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It is shown that for an oscillator with anharmonicity of the x2n type (of arbitrary strength) 
there exists a simple transformation which appreciably improves the convergence of the per­
turbation-theory series; the lower excited states in this case differ only slightly from those 
of an eff!'lctive harmonic oscillator. This explains, in particular, the experimentally observed 
weak anharmonicity of the quadrupole oscillation spectrum of spherical even-even nuclei even 
though the interaction between the quadrupole phonons is sufficiently strong. 

THERE exists a broad class of quantum­
mechanical systems which can be represented in 
some approximation as an aggregate of oscillators 
with strong anharmonicity. In particular, the 
problem of analyzing such systems frequently 
arises in the investigation of quantized Bose fields 
( phonons and spin waves in a solid, meson field in 
the problem with the static nucleon, etc.). We are 
especially interested in quadrupole oscillations of 
spherical nuclei. As is well known [1], in an anal­
ysis of the lower excited state of a spherical 
nucleus the anharmonicity of the elementary 
excitations (quadrupole "phonons") is quite 
appreciable. 

As a rule, in systems of this type it is sensible 
to use the following approach. Owing to the strong 
nonlinearity, the structure of both the ground and 
excited states of the system tur-ris out to be com­
plicated and essentially different from the struc­
ture of the state of the harmonic oscillator. The 
fluctuations in the number of quanta are quite 
large, so that it is impossible to use the ordinary 
form of perturbation theory. An important factor, 
however, is that the lower excited states differ 
little in their structure from the ground state 
(therefore, for example, the resulting observed 
anharmonicity in many spherical even-even nuclei 
is weak). It is thus natural to attempt to redefine 
the ground state of the system and the excitations 
in such a way as to take into account the principal 
effect of the nonlinearity-large fluctuations. One 
can hope here that the interaction between cor­
rectly chosen excitations turns out to be small, 
i.e., the convergence of the renormalized series 
of perturbation theory is greatly improved. 

Let us illustrate the foregoing with a simple 
schematic example of a one-dimensional anhar­
monic oscillator, described by a Hamiltonian 

( 1) 

( n ~ 2 is an integer; we assume fi = m = 1). The 
"degree" of anharmonicity is characterized by a 
dimensionless parameter A. = y I w~+ 1, which is not 
assumed to be small. At large values of A. the 
correction to the average value x2, calculated 
from the wave functions of the harmonic oscillator 
with frequency w0, may also turn out to be large, 
i.e., the amplitude of the oscillations is large. 
Therefore in analogy with the classical problem 
concerning nonlinear oscillations [ 2] we can 
attempt to approximate the true potential by means 
of some effective parabola (which in principle is 
different for the different states), which must be 
chosen from a variational principle (for example, 
by minimizing the level energies). 

On the .other hand, in the second quantization 
representation, a ·large value of x2 denotes large 
fluctuations of the number of the "old" quanta in 
the ground state. In this connection it is neces­
sary to redefine the vacuum and introduce new 
"true" quasiparticles. This is readily done with 
the aid of the Bogolyubov canonical transforma­
tion. 

We proceed in standard fashion from the coor­
dinate and momentum operators x and p to crea­
tion and annihilation operators a+ and a, which 
satisfy the ordinary Bose commutation relations: 

a = (2w0r'1• (w0x + ip), a+ = (2wor'1• (w0x- ip) (2) . 

Then the Hamiltonian assumes the form 

Hn =} Wo + w0a+a+2-nw0 A.(a+a+)2n· (3) 

We now carry out a canonical transformation to 
the new Bose amplitudes (a, a+) ---.. ( b, b+): 

a= ub + vb+, u2 - v2 = 1 (4) 
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(the unknown coefficients u and v can be regarded 
as real). 

Using the customary notation, we write the 
transformed Hamiltonian in the form 

Hn = U n + Hn + H2o + H~, (5) 

where 

u n = +ffio [1 + 2v2 + (2n -1)!! 21-n (u + vr A.] (6) 

is the part which contains no operators, 

H 11 = ffio (u2 + v2 + 21-nn (2n- 1)!! (u + v)2n A.] b+b, 

H 20 = ~~ [2uv + 21-n n (2n - 1)!! (u + v?nt..] (bb + b+b+}, 

H~ = 2-nffio (u + v) 2ni..N {]
2 

Cm (b + b+)2m}, (7) 

N -symbol for the normal product of operators, 
em -integer factors which depend on n; en = 1. 

