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An expression is obtained for the imaginary part of the forward scattering matrix for arbi
trarily polarized particles with arbitrary spin. The types of initial polarization states which 
can influence the total cross section are discussed. The scattering of nucleons on deuterons 
is treated as an illustration. 

IN connection with the fact that polarized targets 
have been realized recently, it seems interesting 
to discuss processes in which such targets can be 
utilized. One of the simplest experiments consists 
in measuring the total scattering cross-section. 
As has been shown in the work of Phillips [1] and 
of Bilen'ki1 and Ryndin[2J, the measurement of 
only the total cross section can yield useful infor
mation about the coefficients of the scattering ma
trix. In the indicated papers, the scattering of nu
cleons and deuterons on spin zero nuclei has been 
considered. We will generalize the results of these 
authors to the case of arbitrary spins. 

1. DERIVATION OF THE GENERALIZED OPTI
CAL THEOREM 

According to Puzikov [3] one can write the scat
tering matrix for particles of arbitrary spins in the 
following (slightly modified ) form: 

M (k;, k1) = ~ ( -1)q,+q,--q+x 

r 

X ~ (q1q2x1x21 q- x) Tq,!:T q,!: ~ a~.q (q1q2) 
xtx:z A=-r 

(1) 

where T~K are the spin operators for a particle of 
spin Sj 0 ~ q ~ 2Sj -q ~ K ~ q, (q1q 2K1K 2 1 q -K) 
are Clebsch-Gordan coefficients, a~( q1q2 ) are the 
coefficients of the scattering matrix and r = q/2 
for even q and (q+1)/2, for odd q. 

For forward scattering M(ki, kf) simplifies, 
and selecting the z axis along the beam direction 
k, we obtain 

q/2 
M (0) = - 1 ~ ~ ( -1)q,+q, Y(q + 1 + 2A.)(q + 1 _:_ 21.) 

4~JJq1q,x J..=-q/2 

(2) 

where [a~(q1q2 )] 0 are the coefficients of the scat
tering matrix for zero angle (this is a function of 
energy). We have taken into account the fact that 
the terms with odd q disappear due to the proper
ties of the Clebsch-Gordan coefficients. 

Considering the initial polarizations to be inde
pendent, we write the density matrix of the system 
in the form 

_ 1 ~ (T 81) <T '') T +s,T +s, ( ) p - (2s + 1) (2s + 1) .LI k,p., k,p., k,p., k,p., • 3 
I 2 k1k2p.1p.2 

where ( T~) are the expectation values of the spin 
operators in the initial state. 

It is known (cf. e.g., [ 1•4•5J), that for particles 
with spin the optical theorem can be written in the 
following form 

ImSp[pM(O}] = (k/4n}(Spp)crr{p), (4) 

where crT ( p ) is the total scattering cross section 
in the state defined by the density matrix p. Sub
stituting Eqs. (2) and (3) into (4), we obtain 

Im { ~ 1-1)q,+q'V(q + 1 + 21.) (q + 1- 21.) 
qq,q,x).. 

X {q1q2x - x J qO) (r + l.,r-1.,00 I qO) 

X [a~ (qtq2)] 0 (Tq,8~) (Tq,-8~)} = kr:;T (p). (5) 

This is the required result. Selecting definite 
states of initial polarization (T~~K 1 ) and (T~~K2 ) 
and measuring CTT(P ), one can obtain relations 
among the imaginary parts of the coefficients 

q 
[a A. ( q1q2 )Jo. 

2. SCATTERING OF NUCLEONS ON DEUTERONS 

As an illustration we consider separately the 
important case of scattering of particles of spin 
% on particles of spin 1. In this case the scatter
ing matrix has the form [G] 
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M(E, 1'J) = a1 + a2(Sn) + a3 (Sl)2 + a,.(Sm) 2 

+ (an) {b1 + bz(Sn) + ba(Sl)2 + b,.(Sm)2} 

+ (al){c1 (Sl) + ~2 [(Sl) (Sn) + (Sn) (Sl)]} 

+ (am){d1(Sm) + d2 [(Sm)(Sn) + (Sn)(Sm)]}, 

where u and S are Pauli matrices for particles 
of spin % and 1, respectively, and n, m, 1 are unit 
vectors in the directions ki x kf, ki- kf, ki + kf. 

We choose the z axis along the beam, and ob
tain for forward scattering 

M(E, 0) = a1(0) + aa(O)Si 

+ [ct(O)- bz(O)]crzSz + bz(O) (aS). 

