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It is shown that one can choose the propagators of vector fields in transverse form only in 
those theories in which the longitudinal part of the propagators is simply inessential ( elec­
trodynamics, the Yang-Mills theory for massless vector fields, the theory of a massive 
neutral vector field). It is not admissible to choose the propagator in the transverse form 
in local theories of massive charged vector fields, since this leads to a violation of unitarity 
or causality. 

RECENTLY there has been a sudden increase in 
the interest in vector fields. In this connection 
there arises the question: in which local theories 
can one choose the pro~gators of the vector fields 
in the transverse form, i.e., in the form 

, ( .0 a!J.av ) A c -. 
- l u!J.v- O u (x- y)~ (1) 

Theories with dimensionless coupling constants in 
which this would be possible for all vector fields 
would be renormalizable. Some authors [t,z] claim 
that such a choice is in particular possible for 
charged vector fields with nonvanishing mass. On 
the other hand if the longitudinal part of the prop­
agators is essential, this choice would contradict 
the Feynman space-time treatment [3] and the 
standard theory of higher spin fields [4]. We will 
solve this problem below. 

1. If in some local theory it is possible to choose 
the propagator in the transverse form, then the 
theory is of class A, as defined by the authors [5, 6]. 

Indeed, according to the definition of theories 
of class A, we have in the Heisenberg picture 

(2) 

or in the Dirac picture (interaction representation) 

(3) 

where ~ is an arbitrary physical Heisenberg state, 
and ~ is the corresponding free field state. The 
matrix element involved in (3) has the structure 

<O rb/ (x) s I <D)= ~ d4 y . .. b"'; (x) 6} (y) . .. 

i +<0 I· .. : b (x) ... :I <I>), (4) 

where dots above the operators denote their con­
tractions. It is clear from here that the condition 

(3) will be satisfied if the propagator is transverse, 
i.e., of the form (1). 

We include in class B [5] all theories which do 
not satisfy condition (2) or (3). Therefore: 

2. In theories of class B, for which a complete 
listing is not possible, it is inadmissible to choose 
propagators in the transverse form 0 . 

Thus we have to investigate only theories of 
class A. A complete listing of such local theories 
with dimensionless coupling constants has been 
given previously [6] -these are generalized Yang­
Mills theories [7 ,a]. In the Heisenberg picture the 
Lagrangian of any such theory can be written in 
the form 

L 1 f if i 1 2b ib i 1 f ib ib k 
Q, Ij2 , 1 = - 4 !J.V !J.V - 2 m !J. !J. - 2 Ci.ijk !J.V !J. V 

1 hi b ib k bl 1 iii { a . (AT(l) J'\(2)) b i 
-4ctmkiCi.mlj !J. !J. v v-2 ... r ... [ ... -l i +rs j ... 1 

+ M} 'II -~(a ... -YJib/) cp (a ... - TJib ... ;) cp 

- ~ q1f-l2cp + Gabcdcpacpbcpccpd + ~ iji (Gil)+ iy/J~2)) 'IIepa, (5) 

where fhv = o/-Lbi - Bvbh, the 1¥ describe spinor. 
fields,, cp are scalar fields, and a, T, 1), ~. and G 
are coupling matrices with definite properties [6]. 

From the point of view of the choice of propa­
gators and renormalizability one has to distinguish 
clearly between the cases of vector fields with van­
ishing and finite mass. We start with the case of 
vanishing mass. 

l)ln each concrete case one can establish this directly 
Thus in the theory of a charged vector field with Lint 

= iglfyf.L(-r,b~ ± -r2 b~)rp with a causal transverse propa­
gator, unitarity is violated starting from the fourth order of 
perturbation theory (where the nonconservation of the 
Heisenberg currents already becomes manifest). 
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a b c 

The self energy of the vector field in second order pertur­
bation theory (the wavy line denotes the vector field, a 
smooth line denotes any other field). 

3. In theories of class A with vanishing mass 
of the vector fields (electrodynamics and the Yang­
Mills theory) spin 1 is guaranteed by gauge invari­
ance, and because of this fact one may add to the 
propagator any gauge contributions and hence 
choose the propagator in transverse form. 

This is clear, since the gauge transformations, 
which are sufficiently complicated in the Heisen­
berg picture, reduce in the Dirac (interaction) 
picture to 

bi bi+aAi(x) 
1'- -->- 1'- ax ' 

1'-

A suitable choice of A in operator form [9- 11] 

allows one to bring the propagator to transverse 
form, and in general, to modify its longitudinal 
part in any suitable manner. Therefore all these 
theories are renormalizable. 

(6) 

4. Let now the mass of the vector fields in the­
ories of class A be nonvanishing (i.e., spin 1 is 
guaranteed by the fulfilment of the Lorentz condi­
tion ). Then it is inadmissible to choose the prop­
agator in transverse form for all the components 
of the vector field, since in local theories this 
leads either to violation of causality, or to viola­
tion of unitarity, which can be verified by using 
the Stueckelberg technique. 