We choose the transformation coefficients (4) 
from the conditions for the diagonalization of that 
part of the Hamiltonian (5) which is quadratic in 
the operators b and b+, i.e., we put H20 = 0. Then 
the coefficient of b+b in H11 gives the quasiparticle 
energy, i.e., a new frequency w of the effective 
oscillator. We introduce the unknown quantity 
y = (u + v) 2 and obtain equations for y and w: 

y-n-l (1- y2 ) = 22-nn (2n- 1)!! A., (8) 

0) = ffir/y, (9) 

i.e., y yields directly the frequency renormaliza­
tion. 

We can arrive at Eqs. (8) and (9) also by using 
a direct variational method: if we replace w0 in 
(2) by the unknown frequency w, calculate the 
energy of the ground state Un = Un ( w) with the 
aid of Hamiltonian ( 1) and the wave functions of the 
harmonic oscillator of frequency w, and then find 
the maximum Un ( w), then we obtain exactly the 
same equations, as expected. 

Inasmuch as the ground state of a Bose system 
with attraction is unstable, let us consider Eq. (8) 
for the case of repulsion (A > 0). Then the in­
equality 0 :S y :S 1 holds true, i.e., w > w0-the 
excitations become more stable. Equation (8) has 
a unique solution, and with increasing A the value 
of y decreases in proportion to A-!/(n+i), so that 
if we decrease w0 and leave y unchanged, then the 
renormalized frequency will tend to a constant 
value: 

[ 
n (2n- 1)!! ]1/(n+l) 

0) -> 2n-2 r . 

Introducing in place of A the renormalized 
parameter of interaction A= y/ wn+!, we write the 
final form of the Hamiltonian 

The entire meaning of the change of variables lies 
in the fact that according to (8) and (9), regardless 
of the value of the "bare" interaction A., the renor­
malized interaction X is bounded from above: 

~ 2n-2 2n-2 1 
A. ~= J..yn+l = (1 - Y2 ) n (2n -1)!! <;: n (2n- 1)!! <;: 6 . 

Thus, the Hamiltonian (10) can already be 
studied by perturbation theory, using as the point 
of departure the states of the harmonic oscillator 
with frequency w, the corrections to the energies 
of the ground and first-excited (single-quantum) 
states being only of second order in A. For 
example, the exact numerical calculation [3] 

for the potential yx4 yields for the ratio of energy 
of the first level to the energy of the ground state 
a value 3.58. In our case this quantity (in the 
corresponding limiting case A= y/w~- oo, 

A:-%) is equal to 

(ffi + U2)jU2 = [4 + (2- 31:)]/(2- 3~) = ¥, 
i.e., it is sufficiently close to the true value. 

Thus, for a Hamiltonian of the type (1) it be­
comes indeed possible, no matter how strong the 
initial nonlinearity, to approximate with sufficiently 
good accuracy the excited states by means of states 
of an effective harmonic oscillator. For the higher 
levels, the effective parabola already turns out to 
be different, in full agreement with classical non­
linear mechanics [ 2]. 

Let us consider now a concrete system de­
scribed by a Hamiltonian of such a kind, namely a 
spherical even -even nucleus, the lower excited 
states of which have well known collective proper­
ties. As shown earlier[1, 4J, allowance for the 
adiabaticity of the collective excitations relative 
to the single-particle excitation enables us to de­
termine the variables which describe the collec­
tive branch of the excitations, and represent the 
Hamiltonian of the system in the form 

H = H<2l + H<3l + H<4l = ffio (4- + ~ a"i.taM) 
M 

(11) 

Here aM and aM: are the Bose operators for the 
annihilation and creation of a "phonon" with angu-. 
lar momentum J = 2 and projection Jz = M, 

a~)= "-M ± (-f)M "-~AI, 

( ... ) JM is the symbol of vector addition, 
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w0-frequency of quadrupole oscillations, r<3> and 
f' t> ( L = 0, 2, 4) -some constants. Their specific 
connection with the energies and the occupation 
numbers of the one-nucleon levels can be obtained 
from the microscopic theory which shows, in par­
ticular, [I] that the coefficient r<3'> is small, since 
it is determined by sums of quantities which are odd 
relative to the Fermi boundary, taken over a large 
number of levels. It can also be shown that the 
corrections due to the higher anharmonic terms 
r(n) with n ~ 5 are also small, as are (in the 
case of sufficiently good adiabaticity) the terms 
which include the operators a<->. 

