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The reflection of "zero sound" from an infinite rigid wall is studied on the basis of the 
Landau theory of a Fermi liquid. The reflection of the quasiparticles from the wall is con
sidered to be diffuse and the wall immovable. It is shown that there is a dissipation of the 
energy at the wall upon reflection of zero sound; this dissipation reaches a considerable 
magnitude at certain angles of incidence; the dependence of the reflection coefficient on the 
angle of incidence is obtained. 

AccORDING to the Landau theory,[t] the so
called "zero sound" can also be propagated in a 
Fermi liquid, in addition to ordinary hydrody
namic ·sound. While ordinary hydrodynamic sound 
is associated in its propagation with real collisions 
between the excitations, and is thus realizable 
under the condition of the smallness of the free 
path length in comparison with the wavelength, 
i.e., under the condition w T « 1 ( w is the fre
quency of the sound, T is the time between colli
sions), the propagation of the zero sound is due 
to the self-consistent interaction of the excitations 
and is realizable in the other limiting case w T 

» 1. Inasmuch as T ~ T- 2 in the Fermi liquid, 
the zero-sound oscillations guarantee the propa
gation of the sound through the liquid at T = 0. 
The problem of the propagation of zero sound in 
an unbounded medium, in particular, the problem 
of the damping with distance, has been treated 
theoretically in connection with the dissipation of 
acoustic energy. The calculation of the absorption 
coefficient of zero sound was carried out both by 
means of the kinetic equation [2] (through an imagi
nary contribution to the sound velocity) and also 
from the viewpoint of the theory of a Fermi 
liquid [3] (through an imaginary part of the pole of 
the scattering amplitude). 

In the propagation of sound close to the rigid 
wall, the presence of viscosity and thermal con
ductivity can lead to an additional dissipation of 
the energy in connection with the generation of 
large temperature gradients and velocity gradients 
in the layer close to the wall. 

In the present research, the problem of zero
sound propagation in a semi-infinite medium, i.e., 
of the reflection of zero sound from an infinite, 
·immovable wall, is considered for the elementary 

excitations in a Fermi liquid by means of the 
kinetic equation. The dissipative processes, which 
are connected in the kinetic consideration with the 
redistribution of the momenta of the quasiparticles 
at the walls, also determine the reflection coeffi
cient of the zero sound from the rigid wall. The 
dependence of the reflection coefficient on the 
angle of incidence is investigated; this is shown to 
be far from trivial. 

1. The distribution function n ( p, r, t) of the 
elementary excitations in a Fermi liquid satis
fies the kinetic equation 

on+ on f!!_ _ on f!!_ = I (n) (1) 
ot f) r f) p f) p f) r ' 

where E is the energy of the excitation and I ( n) 
is the collision integral. 

We seek the distribution function in the form 

n =no+ fJn, 

where n is the equilibrium Fermi function for 
T = 0. The energy of the excitation, which is a 
functional of n, is expressed by the formula 

e = e0 (p) + ~ j (p, p') 6n (p') d p', 

(2) 

(3) 

where E 0 ( p) is the equilibrium excitation energy 
for the temperature of absolute zero, while 
f ( p, p') characterizes the interaction between the 
excitations and is determined as the second vari
ational derivative of the energy density with re
spect to on. 

Inasmuch as the case w T » 1 is considered, 
then it would have been possible to neglect the 
collision integral. However, this would have led 
to a singular integral equation or to the Riemann 
boundary problem. Therefore, we keep the colli
sion integral in its simplest form, I= -on/T, just 

1384 



REFLECTION OF "ZERO SOUND" FROM A RIGID WALL 1385 

as did Bekarevich and Khalatnikov, [4] and elimi
nate T in the final expressions in the limiting 
transition wT- oo. 

By linearizing the kinetic equation (1), we note 
that on ~ Bno/8 E ~ o ( p - Po), where Po is the 
limiting momentum. Therefore, we can write on 
in the form 

e,n =a;~ v (r, 0, X) e-iwt, (4) 

where e and x are the spherical coordinates of 
the vector p: e is the angle between the direction 
of p and the Z axis, which is perpendicular to 
the wall and is directed into the liquid; x is the 
azimuthal angle in the plane of the wall (i.e., in 
the XY plane), measured from the X axis. 

