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The vibration-rotation interaction parameters in strongly deformed nuclei are calculated 
using a model in which pairing and quadrupole-quadrupole interactions between nucleons are 
taken into account. Calculations performed in the quasi-classical approximation for parti­
cles subject to an oscillator potential are compared with experimental data. 

1. By taking account of Cooper pairing of nucle­
ons in nuclei it has become possible to account 
satisfactorily for the observed values of collec­
tive motion parameters in strongly deformed nu­
clei such as the moment of inertia, [i, 2] and the 
probabilities and excitation energies of vibra­
tional levels. [3•4] A microscopic description also 
permits the calculation of the parameters of vi­
bration-rotation interaction in deformed nuclei, 
which leads to several effects: 

1) Deviation from the familiar Alaga rule for 
the intensity ratio of E2 transitions between 
vibrational levels and the ground-state rotational 
band. 

2) A contribution to the quantity B character­
izing nonadiabatic corrections to the energy of a 
rotating nucleus (first-order effects). 

3) A difference between the moment of inertia 
of rotational bands based on vibrational levels and 
the moment of inertia of the ground-state band 
(a second-order effect). 

The Hamiltonian of the vibration-rotation in­
teraction can be obtained in the same way as in 
the theory of molecular spectra. We have calcu­
lated the parameters of this Hamiltonian for the 
"cranking" model taking account of Cooper pair 
correlation. First-order effects with respect to 
vibration-rotation interaction are considered. 

2. If we neglect the interaction of rotation 
with vibrations and with single-particle degrees 
of freedom, the Hamiltonian describing the collec­
tive motion of an even-even spheroidal nucleus is, 
with 11 = 1, 

H\0l = Hr + Hv, 
J12 J22 J2- J32 

Hr = 211 + 212 = 2J ' Hv = 
K=o, ±2 (1) 

where 12 and Ii are the operators of the square 
of the angular momentum and of its projections in 

a coordinate system attached to the nucleus, J 1 

= J 2 = J is the moment of inertia of the nucleus, 
and Ak is the absorption operator of a vibrational 
quantum with energy wK ( K = 0 for {3 vibrations 
and I K I = 2 for y vibrations. [4J 1) The normal­
ized eigenfunctions of this Hamiltonian are 

nr I 1 1 /21 + 1 D I '" + 0 
I Mo ( ~) = V 8T Mo ~o I ), 

'Y M2I (1r) = -vw (DMl m2+ +<-)I DM-lm-2+) 1 o >· 
(2) 

Here DkK ( ei) are the vibrational wave functions, 
and I 0) represents the vacuum for vibrational 
quanta. 

A Hamiltonian describing the interaction be­
tween vibrational and rotational levels can be 
obtained if the variation of the moment of inertia 
as a result of vibrations is regarded as an oper­
ator acting on the vibrational variables. Let 
oJQ and oJs be the variations of the moment of 
inertia associated with {3 and y vibrations, re­
spectively. Then from the geometry of the vibra-
tions we have 

Using (1), we have in first order with respect to 
6J,2) 

H (l) = _ 12 - n 6J Q _ n - 1 ~ 6J s 
21 1 21 T · (3) 

lloctopole vibrations of a nucleus are not considered be­
cause odd vibrations do not interact with rotation in first 
order. 

2)Second-order effects have been considered by Pavli­
chenkovJ•] 
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Let Q = Q2 0 and S = .f2Q22 = V2Q2_2 represent 
the variation of the quadrupole moment of the 
nuclear mass. In the adiabatic (with respect to 
vibrations) approximation Q and S can be re­
garded as c numbers for single-particle degrees 
of freedom. Then 

f)J f)] 
MQ = oQ Q, Ms = as s. (4) 

The contribution of H(1) can be taken into ac­
count through perturbation theory, as is shown by 
calculation of the ratio J I J ~ ( J wK) -t/2 « 1. 
From (2)-(4) we obtain the following expression 
for the reduced probability of an E2 transition 
from a y-vibrational level to levels of the ground­
state rotational band: 

