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The problem of expanding a function into integrals over orthogonal systems of eigenfunctions 
of the Laplace operator on a hyperboloid is considered. Expressions for the direct and in­
verse expansions are given in four orthogonal coordinate systems in Lobachevskil space. The 
connection of these expansions with expansions of functions on a cone is exhibited. The ex­
pansions which are obtained are in gE)neral not unitary and become unitary for certain values 
of the quantum numbers. 

1. INTRODUCTION 

WHEN properties of relativistically invariant 
functions are used, in particular properties of the 
scattering amplitude, the geometric properties of 
the manifold (velocity space) on which these func­
tions are defined are usually not utilized. 

It is known that the space of 4-velocities of the 
theory of relativity is described by a Lobachevskian 
geometry. The geometric properties of the space 
determine those properties of the scattering ampli­
tude which are independent of the concrete form of 
the interaction and refer to its kinematic proper­
ties. Since the velocity space possesses a constant 
negative curvature (equal to 1/c), the kinematic 
properties of the relativistic amplitude lead to a 
series of interesting problems. 

One of these problems is the investigation of in­
variant expansions of functions. 

In nonrelativistic theory the variables in the 
Schrodinger equation (or, what amounts. to the 
same thing, in the Laplace operator) separate in 
any elliptic orthogonal coordinate system. Special 
cases of such coordinate systems are Cartesian, 
cylindrical, and spherical coordinates. In these 
three coordinate systems, functions can be expan­
ded in Fourier integrals, Bessel functions, or 
spherical functions, respectively. In other coor­
dinate systems the expansion leads to more com­
plicated functions (for instance, when the problem 
of scattering by a Coulomb potential is considered 
in parabolic coordinates). 

The relat.ivistic amplitude can be expanded in 
a Fourier integral in four-dimensional space. In 
this case the relation between the components of 
the momentum four-vector (or the four-velocity) is 
taken into account by including a delta function. It 
is convenient, however, to make use only of inde-

pendent components of the velocity and to go over 
from a Minkowski space to a Lobachevskil space, 
realized as the upper sheet of the double-sheeted 
hyperboloid u 2 = 1. 

In the present paper we consider the problem 
of expanding relativistic functions in series and 
integrals of eigenfunctions of the Laplace operator 
on Lobachevskil space. 

The problem consists in studying the Laplace 
operator on the double-sheeted hyperboloid (or the 
angular part of the D' Alembert operator), in various 
coordinate systems. Later we will consider a 
similar problem for a single-sheeted hyperboloidn. 
In investigating these problems it is extremely 
useful to employ geometric constructs which make 
more intuitive the whole way of reasoning. An es­
sential role in this exposition is played by the ex­
pansion on a cone, first obtained by, Shapiro [L2J. 

Using methods of integral geometry, Gel'fand and 
Graev[ 3•4] have constructed a general theory of 
such expansions. These methods allow one to re­
place the analysis of functions on a hyperboloid by 
an analysis of functions on a cone, where essen­
tially the expansions reduce to ordinary Fourier 
transforms. At the same time a connection with 
the theory of representations of the Lorentz group 
is established 2). 

The systems of eigenfunctions which are con­
structed are generalizations of nonrelativistic 
systems: the spherical, cylindrical and Cartesian 
systems. However, one of the systems described 
here, which is called cylindrical throughout this 

l) A single-sheeted hyperboloid corresponds to an unphys­
sical region of the variables, which is also of interest. 

2lThe expansion of relativistic functions has also been 
studied by Dolginov[5 ' 6 1, but the whole system of functions 
was not constructed in his papers. 
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paper, has no analog in nonrelativistic mechanics. 
Its eigenfunctions are not expressible in terms of 
Legendre and Bessel functions, but can be expressed 
in terms of the general hypergeometric function. 

A function defined on the cone (k2 = O) describes 
a particle of zero mass. Therefore we can say 
that the problem posed in the present paper con­
sists in finding expansions of the amplitude for a 
particle of nonvanishing mass in terms of ampli­
tudes for particles with m = 0. 