For simplicity, we limit ourselves to the first 
term in the expansion of the function f ( p, p' )p0 
in terms of spherical harmonics, i.e., we consider 
it to be constant [f(p, p')p0 p0meff/rr2ti 3 = F 0 ]. 

Then, with account of (3) and (4), we get 

'_ _ F \ (0' 1 ) dQ' -iwt (5) e - e0 0 J v v , X , r --:!Ut e • 

In the reflection problem, the small, nonequili
brium contribution on can be represented in the 
form of the sum 

(6) 

where oninc is the contribution which describes 
the zero sound incident on the wall, and which has 
the form [2] 

. an cos (pk;ne) 
e,nme = - 0 exp {i (kine r - rot)}, (7) ae s - cos (pk:ine) 

s is the ratio of the propagation velocity of the 
wave u to the velocity of the excitations on the 
Fermi surface, v0; kine is the wave vector of the 
incident wave: 

kine = iso / VoT, 

where s 0 = (1- iwT)/s =x0 (1- iwT). The 
imaginary part of k gives the damping brought 
about by the collisions. 

Substituting the relations ( 5)- (7) and on ref in 
the form 

f an . 
l'!n re = _o v ref (r 6 X) e-iwt ae ' ' 

in the linearized Eq. (1), we get the equation rela
tive to vref: 

avref a ~ dQ vref 
- irovref + V --+ F V - vref - = - --. (8) 

0 ar 0 0 ar 4:rt T 

Furthermore, starting out from the axial sym
metry of the system liquid-wall, we can assume 
that kine lies in the XZ plane, without limitation 
of the generality of the system. Then vref is 

also independent of y. Introducing the new function 

'Yref = vref (r, 6, X) + Fo ~ vref (r, 6', x') d~~ ' (9) 

we get the following equation from (8) 

(1 - iroT) [ 'l"ref (x, z, 6, X) - 1 :°F0 
'Y~ef (x, z)J 

. a'Yref a'Yref + sm 6 cos X ----a;;+ cos 6 az = 0. (10) 

Here 

'Y;ef (x, z) = ~ 'l"ref (x, z, 6, x) ~~' (11) 

z is measured in lengths of the mean free path 
l = v0T. 

Transforming to the analogous notation in (5), 
and omitting the periodic time dependence, we get 

Fo n' 
e = eo - 1 + F o -:r o (12) 

(here '11, '11 0, and in what follows 'Jimc, are deter
mined by Eq. (9) with the corresponding substitu
tion vref - v' vine. 

2. We now proceed to the derivation of the 
boundary conditions for Eq. (10). 

The greatest interest lies in the case of diffuse 
reflection of the quasiparticles from the wall, 
which is very close to the real conditions in liquid 
He 3• We note that there is no dissipation of the 
energy at the wall in specular reflection of quasi
particles from a fixed wall, and the coefficient of 
reflection of zero sound is equal to unity, inde
pendent of the angle of incidence. 

In diffuse reflection, particles reflected from 
the wall are distributed over the equilibrium 
Fermi function n0• Thus, the following condition 
is satisfied on the wall: 

n(z=O, Pz>O) 
~ an0 ~ = n0 (eo+ e,e- uf.t) = no(e0 ) +-a (l'Je- uf.t); 

8o 

the change in the chemical potential Of.l is also 
included in the argument of the distribution func
tion, guaranteeing the vanishing of mass flow 
across the plane z = 0 (the wall is considered 
immovable). 

On the other hand, 
ano 0 ) n = n0 + -8 v(r, v, x. 

Eo 

Comparing the last two expressions, with account 
of (9) and (12), we get 

1f = -6ft, Z = 0, Pz > 0; (13) 

Of.l is found from the condition 

m ~n(oejfJp)zdp = 0, z = 0, 

which is equivalent to the condition 
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~cos eo/ dQ = o, z = 0. 