B(E2; 2y2-+10) 

= 2 (222- 21 /0)2 ( 0 I llf2Q22ell 0)2 (1 + Zyjy (1))2 , (5) 

where (222 - 2 I IO) is a Clebsch- Gordan coeffi­
cient; fy(I)=-1,2,9 for I=0,2,4; z isthe 
vibration-rotation interaction parameter, given 
by 

(6) 

Here Q~l is the static electric quadrupole mo­
ment of the nucleus. The parameter zy, which 
was introduced phenomenologically in [6], charac­
terizes the deviation of the intensity ratio of E2 
transitions from the familiar Alaga rule. From 
experiment we have zy, 0.01-0.1. 

For the reduced probabilities of E2 transi­
tions from a ,8-vibrational band to levels of the 
ground-state rotational band we have relations 
similar to (5): 

B (E2; 01>0 -7 20) = (0 I ll!0Q"1 1 0)2 (1 + 6z13)2, 

B(E2; 21>2 --+10) = (2020 I /0)2 (0 I llfoQ"1 1 0)2 (1 + Zt>ft> (1))2, 

(7) 

where f,a(I) = -3, 0, 7 for I= 0, 2, 4 and 

1 8] (0 I llfoQ I 0) el (8) ' 
Z(3 = J2w(3 oQ <0 I ll!oQel I 0) Qo . 

The correction .Br-v to the ground-state rota­
tional levels of the form -BI2 (I + I )2 resulting 
from the vibration-rotation interaction is obtained 
by calculating H(t) to the second order of per­
turbation theory: 

Br-v = Br_e + Br-~ 

(9) 

The matrix elements of the operators Q and Q22 

between the ground state and single-phonon states 
have been calculated in [4J. To obtain z,a, y and 
Br-v it is necessary to determine a J/BQ and 
BJ/BS (in the adiabatic approximation for vibra­
tions) or, in the general case, the matrix elements 

<OIIlfoMQIO>_(UQ)ot <OI11!26lsiO> _(6Js)ot 
<O I llfoQ I O> = ~ <O I m2Q22I O> = {Q22)o1 · <10) 

In the following section the indicated quantities 
are calculated from a model taking into account 
the pairing and quadrupole interactions between 
nucleons. 

3. We use the method of Green's functions to 
describe nucleon pair correlation. [2] The single­
particle Green's function G (x, x') and the func­
tion F ( x, x') are defined by 

G(x, x') = -i\<DN°, TW(x)W+(x')<PN°), 
F(.T, x') = <<DN+2°TW (x)W+(x')<1JNO)e-2i~Lt, (11) 

where x = (r, t), <I>N° and <l>N+2° are the ground­
state wave functions of systems of N and N + 2 
interacting particles, 'l! + ( x) and >¥ ( x) are the 
creation and absorption operators of particles in 
the Heisenberg representation, and f.1 is the 
chemical potential. 

G and F satisfy the equations 

(iO/at-H(r))G(x, x') = B(x-x') + ii1F(x, x'), 

(io/ot +H*(r) -2~-t)F(x, x') = -ii1*G(x, x'); 

11* = gF(O-), (12) 

where H ( r) is the single-particle (shell-model) 
Hamiltonian and g is the interaction constant. 
With .6. constant in the volume of the system the 
solution of this equation, represented in terms of 
the eigenfunctions of the Hamiltonian H ( r), is 
given by 

.. 8+ 81 
G12 ( 8) = u12 2 E 2 ' 

8 - 1 (13) 

where D is a function that will be required sub­
sequently. The Green's function determines the 
single-particle density matrix 

p(r, r') =- iG(r, r'; 0-) = ~<pl(r)<p2*(r') ~ 2~: G12(8). 
12 (14) 

