point of view of classical 
physics [7 •8]. We have previously [7] investigated 
the process of energy transfer due to the interac
tion of the Rayleigh component of the field (the 
pumping wave) with its Stokes component in the 
case where the waves are propagating in the same 
direction. In this case the anti-Stokes component 
does not play any significant role in the interac
tion between the waves. 

These conditions (i.e., both waves propagating 
in one direction) indeed obtained in the first ex
periments [1•2] on .stimulated Raman scattering. 
However in constructing amplifiers or oscillators 
using the principle of stimulated Raman scattering 
it is preferable to have conditions such that the 
waves are propagating in different directions. 

When the propagation directions of the waves are 
different, the equations describing this process 
contain additional terms which cannot be neglected 
and which greatly complicate the solution of the 
equations. As was shown by Garmire, Pandarese, 
and Townes [8], under the condition 

2kr - ks - ka = 0, · (1) 

(where ks, ka and kr are the wave vectors of 
the Stokes, anti-Stokes and Rayleigh components 
of the light respectively) the anti-Stokes com
ponent does play an important part in the interac
tion between the waves. Condition (1) may be 
satisfied in media exhibiting normal dispersion, 
but it is then necessary that the wave vectors ks, 
ka and kr be in different directions. 

The present paper treats the interaction be
tween the Rayleigh and Stokes components of the 
light when their propagation directions are differ
ent, and also treats the interaction of these com
ponents with the anti-Stokes components when 
this interaction is. efficient. 

2. We consider the case in which the anti
Stokes component of the field is not efficiently 
generated and in which the frequency wr is close 
to the frequency difference wr - w0 but is not 
necessarily equal to it. The behavior of the elec
tric field E in the medium is described by Max
well's equations: 
1 a• C2 at2 (E + 4nP) = -rot rotE, div (E + 4nP) = O, (2)* 

*rot= curl. 
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where P is the polarization per unit volume. We 
consider a semi-infinite medium whose boundary 
is the plane z = 0. Light waves of frequency ws 

and wr are propagating in this medium and the 
electric field strength is given by 

E = Esei(wsl-ksr) + Erei(c•rt-krr) +c. c. (3) 

Here Es and Er are slowly varying complex 
amplitudes which may depend both on time and on 
the coordinate z. Corresponding to this electric 
field there is a polarization P given by 

p = Psei(wst-ksr) + Prei(wrl-krr) + c.c., (4) 

where P s and P r may depend on both Es and 
Er simultaneously, since the polarization of the 
medium depends on the total field strength. 

In the steady state regime, which is the only 
one considered here, we have 8En/8t = 0. The 
index n takes the values s and r. Then putting 
(3) and (4) in (2) and taking account of the slow
ness of the variation of the complex amplitudes 
En, we obtain 

8En i 
az= 2knCOSYn 

x[kn?En- ::
2 (En+41tPn)-41tgraddivPn]. (5) 

where "Yn is the angle between the z axis and the 
wave vector kn. In order to obtain a closed sys
tem of equations for the En we must express the 
amplitudes of the polarizations Pn in terms of 
the En· We write Pn in the form 

Pn = Pn° + Pn', 

where Pn ° is linear in En, and Pn' is a small 
non-linear term. 

For simplicity we consider the molecules in 
the irradiated liquid to be isotropic. One may 
then show [7] that 

(6) 

P , /),.- i PE *) E p , /),. + i (E *E ) E (7) 
s = 1 + /),.2 X (.US r r • r = 1 + /),. 2 X s .r s• 

where .0.= (ow 0 )- 1 [w 02 - (wr- ws) 2 ] and o and 
K are coefficients depending on the properties of 
the molecules of the irradiated liquid. Putting (6) 
in (5) and also putting kn2 = wn2 c-2 ( 1 + 4rrPn/En), 
and using (7) we obtain 

1- i;'t,. 21tk,s 
~= x--

s 1 + !1. 2 COS ~s' 

If the wave vectors ks and kr are parallel, 
the scalar products ks · Er and kr · Es are zero 

(8) 

and Eqs. (8) are very much simplified. This case 
has been considered by us previously [7]. In the 
case of non-parallel wave vectors, the terms 
containing the scalar products are non-zero and 
because of their presence the differential dEn 
is perpendicular to the wave vector kn, i.e., no 
longitudinal component of the field is generated. 
In general the simultaneous solution of the system 
(8) is extremely complicated. Hence in what 
follows we will analyze the case of linear ampli
fication of the signal wave, for which I Er I 
» I Ec I and the reaction of the amplified signal 
on the pump wave may be neglected; we will als() 
treat several of the simplest nonlinear situations 
for which the latter approximation is not valid. 