The relations (13) and (14) would obv:iously be 
satisfied for the total function -¥ = -vmc + -vref. 
Inasmuch as, in accord with (7) and (9), 

'¥inc = ( s + a cos e -l' 1 - a2 sin 8 cos x) -! 

X exp {- xsol"i- a2 + zaso}, 

(14) 

(15) 

the corresponding conditions for -vref have the 
form 

'Yref (x,x,z = 0, cos e > 0) = - 6~-t (x) 

exp {- xs0 Vi- a 2 } 

s +a cos e- Vi - a2 sin 6 cos X 

~cos eo/ref dQ =- exp {-Sox Vi- a 2 } 

r cosedQ 
X J s +a cos e- Vi- a2 sin 6 cos X ' z = O. 

Here a = cos J > 0, J is the acute angle between 
kine and the normal to the surface of the wall, 
i.e., the angle of incidence (Fig. 1). 

FIG. 1 

Starting out from the boundary conditions and 
the content of the problem, we can represent 
-vref in the form 

'J'ref (z, X, 0, X) = exp {- SoXli - a2}«lJ (z, 0, X). 

Thus the problem reduces to the solution of the 
equation 

f.t 811> (z, f.t, X)f8z + ID (z, f.t, X) {i - iun: 

-Vi- ~-t2 cosxso Vi- a 2} 

-~(1- iurt)ID0 (z) = 0 
i +Fo 

with the boundary conditions 

iD (z = 0, f.l > 0, x) 

= £- (s + af.l- l"i- a2l'i- f.l2 cos x)-t, 

~f.t«l>(z = 0, f.t, x,)dQ 

(16) 

(17) 

\ f.tdQ 
(18) 

f.t =case; 
(' dQ 

ll>o (z) = .l «D (z, f.t, x) 4n ' 

£=canst. 

3. Multiplying (16) by e-uz and integrating 
over z, we get an equation for the Laplace trans
formations 

ljJ (u, f.t, X,) {1 - iol1; - Vi - f.t2 COS X,So Y i a2 + f.tU} 

- f.t«l> (z = 0, f.t, X)= 1 :°F0 (i - iurt') ljlo (u) 

00 

( ljJ (u, f.t, x) = ~ <D (z, f.t, x) e-uz dz) ' (16') 
0 

whence, after division by the coefficient for 
cp ( u, 11. x) and integration over the angles, we 
find the equation for cp 0 ( u): 

i ( f.t«l> (z = 0, f.t, x) dQ . 
IJlo(u) Ll(u) = 4n J i- iw-.:- Vi- f.t2 cosx,so Vi- a2 +ru' 

(19) 

i Fo i(i-iw•) 1 i-iw-.:-iVc 
Ll ( u) = - -i _+_F_o 2 V c n -i--i-w-1: -+-l---=. V----r=-c 

= _!y_ {___!_ _ W [i (i - iw-.:)]}, 
i + Fo Fo Vc 

Solution of the integral equation (19) is given 
in the Appendix I because of the cumbersome cal
culations. In the half-plane Re u > 0, the de
sired representation of cp 0 ( u) is shown to be 
equal to 

_j_u(~+a)+iVf=li2so(a-~)]}, (21) 
2 2[u2 +s02 (i-a2)] 

where {3, y, a depend on a known coefficients 
[see (!.2)-(!.4)] and hence the following notation 
is used: 
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The value of~ entering into Eq. (21) for rp 0 (u) 
is determined by the relation (18), which, as the 
result of complicated mathematical transforma
tions (see Appendix II) gives 

£= 
4ax0 [a(~+~)- i Jfr=tl2 (~- ~)] (1 + Fo) 

g_(as0 ) [axo + Y1- x02 (1- a2)] 

X { (~2 - ~2) (1 + Fo) 