The moment of inertia of deformed nuclei is 
defined ;.:tccording to the ''cranking'' model by [2] 

J = ir Sp Po'Mx, (15) 

where PfJ is the correction to the density matrix 

resulting from the perturbation Vn = -rlMx ( M 
is the single-particle projection operator of the 
orbital angular momentum on an axis perpendicu­
hir to the nuclear axis of symmetry, and n is the 
angular velocity of the coordinate system attached 
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to the nucleus). In order to determine J = J ( Q, S) 
we consider that for nonvanishing values of Q and 
S there appears in the single-particle Hamiltonian 
the additional potential V Q- Q ( r), which in the 
adiabatic (for vibrations) approximation can be 
written as 

VQ-Q(r) = VQ + V8 =- xq(r)Q- xs(r)S. (16) 

Here q = r 2Y20 ( 8) and S = 2-t/2 r 2 ( Y22 + Y2-2) 
are single-particle quadrupole moment operators, 
and K is the quadrupole interaction constant, 
which will be taken as identical for p-p, n-n, and 
n-p interactions. 

For small vibrations V Q-Q can be calculated 
from perturbation theory. We obviously have 

aJ 1 0 s " '11 al 1 0 S "M ( 17) 8Q = QaQ P PnQJ x• 7iS = Q7iS P Pnw x· 

The second-order correction p" to the density 
matrix is obtained from the corresponding cor­
rection of the Green's function, which is derived 
with the aid of ( 12): 

G" = GVGVG + GVFV*F + FV*FVG- FV*DV*F, (18) 

Here we have omitted terms proportional to per­
turbational corrections of ~ and l.l· For real 
values of the parameters the corrections to the 
observed quantities that would result from taking 
these terms into account do not exceed 20-30%.[2•7] 

Using (17), (14), and (18), we obtain 

f)J ~ ~ de , 
-=X L.Jn pql2(Mxha(Mx)n 2---:-[2G1G2G3 
8Q 123 • m 

+ ZF1F2Ga- (Gt- Dt) F2Fal - Ft(G2- D2) Fa]. (19) 

~n,p denotes summation over neutron and proton 
states. From (19) the substitution q- s gives 
8J/8S. The integration in (19) yields a cumber­
some expression which is shown in the Appendix. 

In the case of nonadiabatic vibrations (OJ )01 
can be obtained by using time-dependent perturba­
tion theory, which is discussed in [7] as applied to 
nuclear vibrations. In this case V Q ( r) is re­
placed by the time-dependent operator 

VQ(r, t)= -2xq(r)Q(ro~)cosro~t. (20) 

Applying perturbation theory to (12) with 
V ( r, t) = V Q ( r) + V Q ( r, t), we easily obtain an 
expression for a correction to the density matrix 
PQn ( Wf3) that is proportional to exp[ -iwf3t]. 

On the basis of the correspondence principle 
we make the substitutions OJQ(wf3)- (0JQ)o1 
and Q ( wf3) - Qot in 

(21) 

+ GIG2HG3 + Fl<+lF2G3 + F1F2HG3 + Fl(+lD2F3 

+ D1F2HFa- G1<+>F2Fs- F1G2HFa], (22) 

where G(±) = G( E ± Wf3) and F(±) = F ( E ± Wf3)· 

The substitutions q- s and Wf3 - wy in (22) 
yield (6Js) 01/(Q22 ) 01 . In the adiabatic limit 
( Wf3 « 2~) it follows from (19) and (22) that 
(OJQ)otiQot- 8J/8Q. 