FIG. 1. Orientation of the vectors ks, Er and Es with re
spect to the coordinate system ~ • .,, and (;. 

3. If I Es I » I Er I we may treat Er as a 
constant. It then follows from (8) that 

8EsEr· - E E ·r E 12 . 2 R OZ - as s r r Sill ~-'• 
(9) 

where {3 is the angle between the wave vector ks 
and the vector Er· Integrating (9) we obtain 

EsEr* = CeXz; 

(10) 

We introduce a coordinate system ~, 7J, ?; , 

where the ?; axis is along ks and 7J is coplanar 
with ks and Er (Fig. 1). Then putting (10) in (9) 
and integrating we obtain 

Cr.= Ese.(O), 

Es11 = E. 11Cexz / [ Er [2 sin P + C11 ; 

C11 = Es11 (0)-CEr11 /[E.] 2 sinP. 
(11) 

It is clear from (11) that only the component 
of Es parallel to Er is amplified. This means 
that the plane of polarization of the Stokes com
ponent varies during propagation and for large z 
approaches the direction of the projection of the 
vector Er on the plane perpendicular to ks. The 
amplification is a maximum when Er is perpen
dicular to ks, independent of the mutual disposi
tion of the wave vectors. In particular the ampli
fication does not decrease even in the case in 
which ks and kr are perpendicular as long as 
Er 1 ks. The latter case is of significant prac
tical advantage in the construction of amplifiers 
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using stimulated Raman emission. Amplification 
does not occur in the case of isotropic molecul€s 
if Er II ks. 

4. For sufficiently large z the condition 
I Es I « I Er I is no longer satisfied and Eq. (11), 
describing the regime of linear amplification, 
becomes invalid. The nonlinear regime is de
scribed by the general system of equations (8), 
whose solution, as we already have pointed out, 
is an extremely complex problem. However the 
nonlinear regime is of interest from the point of 
view of achieving the maximum gain coefficient 
for the amplification. 

We therefore consider the special case (which 
has an analytic solution) in which Es and Er are 
either polarized in the same plane or else are 
parallel. In this case the solution of (8) has the 
form 

UCe"z 
JEsJ2 = 1 + Cel.z' I Er /2 = :r ( U- I Es[2), 

s 

~ /'-. 

IPr = 1 + ~2 cos-2 kskr In (1 + Ce'-2 ), 

~ 
IPs= 1 + ~2 ctrUz- IPr· 

Here cpn is the phase of En, that is, we have 
En = I En I eic;on, 

(12) 

U = as J E j2 ..L JE j2 C = I Es(O) 12 ' 2r:t 
ctr s 1 s, U-IEs(O)I2 , 1\.=ct.sini-'U. 

It is clear from ( 12) that for z - "" the value 
of I Es 12 does not depend on the mutual orienta
tion of the vectors ks and kr, with the exception 
of the degenerate case f3 = 0. The mutual orienta
tion of the wave vectors is important only in de
termining the spatial rate of redistribution of 
energy between the Stokes and Rayleigh compo
nents. This rate, however, plays an important 
role under real conditions in the presence of 
energy dissipation. For z - 00 the energy of the 
Rayleigh component is completely transformed 
into energy of the Stokes component and energy 
in the molecular vibrations. 

In the presence of a mismatch in the phases of 
the waves, the cpn vary at a rate which is in
versely proportional to the energy in the corre
sponding wave, so that the following relation is 
fulfilled: 

!X IE '2 Olj)s = !X I E 12 acp. 
s r OZ r s OZ • . 

In the absence of mismatch, the phases do not 
vary along the direction of propagation. 

(13) 

5. As has already been noted above in the 
general case of the mutual orientation of the wave 
vectors ks, ka and kr, the anti-Stokes compo-

.nent of the field does not take part to any appre
ciable extent in the interaction between the 
Stokes and the Rayleigh components of the waves. 
However the anti-Stokes component does take 
part in the interaction when the relationship (1) 
between the wave vectors is satisfied. The aim 
of this section is to discuss this case. 