2ix0 Y1- a 2 

2 2a 
-3(3+Fo)Y1 ~x02 (1- a2)+""Xo+Fo 

2 1 - Y 1 - x02 (1 - a2) 
-3Fo (1-a2)Xo2 

2 oo~ y2- 2xo2 (1- a2) t Sd }-1 +- arc g y , 
:rt • ys Y y2- Xo2 ( i - a2) 

where 

S= nFof2y [ 1 + Fo (1- 2~ In~+!)]· 

(22)* 

4. We now transform from the Laplace trans
form to the original function 

t+ioo 

<Do(z) = 2!i ~ <po(u)euz du. 
E-ioo 

For calculation of the integral, we take E = 0 
[this is permitted by the analytical properties of 
rp 0 ( u)] and the closed contour of integration of 
the arc of radius R- oo in the left half-plane 
(Fig. 2). In accord with (21), the integrand has a 

--- '-. ... ... 
' /\ 

R \ 
I 
I 

FIG. 2. The integration contour for computation of the in
tegrals <l>0(z) and I" is shown by the solid curve. The con
tour integration along which leads to the expression for g_(u) 
for Re u = 0 to the form (11.2) is indicated by the dashed 
curve; 1, 2 are the branch points of the function G(u): 
u = ± (1- iw-r)y1 - x~ (1 - a 2). 

*tg =tan. 

pole at the point u = -as0; moreover, if we repre
sent g_ (u) in the form (II.2), then the integrand 
will have an ambiguity in the left half-plane, for 
the removal of which it is necessary to bypass 
the cut along the curve 

u = -x(1- iw-r)-y'1- x02 (i- a2), 

X :;;:::. 1 (M'N'P'). 

The pole at the point u = -as 0 corresponds to 
reflection of the zero sound; the reflection ampli
tude is proportional to the residue of the inte
grand at this point. The integral over the cut 
corresponds to the energy dissipation near the 
boundary separating the liquid and the solid. 

To find the reflection coefficient, we need to 
know the residue of the function rp 0 ( u) at the 
point u = -as0 (since, on the wall, z = 0): 

1 +Fo 
res <p0 (u = - as0 ) = -2F g_( -aso) [ -axo 

oXo 

+ Y1- x02 (i- a2)]{£[a(~+ ~) 

+ i Vi- a2 (~- ~)]- yfa}. 

The function rp 0 considered by us corresponds 
to onref, i.e., this is CfJoref_ If we introduce 
rp~nc in similar fashion, which is in turn propor
tional to the amplitude of the incident wave, then, 
in accord with (15), we get 

res <poinc(u = aso) = xo(i + Fo) / Fo 

for all angles of incidence. 
Thus the reflection coefficient R of zero 

sound from a rigid, immovable wall is equal to 
the ratio of the time average of the energy flux 
in the reflected wave to the mean energy flux in 
the incident wave, and is expressed by the for
mula 

[res <p0 ref (u = - aso)] 2 
R = [res <poinc (u = as oW -

= g_2(-aso)[-axo+Y1-xo2(i-a2)]2 
4xo4 

X{£ [a(~+~)+ i Vi- a2 (~- ~)]- yfa} 2 • 

For analysis and calculation, it is convenient to 
use a formula which is obtained from the previous 
after transformation of the integrals in the com
plex plane [ g_ ( -as0 ), L a, {3, 'Yl to integrals 
over the real variable and transition to the limit 
WT- 00 : 

res <p0ref (u = - as0 ) 2 I } r - axo 
R - p2 P = = exp { axo 1 ---

- ' res <p0inc (u = as0 ) r + ax0 

X { 8a cos2 (6 -~) / [ V~n~tla2 
2 

- 3(3 + Fo)xor + 2a + F 0x0 
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-; Fo (1 ~~~Xo +2xoi2-4x03 (1-a2)I3]-1}; 

(23) 

here, we use the notation 

I 1 r y arc tg S dy 
1 = Jt t (y2- Xo2)Vil-xo2(1- a2) 

I _ 1 f arc tg S dy 
2 - n t y Yy2- Xo2 (1 - a2) 