2. THE SCATTERING AMPLITUDE 

The scattering of particles, or a binary reac­
tion, is described by a function of four variables: 
the velocities of the two particles in the initial and 
the final states. Out of the twelve scalar variables, 
ten can be chosen arbitrarily, owing to the in vari­
ance of the scattering amplitude with respect to 
transformations of the Lorentz group. A convenient 
way to describe the kinematics is the kinematic 
diagram which has been considered in preceding 
papers [r,sl. The velocities of the four particles 
are represented by four points on the upper sheet 
of a double-sheeted hyperboloid. Due to the in­
variance of the quadrangle formed in this way, it 

" 

can be placed in any convenient position (six 
parameters are used for this). We place the quad­
rangle so that its center is situated in the vertex 
of the hyperboloid, i.e., the point with coordinates 
(1, 0, 0, 0). We direct one of the coordinate axes 
along the normal to the hyperboloid and construct 
the two other axes as follows. The three 4-vec­
tors 3l As = p 1 :+- p2 , At = p 1 - p4 and Au = p 1 

- p3, and the 4-vector An, which is orthogonal to 
them, form an orthogonal coordinate system. The 
lines of intersection of these coordinate surfaces 
with our hyperboloid will be chosen as a coordinate 
system on the hyperboloid. 

The velocity quadrangle is represented in the 
figure. The points 1 and 2 correspond to the initial 
velocities, the points 3 and 4 correspond to the 
final velocities. The point s represents the veloc­
ity of the center of inertia of the system. One of 

3 )The squares A; = s, A~= t, and A~ = u are the Mandel­
starn variables. 

the coordinate axes bisects the scattering angle. 
As has been shown in [BJ the points of intersection 
of the sides 14 and 23 are situated on a single­
sheeted hyperboloid and correspond to the velocity 
of the center of inertia of the crossed reaction. 
In the equal mass case the point of intersection of 
sides 13 and 24 corresponds to the velocity of the 
center of inertia of the u-channel. In this case the 
coordinate axes coincide with the directions of the 
lines st and su, and the three points s, t, and u 
form a so-called autopolar triangle. In the case 
of unequal masses (the dotted lines in the figure) 
the connection between the coordinate axes and the 
u-system is less direct. 

The directions of the coordinate axes As, At. 
Au, and An vary with the energy and scattering 
angles. Specification of the velocity of one of the 
particles (e.g., the first) in such a coordinate sys­
tem completely determines the other three veloci­
ties; this is due to the energy-momentum conser­
vation laws (four other parameters of the Lorentz 
group). 

Thus the argument of the scattering amplitude 
is defined by the position of one point on the hyper­
boloid, in the coordinate system defined by the 
vectors A. We agree to denote the angle between 
the direction of the velocity and one of the axes by 
e /2 ( e is the scattering angle 0 :s e :s 2rr). The 
coordinates of the point 1 can be chosen in various 
ways and this leads to different systems of eigen­
functions. 

3. THE COORDINATE SYSTEM AND THE D' ALEM­
BERT OPERATOR 

As has already been said, the Lobachevskian 
velocity space is realized in the form of the three­
dimensional surface of the upper sheet of the 
double-sheeted hyperboloid u2 = 1 in Minkowski 
space. We intersect this hyperboloid with a plane 
parallel to one of the coordinate planes. The inter­
section will again be a (two-dimensional) hyper­
boloid, if the plane does not pass through the 0-axis, 
otherwise the intersection will be a two-dimen­
sional sphere, and we can construct on this sphere 
a spherical coordinate system. In the case of the 
hyperboloid, one can continue the sections in two 
different ways: either along circles or along hy­
perbolas. Thus we obtain two other hyperbolic 
coordinate systems, to which, as will be seen, 
correspond different eigenfunctions of the D' Alem­
bert operator. 

There exists one other coordinate system, con-
nected with the fact that two mutually orthogonal 
planes can be constructed in Minkowski space, 
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one with a euclidean and the other with a pseudo­
euclidean metric. Introducing in the first plane 
polar coordinates and in the second plane hyper­
bolic coordinates, we obtain a fourth coordinate 
system for the Lobachevskil space, i.e .. , spheres 
with their centers (in the imaginary Lobachevskil 
space, on the single-sheeted hyperboloid). If the 
center of the sphere is placed on the light cone, 
the coordinate surface is the so called "orisphere'; 
a surface for which the geometry is isomorphic to 
the geometry of the euclidean plane. This ori­
spheric coordinate system will also be described 
in the present paper. 

