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It is shown that the nonlocal potential which is obtained from quantum field theory can be re­
placed at large wave numbers by a local complex index of refraction. 

1. INTRODUCTION 

WE start with the equation for the single time 
wave function for two particles: 

L'ljl(x) = \V(x, x', W)'ljl(x')d3x'. (1) 
ol 

Here x = x 1 - x2 is the relative coordinate of the 
two particles at the same time ( t 1 = t2 ); W is the 
energy of the stationary state; V (x, x', W) is the 
nonlocal potential; the operator L can either be 
the Klein operator: E2/c2 - K2 = \72 + k2 ( E" is the 
meson energy, f.l is its mass, K2 = -\72 + f.l 2), or 
the Dirac operator: L = E/ c - D ( \7) ( E is the 
nucleon energy D = ia\7 + j3mc2 ); we note that 
W = E + t. The equation given above was derived 
from the single time equations constructed with 
the aid of the "elementary scattering matrix" 
(cf., [t- 3] ). Recently the same equation was ob­
tained in the momentum representation in [4]. 

Below we shall consider two limiting cases: the 
long wavelength case and the short wavelength 
case. 

2. THE LONG WAVELENGTH CASE 

Equation (1) can be rewritten in the form 

L'ljl(x) = U(x, W)'ljl(x), (2) 

where U ( x, W) is the local potential which, how­
ever, depends on the form of the wave function: 

U ( W) = s V (x, x', W) 'ljJ (x') d3 , (3) 
x, 'ljJ (x) x. 

If the wave length :lt is much greater than the 
dimensions of the region a in which the nonlocal 
potential differs from zero (i.e., it is assumed 
that for I xI, I x' I > aV(x, x', W) ~ 0), then in 
this region the wave function ljJ ( x) practically 
does not vary. Then within a we can set: 
1/J ( x' )/ 1/J ( x) ~ 1 and, consequently, in this case 
the local potential 

U (x, W) = ~ V (x, x', W) d3x' (4) 

is simply the nonlocal potential V ( x, x', W) 
averaged over the x' space. 

It might seem that in the case of shorter waves 
one could construct the local potential by means 
of the operation 

U ( W) = {' V (x, x', W) 'iJn-I (x') d3 , ( 5) 
n X, .) 'iJn (x) X ' 

substituting each time into (5) in place of the ratio 
1/J ( x' )/ 1/J ( x) the preceding approximation: 

L'ljln(x) = Un(x, W)'ljln(x). (6) 

This iteration process will not necessarily con­
verge to the true solution under all circumstances: 
if the wave function of the (n-1)-th approximation 
has zeros at incorrect places, then the function of 
the n-th approximation will also have zeros at the 
same incorrect places. Indeed, it can be seen 
from ( 5) that at these points Un ( x, W) will be­
come infinite, and therefore 1/Jn ( x) will vanish. 

3. GEOMETRICAL OPTICS 

We now consider the other limiting case when 
:lt « a. We note that the cross section u for elas­
tic processes can be written in the form 
u = 1ra2 ( 1 - J3) where a is the nucleon radius, 
while J3 is the transparency of the nucleon; there­
fore the condition for the applicability of geo­
metrical optics can be written in the form 

a/'t.= [a/ n(1- p)k2]'/, (7) 

for :lt- 0. In this limiting case we represent the 
wave function in the form 

\jJ (X) = exp { ikS (X) } , (8) 

where S ( x) is the action function. In order not to 
complicate the subsequent discussion we restrict 
ourselves to the scalar equation L = \72 + k2• Sub-
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stituting (8) into (1) we obtain for k -- oo 

(,VS)2 = n2, 

where n is the complex index of refraction de­
fined by the equation 

(9) 

n2 - 1 = k-2 ~ V (x, x', W) exp {ik [S (x') - S (x)]} d3x'. 

(10) 
We note that 

S(x') - S(x) = (x'- x) VS + ... = np cos 8, 

p= Jx'-xJ. 

We shall obtain the first approximation for n2 - 1 
if we set n0 = 1 in the exponential in the integrand 
of (10). Then we have 

n12 - 1 = k-2 ~ V (x, x + p, W) eikPd3p, (11) 

i.e., in the first approximation the index of re­
fraction n 1 is simply determined by the k-th 
Fourier component of the nonlocal potential. 

Substituting n 1 obtained in this manner into the 
integral we shall obtain from formula (10) n2 etc. 
On setting n = a + if3 ( a and f3 are functions of 
x and W, or k) we can easily see that a neces­
sary condition for the convergence of the iteration 
process for the evaluation of n will be the condi­
tion kf3 -- const (in particular, 0) for k -- oo. 

Otherwise the factor exp ( -kf3p cos e ) will ap­
pear in the integrand of (10) which in the region 
cos e < 0 tends to oo as k -- oo, and this would 
make the iteration process impossible. 

We shall now show that as k - oo, kf3 remains 
bounded. Indeed, from the optical theorem it 
follows that the imaginary part of the scattering 
amplitude 

co 

A (W, q) = ik ~ bdb [1 - e2i1J(b,k)] ] 0 (bq) (12) 
0 

(here b is the impact parameter, 1J ( b, k) is the 
phase of the scattered wave, q is the transferred 
momentum; q= 2ksin(J/2), 1J = o(b, k) + iy(b, k), 
y > 0) for scattering angle J = 0 is related to the 
total cross section ut by the equation 

~ bdb [1 - e-2Y cos 26] = a1 f 4tt. (13) 

On the other hand 
co 

2y (b, k) = k ~ ~ (x, k) ds, (14) 
0 

where the integral is taken over the path of the 
ray within the nucleon, for an impact parameter 
equal to b. If ut remains constant or decreases 
as k- oo, then y ( b, k) must also be constant or 
decrease with increasing k. Then it can be seen 
from (14) that the product kf3 remains bounded. 

Thus, the concept of an index of refraction in­
side the particle as k-- oo acquires a simple 
physical meaning. This provides a theoretical 
basis for the application of geometrical optics to 
the description of the scattering of high energy 
particles as has been done in[1•6•7J. 

However, such a description of the scattering 
of particles is, of course, approximate and will 
not be valid for very large scattering angles, for 
example for backward scattering. As has been 
shown in [G], the backward scattering cross section 
is ::_ x2, and therefore condition (10) will not be 
satisfied. 
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