In this case the Eq. (5) yields 

Im {a~ (0) + fas (0) + -i Jl Zas (0) (T zo1 ) 

+ [c1 (0)- bz (0)] (az) (Sz) 

+ b2 (0) (a) (S)} =kaT (p)j4n. (6) 

We consider the following convenient particular 
spin states. 

1. Both particles are unpolarized: 

Im ( a1 (0) +-}- a 3 (0)) = :n aT (unpolar.) 

2. The nucleon is unpolarized, the deuteron is 
tensorially polarized so that ( T~o) ;&. 0: 

Im { a1 (0) + { a3 (0) +-} Jl2 a3 (0) (T 2o1)} 

= 4~ aT ((Tzo1 ) =f=O). 

3. Both particles are polarized vectorially, so 
that (cr) II (S) 1 k, (T~o) = 0: 

Im { a 1 (0) + ~ as (0) + bz (0) (a) (S)} = 4: aT (J_). 

4. Both particles are vectorially polarized so 
that ( cr) II ( S) II k, ( T~0 ) = 0: 

Im { a1 (0) + ~ as (0) + c1 (0-) (a) (S)} = 4: aT ( II ). 

From these relations one can determine the 
imaginary parts of the four coefficients of the M
matrix for the angle J. = 0. It can be seen from 
(6) that the other components of the initial polar
ization do not contribute anything essentially new 
(to the total cross section ) . 

3. DISCUSSION OF THE GENERAL FORMULA 

In the general case one cannot analyze Eq. (5) 
in such detail as has been done for the special case 
(6), but one still can derive some results. We note 

that the general expression has been derived under 
the assumption of conservation of spatial parity. 
Time reversal invariance imposes the supplemen
tary condition [3]: 

a_~ (ql, q2) = (-1)q,+q,+q a)..q (qt. q2)· 

It is very easy to generalize Eq. (5) also for the 
case of interactions which do not conserve parity. 

Let us consider several concrete initially po
larized states. 

1. Both particles are unpolarized; then we ob
tain one parameter of the matrix M ( 0 ) : 

Im [ao0(0, 0) ]o = kaT. 

2. One of the particles is unpolarized, e.g., 

(T q,!:> - (unpolar.); 

then only the tensor polarization of the other par
ticle, of type ( T~~0 ), with q2 even, will influence 
the total cross -section. For scattering of spin 7'2 

particles there are no such components (i.e., the 
vectorial polarization in this case cannot contrib
ute to the total cross section); for spin 1 one can 
obtain one supplementary coefficient, if ( T~o) ;&. 0. 

3. Both particles are only vectorially polarized, 
i.e., the following components do not vanish: 

In this case Eq. (5) yields 

lm {[a0° (OO)]o (Too"') (Too"•) 

- 2al az [ [ao0 (11)] 0 

+ V ~ A~-1 Jf9- 4/..2 (1+1..,1- /..,00 J20)[a>.2(11)] 0 ] 

X [(S/) (Sx2) + (S/) (S1l)J + 2a1a2 [- [ao0 (11)]o 
1 

+ V2 ~ Jig- 4/..2 (1 +1..,1-/..,0Q J20) [a>.2 (11)] 0 ] 

A=-1 

X(S/) (Sb} =kaT; 

Tu = -a(Sx + iS11), T1-1 =a (Sx- iS11), T 10 =a V2Sz. 

Here only mutually perpendicular components of 
the polarizations can influence the total cross sec
tion. One can obtain different information by di
recting these polarizations parallel or perpendic
ular to the beam. We note that these ideas can be 
applied for instance to the case of elastic scatter
ing of neutrinos (or antineutrinos ) on leptons (or 
on nucleons, if there exist neutral currents). Owing 
to the longitudinal character of the neutrinos one 
can obtain some additional information only if the 
lepton is also polarized parallel to the neutrino 
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beam (taking into account parity nonconservation 
does not modify the conclusions). 

4. One particle has nonvanishing components of 
the polarization only along the beam. Then only the 
components of type ( Tqo) of the second particle 
contribute to the total cross section. 

5. One of the particles is a photon. For a pho
ton there exist only the following components of 
the polarization C7J: 

Consequently one can obtain nontrivial information 
if some of the following components of the target 
polarization are not zero: 

In particular, one cannot obtain any additional in
formation by scattering a photon on an unpolarized 
target. 

Ob.viously, experiments in which the total cross 
section is measured are not the most important and 
interesting ones among those which can be per
formed if one has polarized beams and targets. 
However, these experiments are considerably 
simpler than for instance the performance of the 

complete experimentC8J and can still yield inter
esting information. 

In conclusion I would like to express my pro
found gratitude to L. I. Lapidus and Ya. A. Smoro
dinski1 for useful discussions and interest in this 
work. 
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