Inasmuch as the four quadrupole phonons have 
only one state with total angular momentum J = 0, 
the term H<4> in the Hamiltonian should actually 
contain only one independent constant. It is there­
fore convenient to transform H< 4> somewhat. Using 
the known properties of the Racah coefficients, we 
can readily obtain 

the equation of motion for the operators in the 
Heisenberg representation. The averages of the 
product of several operators which result from 
this are expressed, as in the Hartree-Fock method, 
in terms of the paired averages 

We can establish a connection between these 
matrices 

( 19) 

(20) 

analogous to the Bogolyubov condition [ s] for 
Fermi systems. In a spherical even-even nucleus 
we can put 

(21) 

where p and T are real numbers. Using (20) and 
the commutation relations, we can easily express 
all the encountered averages in terms of the re­
normalization factor y: 

H(4) = ~0 2J Y2L + 1 AL ((a<+l 2)L (a<+l 2)doo• 
L=O, 2,4 

(12) (a\i/a~~) = (- 1)MbM,-M'Y• (a\ifla\li~) = (-1)M+lbM,-M'Y-\ 

(a\ii)a1f!> =- (a~[la\ii~) = (-1)MbM,-M', 

X [bw + 2 (2L' + 1) W (2222; LL')]. ( 13) 

As can be readily verified, we have regardless 
of the value of the initial constant rL> 

( 14) 

and the following useful identity holds true 

AL = 2J (2L' + 1) W (2222; LL') Au, 
I/=0, 2,4 

L = 0, 2, 4. 

(15) 

By virtue of the property ( 15), all the operators 
a<+l are contained in (12) symmetrically, thus 
noticeably simplifying the manipulations'. 

Carrying out in the usual fashion a canonical 
transformation over the Hamiltonian (12) we ob­
tain, in analogy with (8) and (9) 

w = Woly. 

The transformed Hamiltonian takes the form 

H = U + W ~ ~~~M + wA(a) (~(+)3 ) 00 
M 

(16) 

+ ~ 2J AL Y2L + 1 N {((~(+)2)L(~(+)2)L)00 }, (17) 
L=0,2, 4 

and 

L = 0, 2, 4. (18) 

The calculation of the energies of the two­
phonon triplet levels is best carried out by using 

p = (1- y)2!4y, 't' = (y2 - 1)/4y. (22) 

After separating the averages we obtain a linear 
homogeneous system of equations for the matrix 
elements, the solvability condition of which is the 
secular equation for the level energies reckoned 
from the energy of the ground state. A zero root 
of the secular equation corresponds to those pairs 
of the "old" phonons with total angular momentum 
J = 0, which have already been taken into account 
in the ground state. Nonzero roots give the em;rgy 
of the first level w, coinciding with (16) apart 
from corrections of order ( A(3) )2, which certainly 
can be evaluated by the usual perturbation theory 
(see [1, 4] ), and the energies of the two-phonon 
triplet level ( J = 0, 2, 4): 

w2 (J) = 4w2 (1 + 4AJ) + 0 [(A(3)) 2 J. (23) 

Formulas (16) and (23) go over into those previously 
obtained [ 4] in the limit of weak interaction 
(Ao«O. 

With the aid of (18) and (14) we can estimate the 
upper limit of anharmonicity, determined by the 
four-phonon interaction: A.E = w(2)/w :S 2.15. 
Inasmuch as for the most typical nuclei of the 
class under consideration the experimentally ob­
served value is AE ~ 2.2, we can conclude that in 
these nuclei the values of renormalized constants 
A are close to the limiting values, i.e., the bare 
anharmonicity A and the frequency renormaliza­
tion y- 1 are large. The unperturbed frequency 
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w0 (the energy at the first level in the harmonic 
approximation) is usually determined [S] from the 
corresponding secular equation for the bound state 
of two quasiparticles. This equation contains the 
constant F of the particle-hole interaction, which 
is obtained [7] from the equality of w0 to the ex­
perimental energy w of the first level. We have 
already seen that as a result of the strong anhar­
monicity these quantities may differ noticeably 
among themselves. Thus, it may turn out to be 
necessary to carry out a substantial refinement 
of the assumed value of F, and this will influence 
also the calculation of all the observed quantities. 

In view of the strong influence of the anhar­
monicity it would hardly be worthwhile to attempt 
[7, 8], without confining oneself qualitatively to a 
correct description, to obtain by a thorough choice 
of the single-particle level scheme a good quali­
tative agreement with all the experimental data, 
even in the harmonic approximation, from the 
energies of the first level and the probabilities of 
the electromagnetic transitions. 

A situation calling for a special analysis is that 
of odd spherical nuclei where, in addition to the 
anharmonicity due to the interaction between the 
phonons, a strong coupling between the phonon and 
an odd particle is possible. 

I am sincerely grateful "to S. T. Belyaev for 
continuous interest in the work and for numerous 
useful discussions. 
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