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The propagation of waves in a plate situated in a strong magnetic field is considered. Expres­
sions are given for the amplitudes of the waves reflected from and transmitted through the 
plate. The reflection coefficient at resonance, i.e., when a standing wave is established in the 
plate, differs significantly from unity. 

IT was shown by Kha'ikin, Edel'man, Mina, and the 
present author [1] that when a constant magnetic 
field H satisfying the conditions 

Q~(t}, (1) 

is present, electromagnetic waves propagate in 
bismuth with velocity w/k of order cQ/ wn; here 
Q = eH/mc and wn are the cyclotron and plasma 
frequencies, respectively, and vp is the Fermi 
velocity. Because standing waves arise in the 
plate at definite values of H, the surface imped­
ance depends on the field ip. an oscillatory fashion. 

The calculations previously made [1] refer to 
an infinite space. Below we consider the field pro­
duced in a plate by a plane wave incident on one of 
its surfaces. The calculations are greatly simpli­
fied by the fact that when condition (1) is satisfied 
the relation between field and current is the same 
in the plate as in an infinite space. To verify this 
assertion it is sufficient to consider a semi-infi­
nite space and verify that account of the boundary 
causes the appearance of terms of order kvp /Q 
«I. 

Of most interest is the case when w » kzVF 
(this condition is satisfied in strong fields Q 

» WnVF /c), because in the contrary case the 
waves decay. The decay only becomes small 
when H and k are disposed along symmetrical 
directions of the crystal. However, these special 
cases cannot be considered, since the waves with 
large k make a relatively small contribution to 
the impedance. 

Thus, the problem reduces to solving Maxwell's 
equations* 

c [k<%'] = (t)::J{' c [k::J£] = - 4nia<%' 

under the conditions that the tangential components 
of the field at the surfaces are contimwus; JC is 

*[k<%') = k X/£. 

the alternating magnetic field of the wave. The 
matrix aik (i, k = x, y, z) was previously calcu­
lated [1] in a coordinate system with the z axis 
along H. Here, as in the work of Kaner and 
Skobov, [2] it is more convenient to use a system 
of coordinates in which the ?; axia is along tb ~ 
vector k and the constant field H lies in the TJ?; 
plane. In this system JC?; = (a•&)?; = 0, and, hav­
ing determined & ?; from the latter equality, we can 
consider only the field components perpendicular 
to the vector k. Then, the two-dimensional tensor 
a a(3 ( Ql.' (3 = ~' T]) must be understood to mean the 
quantity a a(3 -a a t;a ?;(3 I a?;?;· With an accuracy to 
terms like w2Q-2 tan2 e, the components of aaf3 
are related to the previously calculated compo­
nents of aik= [1] 

where e is the angle between k and H. 
Since for given values of w and H two waves 

with different wave vectors k and k exist in an 
infinite space, it follows that in a plate two pairs 
of waves arise traveling in opposite directions. 
If a field ;g<O> is incident on a plate of thickness a 
normal to its surface, the amplitudes <%'< 0 and ~<2 >, 
respectively reflected from and transmitted through 
the plate, are given by the following expressions: 

;g<ll = A (k, k) + (k---> k) _ ;g<o> 
1-ick·2w 1 tgka k--->k ' 

, (2) A (k, k) (k---> k) 
;g =coska-ick·2w 1 sinka+ k--->k' (2) 
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where 

- (4niwcr~; I c2- k2) 'i8k0) + (4niwcra11 I c2) <;g~O) 
A a (k, k) = k2 _ k2 

_ k2 - 4niwcr;; 1 c2 A (k k) 
A 11 (k, k) = . . 2 ~ , 

4mwcr~ 11 1 c 

(0) d cp(Q) d d are real for real values of f£ ~ an ro 17 , an o 
not depend on H and w. The expression for the 
amplitudes of the wave transmitted into the plate 
with, for example, wave vector k, differs from 
the first term in the formula for ;t<2> by the factor 
% e-ika. 

Because ck/ w ~ wn I Q » 1 [the expansion in 
(2) is made in terms of this quantity l, the varia­
tion of the reflected field with w and H, which is 
determined by the factor C 
= ( 1 - ick • 2w- 1 tan ka) - 1, is oscillatory. At exact 
resonance it is necessary to take the attenuation 
of the waves into account. One possible mechanism 
of attenuation has already been spoken of; however, 
in a strong field H the attenuation associated with 
scattering of the electrons is predominant. It can 
be taken account of by replacing w by w + i/ T in 
the kinetic equation. In the spectrum of the wave 
a contribution i/2r appears (for wr » 1 ), so that 
the imaginary part k" is related to the real part 
k' by the equation k" = k'/2wr. 

The resonances are defined by the condition ak' 
= 1rn and are equidistant in the inverse field, since 
k' ~ H-1. It is obvious from (2) that the reflection 
coefficient at resonance for large values of wr 
differs significantly from unity. However, in ex­
periment [1 J this difference did not exceed 10%. 
Therefore, by neglecting unity in the expression 
for C, we obtain the following estimate for the 
reflection coefficient:* 

*ctg = cot, sh = sinh. 

4w -
1-R- -;,k' lm ctg ka + (k __, k) 

_ (2w 1 ck') sh (ak' I wT) + (k -+ k). 
- sh2 (ak' 1 2wT) + sin2 ak' 

For not too large numbers 7rn/2wr « 1, and we 
have at resonance 1-R ~ aw 2r/cn2, which corre­
sponds to the observed variation (see Fig. 2 of 
the paper by Kha1kin et al. [3]) and gives wr;, 10. 

We draw attention to the polarizing property of 
the plate. Because when cos 8 « 1 we have in one 
of the waves k ~ (cos 8 ) - 1, the transmitted wave 
is linearly polarized ifthe field H is parallel to 
the surface of the plate. 

The experimentally investigated oscillations 
have a singularity not described by the formulae 
given here (the appearance of oscillations of the 
same frequency, but displaced with. respect to the 
magnetic field by a constant phase; see the same 
Fig. 2 in [3J). It is possibly related to the geom­
etry of the cavity used. 

The author is grateful to A. A. Abrikosov, M. 
Ya. Azbel', M. S. Kha1kin, and V. S. Edel'man for 
discussion of the result. 
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