We consider the case in which three waves of 
frequencies ws, wa, and wr are propagating in 
the medium. We have wr- Ws = wa- wr and 
as before this difference is close to w0 but not 
necessarily equal to it. Using the same method 
as led to (8), we may in this case obtain the 
following system of equations for the En: 

BEs =ex [E E • + E E •ei(2I<r-k,s-kal•] [E - ~(k E )] OZ s s r r· a 1r ks2 s r , 

8Ea· =-ex *[E E • +E E ·ei(2k -ks-ka>•][E - ~(k E.)] OZ a r a s r r ~r ka2 . a r , 

+ • [E E • ..LEE • i(2k.-ks-kal•l [E - ~ (k E)] 
!X r r a 1 •s r e a k 2 r a · 

r 

Here 
(14) 

1 + i~ 2nk.a 
O(a = 1 + A 2 )( ---

Ll cosra 

If condition (1) is not fulfilled one may neglect 
the oscillating terms in (14). Energy from the 
wave Ea will be transferred to the wave Er and 
from the wave Er to the wave Es. We now con
sider the case in which (1) is satisfied and the 
exponent in (14) is equal to unity. Then for I Es I 
> I Ea I and for cos ( 2cpr - cps - C,Oa) < 

-1 Ea l/1 Es I both Es and Ea will grow. 
Equations (13) have the first integral 

I E<l'l2 + I Ea 12 + ~ = const. 
!Xs !Xa ex. 

(15) 

This equation may be given the following form 

1\~~+Na+N.=N, (15') 

where Nn is the number of photons at frequency 
Wn crossing a unit area perpendicular to z per 
unit time. 

We assume further that all three waves are 
either Polarized parallel or are in the same 
plane. We consider the region of linear amplifi
cation for which I Er I » I Es I. I Er 1 » I Ea I 
and Er may be considered constant. It is conven
ient to chose the time origin so that Er is real. 
If Er II Es II Ea it follows from (14) that 

8Es/ oz = a.sJEri 2 (Es+ Ea*), 

8Ea*/8z = -aa*IE.I 2 (Es+Ea*). (16) 
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FIG. 2. The behavior of the amplitudes of the Stokes and 
anti-Stokes waves with increasing coordinate z. 

If the vectors Er, Es, Ea, kr, ks and ka are 
coplanar, then we obtain along with (16) 

"' "' 8E..f0z = <XsCOS kskr I Er 12 (EsCOS kskr + Ea* COS kakr) lls, 

"' "' "' fJEa*/fJz =- ota•coskakr J Er 12 (Escosk,.kr -[-l!.'a· coskakr)na. 

In the right hand side of (16') En signifies the 
scalar amplitude, ns and na are unit vectors 
directed along Es and Ea, respectively. 

Integrating (16), we obtain 

(16') 

aa*Es + asEa* = B, (17) 

E8 = B/ (aa*- as)+ Coexp[(as- aa*)Er2z], (18) 

where 

Co= Es(O)- B / (aa*- U 8 ). 

The relations .(17) and (18) are valid for (16') if 
one replaces as and a~ by as cos2 ( ks · kr/ 
ks II kr) and a: cos2 ( ka · kr/kakr ). 

It follows from (17) and (18) that in the most 
usual case, Re aa > Re as, even in the linear 
regime the amplitudes Es and Ea will approach 

t 

the stationary values B/(a*- as) and 
,-B/( a! - as). respective!: (Fig. 2). The case 
Re aa < Re as is not very probable and will not 
be treated here. The maximum amplification 
coefficients for the Stokes and anti-Stokes com
ponents are given by the quantities 

E 8 (oo) _ a; [i + ~Ea* (0)] 
E 8 (0) - IZa·- IX8 aa· Es(O) ' 

Ea*oo = 1Zs r i + C:i: Es(~J 
Ea* (0) IZa•- <X 8 L CZs Ea* (0) ' 

The first of these coefficients under real condi
tions does not exceed several times 10, whereas 
the second coefficient may be somewhat larger. 
However the nonlinear regime is not realized as 
a rule in this case. 
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