I 3 = __!_ r arc tg S dy . 
:rt t y3 yyz- Xoz (1 - a2) ' 

We now analyze the dependence of P on the angle 
of incidence. In accord with Eq. (23), for a = 1, 
i.e., for normal incidence, 

· 1 - Xo P = exp {2x0I 1 (a= 1)} -1--+ Xo 

X {2/[1- x0 + x0I 2 (a= 1)]-1}. (24) 

For the existence of zero sound, it is necessary 
that the wave propagation velocity u be larger 
than the velocity of the excitations on the Fermi 
surface v0PJ therefore, x0, which is equal to the 
ratio of v0 to u, is a positive quantity, always 
smaller than unity. Furthermore, transforming 
to the new variable x = 1/y in the integral I2 

(a= 1 ), and taking it into account that the arctan 
in front of the integral changes in the range 
(0,1)), weget 

I 2 (a=1) 

=! ~arctg{:rtF0x /-2[1+Fo(1 + ~ ln!+~)J}dx 
1 1 <- ~ :rtdx = 1. 
:rt 0 

On the basis of the inequalities 

0 < xo, Iz(a = 1) < 1 

and Eq. (24), we conclude that P > 0 for normal 
incidence ( ,J = 0). For grazing incidence, 
(J. = 7r/2 ), i.e., for a= 0, P = -1 < 0, in accord 
with Eq. (23). Moreover, the expression on the 
right side of Eq. (23) is real and continuous. 
Consequently, in the change of the angle of inci
dence from 0 to 1r/2, an angle can be found for 
which P = 0. 

On the basis of what has been said above, we 
can make the following general conclusions. 

1. Independent of the value of F 0 (and the 
value of x0 determined by it), i.e., in our con
sideration, independent of the nature of the Fermi 
liquid, the reflection coefficient of zero sound 
from a rigid, immovable wall reaches a maximum, 
equal to zero, for a certain value of the angle of 
incidence J- 0 (the actual value of J-0, which is 
found from the equation P = 0, obviously depends 
on F 0 ). 

2. Independent of the value of F 0, the reflec
tion coefficient is equal to unity for grazing inci
dence (,J- 7r/2 ). 

3. Inasmuch as the ratio of the amplitude of 
the reflected wave to the amplitude of the inci
dence wave P changes sign at the point ,J = J-0, 

the phase shift for reflection is zero on one side 
of the point J- 0, and is equal to 1r on the other 
side. Thus the minimum value of the reflection 
coefficient, which is equal to zero, is achieved at 
the point where we have the transition from re
flection without loss of a half wave to reflection 
with loss of a half wave. This result is also gen
eral for all values of F 0• 

For illustration of the laws described, we shall 
carry out the numerical calculation for the case 
of He3 .o The parameters entering into the for
mula (23) are determined in the general way [2] 

from experimental data on the specific heat of 
He3 at low temperatures (the ratio meff/m) and 
the velocity c of ordinary sound in He3. Using the 
latest data obtained in the literature ( meff 
= 2.8 mHe3,C6J c = 183m/sec), we get the follow
ing values of the parameters: F 0 ~ 9, x 0 ~ 0. 53. 

Graphs of the dependence of the ratio of the 
amplitudes P (curve 1) and the reflection coeffi
cient· R (curve 2) on the angle of incidence ,J are 
plotted in Fig. 3 for the given values of F 0 and 
x 0• For normal incidence, the reflection coeffi
cient increases, then falls off monotonically and, 
reaching a minimum at almost grazing incidence, 
rapidly increases upon subsequent increase in the 
angle of incidence. For comparison here, we have 
also plotted curves (3, 4) computed under the as
sumption meff = mHe3 (here, F0 = 2.95, x 0 = 0.78); 
as we see, the path of the curves depends on the 
value of meff· 

1 ) Actually, the function f is not a constant for He'. We 
note, however, that the calculation of the reflection coeffi
cient with account of the first two terms of the expansion of 
f (p, p')p 0 in terms of spherical harmonics, which can be car
ried out completely in the case of normal incidence.[' 1 gives 
a result which is in excellent agreement with that obtained 
here with account of only the first term of the expansion. 
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P,R 