4. In a realistic single-particle scheme the 
quantities ( oJ )01 can be computed only by means 
of computers. However, for the purpose of a 
qualitative analysis of the derived expressions, 
we may use the quasi-classical procedure for 
calculating sums over single-particle states that 
has been proposed by Migdal.[2] It is also conven­
ient to use the method of covariant integration, [B] 

integrating simultaneously with respect o iE and 
e: 1 in (19) and (22). The result is 

8(~ S) = X~n,p(q, s)I?(Mxha(Mx)sr<'l(ei)Ll-1<D(x12,xl3); 
' 123 

<D(y, x)=y-1 (g(x-y)-g(x)], 

g(x) = x-1 (1 + x2)-'f,sinh- 1:x. (23) 

It follows from the form of <I> that, with accuracy 
~ (~/w0 ) 3 , in the summations of (19), (22), and 
(23) transitions through a shell can be neglected. 

For further calculations we utilize an oscilla­
tor model, where x 12 = 0 and I x 13 I = x = {3w 0/2~ 
({3 is the equilibrium deformation parameter and 
w 0 is the separation of oscillator shells). Chang­
ing the summation in (23) to integration over the 
quantum numbers, we obtain 

(24) 

where N ( Z ) is the number of neutrons (or pro­
tons), R is the nuclear radius, and cp (x) 
= -dg/dx. 

The nonadiabatic correction to 8J /8 ( Q, S) can 
be obtained by using (22). The quantities 
( oJ Q )otf Qot and ( oJ s )otl ( Q22 )ot of the first order 
in (wf3,y/2~)2 aregivenby(24),where cp(x) can 
be replaced by 

<pw(x) = cp(x) + 1 /3 (w~, vi 21l)2(1 + x2)-1 (x2cp(x)- xg(x)]. 
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For real values of the parameters these correc­
tions change 8~/8 ( Q, S) by less than 5%. 

The matrix elements Q01 and ( Q22 ) 01 are 
calculated for the oscillator model by analogy 
with (24): 

(25) 

where M is the nucleon mass and x ( x) = g ( ix). 
An expression for ( Q22 ) 01 is obtained from (25) 
through the substitution Wf3 ....... w,. 

Using the equality Q~Z = 4ft5 ZR2{3 in conjunction 
with (24) and (25), we obtain 

4JRB [ N z J z~. y = w~. Yj2 A Xn(j) (xn) + A Xp(j) (xp) 

X [ 1 + Xp ( ~~:) r1
, 

(26) 

B ~ JRB [ N A -1 ( ) z ~ -1 ( >] 2 

r-v = -f20w~2j4 A Lln cp Xn +A P cp Xp 

[N dXn Z dXp ]-1 

X A d Wfj2 + A d W[J 2 ' 

Br-~ = 36:!j ]4 [ ~ ~n-1(jl (xn) + ~ ~p-1<p (xp) r 
[N dXn Z dXp J-1 

X A d w., 2 + A d Wy 2 • 

(27) 

where JRB = %AMR2 is the rigid-body value of 
the moment of inertia. 

From (6), (25), and (26) for z{3,y it follows 
that a small vibrational-state admixture, propor­
tional to (Jw(3,y)-3/2, to the ground state is com-

Table I 

I 1
1/J ["], Nucleus "'y• keV 

keV 

I Zy·10' 

~ ["] ,---,---'-----Theory Experiment 

Sm152 1079 40.7 0,29 4.2 8 8 +4.2 • -3.5 (13] 

Gdls• 967 41.0 0.28 5.4 5.5 :'::U ["] 
Gdlss 1140 29.3 0.32 2.1 3.1 :'::U [15] 

Dy1ao 965 29.0 0.30 2.8 5,0 :'::~! [1"] 
Er1•• 797 27.0 0.32 4.0 6.6 :'::~:~ [I"l 
Erl•s 822 26.3 0,32 2.9 4.3 :'::U [l"] 
w1s2 1222 33,3 0,28 3.1 +1.2 4.3 -2.3 [ 13] 

WIB< 904 37,0 0,22 6.3 4.3 :'::N P"l 
WI86 733 40,8 0.22 10,4 12.5 ='=U F"l 
Th''s 965 19.3 0.26 1.9 12.5 :'::U P"l 
Th232 790 17.7 0.245 1.9 8 0 +3.4 [1"] • -3,4 
Pu'"" 1031 14.7 0.27 0.9 0 8 +0,3 [13] ' -0.8 
Fm25• 693 15.0 0.27 1.8 6. 6 +_:i~3 [13] 

pensated in some measure by a large ratio 
Q~l/Q~f ~ A{3 (wf3/p 0!::.2 ) 112 (p 0 is the energy 
density of single-particle levels near the Fermi 
level). This makes the intensity ratio deviate ap­
preciably from the Alaga rule. 