Thus, if the propagator is chosen in form (1), 
where the pole at p2 = 0 is understood as 
1/ ( p2 - iE) (otherwise causality is violated), then 
unitarity is already violated in the second order 
of perturbation theory. Indeed, for self-energy 
processes ( cf. the figure) the relation 

(7) 

is violated, where Su is the n-th order S-matrix. 
If one works in the Heisenberg picture in pertur­
bation theory, or if one goes over to the interac­
tion picture, then, as is well known [4], the S-matrix 
can be represented as the T*-exponential 

(8) 

where Lint is expressed in terms of the free-field 
operators in the same way as in the Heisenberg 
picture in terms of the Heisenberg operators. 

The terms of the S-matrix corresponding to 

diagrams c, do not contain virtual vector field 
lines and satisfy the unitarity condition independ­
ently. Therefore we limit ourselves to a consider­
ation of the expressions 

(9) 

b,_mbpn(y)} • 

(10) 

With a standard choice of the propagator 

bp.i (x) bvj (y) = - i6;; ( {Jfl-V- a~~V ) t:.mC (x - y), 

t:."(x) = (2n:)-4\ d4p exp (ip~) , (11) 
J p2 + m2 -lB 

unitarity is satisfied and Eq. (7) in particular is 
satisfied for the self -energy diagrams (diagrams 
a and b). Assume now that the propagators of 
all the vector fields are chcten in transverse form 
[Eq. (1)]. With the above-mentioned convention of 
integrating around the pole at p2 = 0, expression 
(1) can be rewritten in the form 

bl'-i (x) bv1 (y) = 

. [ ( ap.av ) c ( ) a~'-av t:. c ( ) J -16;; (\,-~ t:.m x-y + m2 o x-y . 

(12) 

In this case the unitarity condition (7) is violated. 
Indeed, if one computes the expectation value in 
the one-particle state with momentum Pp(p2=- m 2 ) 

and "isospin" index r, then the right hand side in 
Eq. (7) differs from the left side by the quantity 

(13) 

(no summation over r; the details of the calcula­
tion are given in the Appendix). The factors 
arjkO'rjk are sums of squares of the real [s,a] 

structure constants arjk· Therefore the vanish­
ing of these factors would imply that all the Cl!ijk 
vanish, i.e., there is no interaction among the vec­
tor fields. In the latter case the situation is the 
same as for a neutral vector field interacting with 
a conserved current, when the longitudinal part of 
the propagator can be chosen arbitrarily [i2]. 

We stress the fact that the violation of unitarity 
is produced by the contribution of the vector quanta 
with zero spin, which appear through the illegiti­
mate use of the transverse propagator [ cf. Eq. 
(A.12')] 2>. 

2)1£ one agrees that the vector field should describe both 
quanta of spin 1 and spin 0 with a transverse propagator, 
then an indefinite metric in the Hilbert space of states is un­
avoidable[13• ••], which is unsatisfactory. 
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Thus it has been proved that the local theories 
in which the propagator can be chosen transverse 
simultaneously for all massive vector fields are 
exhausted by the theories of class A with aijk = 0, 
which cannot describe charged vector fields. In 
all theories of massive charged vector fields any 
deviation from the standard propagator (in par­
ticular, replacing it by a transverse propagator ) 
leads to a violation of either causality or unitar­
ity. Thus it has been proved that all theories of 
charged massive vector fields are unrenormaliz­
able, which agrees with the conclusion established 
in [15-17]. 

We did not consider theories of class A with 
dimensional coupling constants, but for such fields 
the selection of propagators does not constitute 
such a vital problem, since apparently they are 
unrenormalizable for any choice of propagators. 

5. We note further that in theories of class A 
for any single field, say the i -th, b~ (x), one can 
choose the propagator With an arbitrary longitudi­
nal part (in particular, one can choose it trans­
verse ) , retaining the propagators of the other vee­
tor fields in their standard form, i.e., in form (11). 

This is due to the fact that with respect to each 
vector field b~ ( x) separately any theory of class A 
is a theory of one neutral vector field. Therefore 
for the selected vector field a gauge-invariant for­
mulation in the spirit of [ 12 ] is possible. 

We stress that in the present paper we have not 
touched upon the attempts to go beyond perturba­
tion theory [ 18• 19], which is the only one in which 
the question of different choices of free propa­
gators becomes meaningful. 

The authors are indebted to B. N. Valuev and 
D. V. Shirkov for stimulating discussions. 

APPENDIX 

The T*-product is defined by its decomposition 
into N -products. This decomposition is taken ex­
actly the same as for ordinary T-products. How­
ever the contraction of operator pairs is not the 
vacuum expectation value of the time -ordered 
product of these operators, but is defined as the 
Green's function of the free field equation. This 
is the contraction which is given by Eq. (11). 

The derivatives which enter into the interaction 
Lagrangian act directly on the contractions, so that, 
for instance 

i 11! "(x) b~ (y) = f} 11X b} (X) b~ (y)- a.x b11i (X) b/ (y) 

= ifl;i (6,A.a..,.x- fl..,.'/..a.x) t.;; (x- y). 