_, 

FIG. 3. Dependences of the ratio of the amplitude of the 
reflected wave to the amplitude of the incident wave P 
(curves 1, 3) and the reflection coefficient R (curves 2, 4) on 
the angle of incidence 'fr. The curves 1, 2 correspond to 
meff = 0.8 mHe'• curves 3, 4 are for meff = mHe'· 

In conclusion, the author expresses his grati
tude to Prof. I. M. Khalatnikov for suggesting the 
problem and for valuable advice. 

APPENDIX I 

Before undertaking the solution of the integral 
equation (19), we transform it by using the value 
.P ( z = 0, 11, x ) for 11 > 0 from ( 17) to the form 

<:po(u)~(u)-F1 1(1+Fo)~(u)-1][ ( 1 ) _£u]l 
o s as0 - u c 

'1 
=Q(u)+(as0 __:_u)F0s; (1.1) 

where 

xrt { <D (z = 0, fl, x)- £ 
~1 1- iw-r- Y 1 - fl2 cos zs0 Y 1 - a2 + flU 

+ So (1 - iro't - -v 1 - fl2 COS ;(So -v 1 - a2 + flU f 1 

x (1- iw-r - Yi- fl 2 cosxso Yi- a2 + flas0f 1} fldfl. 

.P ( z = 0, 11· x ) for 11 < 0 can be expressed in 
terms of cp 0 (u ), where u will be some function 
of 11 and x; consequently, Eq. (1.1) is nothing 
else than the inhomogeneous integral equation 
relative to cp 0 1u). We shall solve it by the 
Wiener-Hop£ method. [7] 

The function Q ( u) is analytic for Re u 
< V 1 - x 02 ( 1 - a2), x 0 = 1/s. The function .6. (u) 
is analytic in the interval I Re u I < 
V 1 - x 02 ( 1 - a2 ) and has two roots in that inter
val; [2] u = ±as0• We introduce the function 

G( ) =A() u2 -(1-iro-r)2 {1-x02 (1- a2)] 
u tl u 2 2 2 ' u -a s0 

which is analytic in the interval I Re u I 
< V 1 - xl( 1 - a2) does not have any zeros in it 
and tends to unity as u - oo in this interval. 

Applying the Cauchy formula to ln G ( u), we 
can write 

±b+ioo 
_ g~(u). _ { 1 \ InG(s} } 

G (u)- -(-), g± (u)- exp r .) --ds , 
g_ u :rtl ±b'-ioo S - U 

0 < b < l' 1 - x02 ( 1 - a2); 

g+ (u) is analytic for Re u < b, g_ (u) for Re u 
>-b. 

Expressing ..6. ( u) in Eq. (1.1) by g+ ( u) and 
g_ ( u) and multiplying both sides of the equation by 
[ 11 - ( 1 - iw T )V 1 - x 02 ( 1 - a2 )] 
(a- iV1- a2s 0 ) x [g+(u)(as0 )]- 1, we get 

1 u+ as0 

g_ (u) u + (1 - iro-r) Y 1 - x02 (1 - a2) 

x {cro(u)(u- iY1- a2 s0 ) - 1 + Fo £u 
F o u + i Y 1 - o.2 s0 

1 + F 0 u- i Y"f=a2 So } 
- ----p-;- s (as0 - u) 

{u- (1- iro-r) lf1 - x02 (1 - a2 )) (u- i Y:f=aii s0 ) 

g_,_(u)(u- as0 ) 

Further, by compensating the remaining poles 
through the addition to both parts of the equation 
of the expression 