The values of z'Y and Br-v calculated from 
(26) and (27), and the corresponding experimental 
data, are given in Tables I and II. Experimental 
values of the moments of inertia were used in the 
calculations, and the values of !::.n,p were taken 
from [9]. There is only a qualitative agreement 
between the calculated and experimental values of 
z. This is not surprising, since a very crude 
model was used for the calculations. We note that 
in some cases Br-v is comparable to Br-sp• 
which takes into account the coupling of rotation 

Table II 

Nucleus \ "'Y • keV 

Sml52 1079 
GdiM 967 
Gdl66 1140 
Gd1ss 1156 
Dyloo 965 
Eriss 787 
Errss 822 
Ybi7o 1204 
w•s• 1222 
wrs• 904 
Th''s 965 
Th••o 765 
Th23' 790 
u•a2 852 
u• .. 906 
u•as 1047 
Pu23s 1031 
Pu200 948 

• B=Br-v+ Br-sp 

"'~· keV 

685 
678 
(820) 

635 
723 
693 
812 
995 
941 
860 

B~ v\ n"' v/ Br _ sp•l B*, eV, \ B, eV(17], 
r- v' e r -v• e eV ["] theory experiment 

54.0 9.5 16.8 80.3 140 
89;o 16,8 17,9 123.7 145 
18.0 1.5 6,3 25,8 31 

0.6 4.2 4,8 12 
2.6 6.9 9.5 20 
1.7 5,9 7.6 14 
1.4 6.1 7,5 6 
0.8 8.1 8.9 10 
2,0 27.8 29.8 15 

11.0 33.1 44.1 24 
0.6 4. 7 5.3 18 

5.2 1,4 3,5 10.1 12 
1.8 0.5 3.2 5;5 12 
2,0 0.4 7.4 9.8 6 
o:7 0,2 1.9 2.8 6 
0.4 0,1 2.5 3.0 2.4 
0.4 0.1 2.1 2.6 4,3 
0.4 o: 1 2.0 2.5 4.3 
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and single-particle motion. The latter effect was 
considered in [to]. 

We note in conclusion that oJ/oS and BLv 
were calculated in [ttJ, where it was assumed 
that the moment of inertia depends on S because 
single-particle wave functions are perturbed by 
the operator Vs [see (16)]. This procedure 
is inconsistent for a system involving Cooper pair 
correlation and can result in errors of the order 
~/ds ( ds is the separation of single-particle 
levels near the Fermi level which are combined 
by the operator s ). 

The authors wish to thank D. F. Zaretskil for 
very valuable discussions. 

APPENDIX 

The explicit expression for oJ/o ( Q, S) [Eq. 
(19)] is 

f)J ~ 
o(Q S) =xLJn,p(q, s)12(Mxha(Mxb 

' 123 

[ (E,- 8!} (Er- 82) (Er -- 83) + -<1 2 (E1 + 81 + 82 - 83 ) 

X 2Er{8r2 - 822)(8r2 - 832) 

+ (E2- 8r) (E2- 82) (E2- 8a) + -<12 (E2 + 81 + 82 - 83) 
2E2(822 - 8r2)(822 - 8a2) 

+ (Ea- 8!} (Ea- 82) (Ea- 8a) + .<1~ (Ea + 81 + 82 - 83) J 
2E3 (832 - 8r2) (83 2 - 822 ) • 
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