To diagram a corresponds the expression 

(A.l) 

F (c)= -+oci;kotlmn ~d4xd4y: {4{i11!h/b.k(x)} (j.A~b~mbpn(y}) 

+ 4 (i 11~b/b.k (x)) (f'/..~b'/..mbPn (y)) + 8 (i11.ib./b/ (x)) 

X (1'/..~b'/.. mijpn (y)) + 2 (f 1'-•ib/b~k (x}) (f'/..~6'/.. mi.J~ n (y})}:, (A.2) 

and to diagram b, the expression 

G (c) = _!_ OCmk·a 1· I d4x: {2b ib kb ib l (x) 4 lmJ.l iJ-ViJ-V 

+ 2b ib kb ib l (x)} : 
p. y tJ. v ' 

(A.3) 

so that 

S2 = F(c) + G(c). (A.4) 

The numerical coefficients in the curly brackets 
take into account the numbers of equivalent con­
tractions. 

Besides the expressions F ( c ) and G ( c ) con­
taining causal contractions, we ;yill use similar 
expressions F(a), G(a), F(+), and F(-), G(-), 
in which the contractions are taken correspond­
ingly anti causal, Dysonian with ll. <+>-functions, 
and Dysonian with ll. H -functions. 

The Dyson contraction for any choice of causal 
contractions has necessarily the form 

,--, 
bl'-i (x) b.i (y) = b/ (x) b/ (y)-: bl'-i (x) bJ (y): 

.,_ (" &~'-8.) <+> = lU;j ul'-v - fi/2 tim (x -y)" 

X.::l<+l (x) =- 2(Lr)3 ~ d4 peipx e (Po) 0 (p2 +m2). (A.5) 

Therefore the quantity S1S!, which is expressible 
only in terms of Dyson contractions 

(A.6) 

If the propagator has the standard form (11), 

then 

F (c)+ F (a)= F ( +) + F (-) 

+ ~2 04 (0) CXijkCXiin {Ovp- Ov40p4} 1~ d4x: b/' (x) bpn (x): , 

(A. 7) 

G (c) + G (a) = - __;._ 04 (0) CXijkCXijn {Ovp - 6v40p4 } 
m 

X ~ d4x: b.k (x) bpn (x) : . (A. 8) 

As was to be expected, unitarity is assured in this 
case. 

The transition from causal and anticausal con­
tractions to Dyson contractions in Eqs. (A. 7) and 
(A. 8) is realized by means of the following for­
mulas: 

(1; 81'-; 8.8'/..) t.a (x) = =t= e (± Xo) (1; 81'-; 8.8~.) f.(+) 

± 8 (=t= x 0 ) (1; 81'-; 8.8,_) t.<-l + (0; 0; 1) 6.46,.46 (x), (A.9) 
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(1; 8~>-; 8.,8~.) tl;,, (x) (1; iJp; 8a8,) 6.:;,, (x) 

+ (1; 8~>-; 8/h) 6.:;,, {x) (1; iip; 8a8,) Ll,:, (x) 

= (1; iiv-; 8.,8t.) tlJ,+>(x) (1; up; 8a8,) tlJ:> (x) 

+ (1; iiv-; a.,a~.) tlm<,-> (x) (1; up; 8a8,) tl~;> (x) 

+ (0; 0; 1) (0; 0; 1) 26al>vlhlJ~46 (x) 6 (x), (A.10) 

where the symbol ( 1; aJ-L; Bvo,\) (a row-matrix) 
which has been introduced by Feynman is used, 
and denotes either 1, or Bw or Bvo,\. Equation 
(A.10) has to be understood in the sense of a direct 
product of such matrices. 

Let now the propagator have the form (12) .. Then 

G(c) + G(a) = 0, 

F (c)+ F (a)= F (+) + F (-) 

(A.ll) 

~--1 a xax 
+Sf I'~ (x) bt. m (y) i6in 1;,/ ilo(+) (x- y): b} (x) /A! (y) : 

~-.-~ . a,xa: A <+> ( ) I i ( ) I ' ( ) . +4b J(x)b,m(y)zbkn--2- uo x-y: p.v X t.p Y · 
I' A m 

(A.12) 

(The contractions in Eq. (A.12) are Dysonian with 
~ <+>.) Using integrations by parts to successively 
carry over derivatives from ~~+> to the other fac­
tors, it is easy to see that the sum of terms in the 
first, second and third lines of Eq. (A.12) vanishes 
(essentially due. to the conservation of the free cur­
rent BJ..LO!ijkf~vbt = 0) and this equation becomes 

F(c) + F(a) = F(+) + F(-) 

1 (' d4 d4 U X A (+) ( ) U X A (+) + t" CXijkCX!ik.) X Y v uo X - Y "A uo 

X (x- y): b,i (x) bt.1 (y): . (A.12') 

Taking the expectation value of the last term in 
(A.12') in the state I pr), it is easy to obtain the 
expression (13). 
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