1 + F 0 [~ u- i"V:f=a2so u- i"V:f=a2so] 
Fo 2 u+iY1-a2 s0 -r u-aso ' 

where 
~ = _1_i Yr=ll2so + (1- iro-r) lf1- x0 2 (1- a2), 

1+Fo g+(-iY1-a2 s0)(ilf1-a2 +a)so (1.2) 
2as0x0 

r F g_(aso) {aso + (1- iro-r) lfi - Xo2 (1 - a2)]' 
(1.3) 

we get an equation whose left-hand side is analy
tic for Re u > 0 and is bounded (if we assume 
that cp 0 (u) ~ 1/u as u- 00 ), while the right-hand 
side is analytic for Re u < min {b, Re as 0}, and 
is bounded as u - oo. Since there is an overlap 
band 0 < Re u <min {b, Re as 0} in which the two 
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parts coincide, one is the analytic continuation of 
the other, and, in accord with the Liouville 
theorem, the total function is equal to a constant 
(we note that our analysis is suitable for any 
a .,. 0). It is easy to find this constant by taking 
the value of the left side at the point u = 

i v 1 - a2 s 0• Then, equating the left side of the 
equation to this constant, we get the solution of 
<Po(u) in the form (21), where 

1 
ct = -~-====--

g_(iY 1 a2 s0 ) 

(i Y 1 a2 + a)s0 (I.4) 

It is easy to prove that <P 0 ( u) is analytic in 
the right half plane and, actually, ~ 1/u as 
U -oo. 

APPENDIX II 

The existence of the dependence on a greatly 
complicates the problem of finding ; ; therefore, 
we shall consider this specifically: 

~ ~-t<D (z =0, f.t, x)'dQ 

21t 0 21t 1 

= ~ dx ~ ~-t<D (z = 0, f.t, x) d~-t + ~ dx ~ ~-t<D (z =O,f.t,x)df.t. 
0 -1 0 0 

The difficulty lies in the calculation of the first 
integral. We first transform from <Po ( u) to the 
original function 

1 E+ioo 

<D0 (z) = -2 . \' <p0 (u) euzau. (II.1) 
J'U .l 

e-ioo 

Starting from the form <Po ( u), we can choose 
E = 0. Further, direct integration of Eq. (16) 
gives 

<D (z = 0, f.t, X) = - 1 FFO (1 - io:rr) __.!_ r <Do (z') 
1'-<0 + 0 f.t ~ 

x exp{~ [1-iu}'r-Y1-~-t2 cosxs0 Y1- a2]}dz'. 

We substitute <I> 0 ( z' ) from (II .1) and integrate 
over z'. Then, using the obtained result, we find 

2<t 0 

I= ~ dx ~ ~-t<D (z = 0, f.t, x) df.t =I'- I", 
0 -1 

ioo 
, 1- ion \' 2iu 
I= 1+F J <i'o(u)u2+s2(1-a2)du, 

0 -100 0 

ioo 

I"= (1 -ion·) ~ <p0 (u) G (u) 
-ioo 

X 2iu (u2 - a2s02) du 
(u2 + s0 2 (1- a2)] {u2 - (1- iro't? (1- x02 (1- a2)]} 

In the integral I' <P 0 ( u) is analytic in the right 
half-plane and the entire integrand approaches 
zero as 1/u2 as u - 00 ; therefore, 

I ' 2 1 - iro't' (. .,,r-1 --2) = l't 1 F <i'o rso r - a . + 0 

In integral I", for convenience in the continua
tion of the integrand in the left-hand plane, we 
write down g_ ( u) for Re u = 0 in the form (see 
Fig. 2) 

1 { 1 \ In G (s) } 
g_ (u) = G (u) exp - 2ni J ----s=u:ds . 

(MNP) 

(II .2) 

Here the integral is taken over the sides of the 
cut, removing the ambiguity of the function G in 
the right half-plane. 

We find the value of I" by closing the contour 
of integration in the left half plane and again by
passing the cut, now over M'N'P', to remove the 
ambiguity of G ( u) in the left half-plane. 

As a result of a cumbersome computation of 
a similar type, and transformation of the integrals 
in the complex plane to integrals over the real 
variable, we find the relation for ; by means of 
substitution of the computed values of I' and I" 
in I, and then I in (18). 

The final result is given in the text, Eq. (22). 
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