The physical significance of the enumerated 
coordinate systems is easily understood if one ob­
serves that the transformation from one reference 
frame to any other can be achieved by means of 
three transformations, at least one of which is a 
Lorentz transformation. 

In the spherical coordinate system a point is 
characterized by two spatial rotations and one 
Lorentz rotation, whereas in the other coordinate 
systems two or three Lorentz transformations are 
needed. We note that for the description of binary 
reactions without spin, for which the amplitude is 
independent of one (space) angle, the purely hyper­
bolic system (three Lorentz rotations) is incon­
venient4>. 

We will describe the coordinate systems in 
velocity space by specifying four homogeneous 
Cartesian coordinates of the velocity u0 , u by 
means of angles. Since in this case a three­
dimensional point is specified by four numbers, 
these numbers represent projective coordinates of 
the point. Besides the projective coordinates we 
introduce also inhomogeneous coordinates, ob­
tained by dividing the projective coordinates by u0 • 

Since the ratios ui/u0 , i = 1, 2, 3 vary within 
0 and 1, it is convenient to denote them by tanh Zi, 
where now 0 :::; Zi :::; "". Thus, we select as inhomo­
geneous coordinates the coordinates Zi, defined by 
the equations 

th Z; = u;j/u0 (i = 1. 2. 3). (3.1)* 

Finally, we use a convention in which spatial 
rotations are denoted by Greek letters and hyper­
bolic angles by Latin letters. 

We go over now to a description of the coordin­
ate systems. 

4 lThe problem of finding the coordinate systems in which 
the variables in the Klein-Gordon equation separate has been 
considered in papers by Olevskii[•] and Shum[to]. 

*th = tanh, sh = sinh, ch = cosh, cth = coth. 

The Spherical System S 

The system S is defined by the equations 

u 0 = ch a, u 2 = sh a sin 0 cos cp, 

u3 = sh a cos 0 , u 1 = sh a sin 0 sin cp, (3.2) 

or 

th z3 = th a cos 0 , th z2 = th a sin 0 cos cp, 

th z1 = th a sin 0 sin cp. (3.3) 

The inhomogeneous coordinates coincide with three­
dimensional spherical coordinates, in which tanh a 
plays the role of the radial variable. Therefore in 
the S system the equations resemble most closely 
the nonrelativistic ones. The D' Alembert operator 
in four-dimensional Minkowski space can be written 
in the form 

(3.4) 

where U is the length of the four-vector in Min­
kowski space and ~L is the Laplace operator on 
the hyperboloid s>, for which we have to find the 
eigenfunctions. 

In the coordinate system S 

~L = sh-2a .fa· sh2 a .fa 

+ h-2 ( . -18 a . 8 a + . -20 82 ) 
S a S L ll iffl S!Il iffl Slll V Ofjl2 • (3.5)* 

The Hyperbolic Coordinate System (the Lobachev­
skil System L) 

The hyperbolic coordinate system has been con­
sidered already by Lobachevskil, and the corre­
sponding coordinates are called Lobachevskian 
coordinates (the coordinates a, b and c): 

u 0 = ch a ch b ch c, 
u 2 = ch ash b, 

u 3 = ch a ch b sh c, 
u 1 = sh b; 

th z3 = th c, th z2 = th bjch c, 

(3.6) 

th z1 = th ajch b ch c. (3. 7) 

The homogeneous coordinates u0, u are called 
Weierstrass coordinates. In this system all three 
angles are hyperbolic. 

The Laplace operator is given by the expression 

- i) i) 
~L= ch 2aBa ch2 aBa 

(3 .8) 

5 )1. e., a second-order differential operator on the hyper­
boloid, commuting with the Lorentz transformations. 

*Note that in this article sin-' = 1/sin and ch- 1 b = 1/cosh 
b- Tr. 
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The Hyperbolic System H 

This system differs from the preceding one in 
that one of its angles is spatial: 

u 0 = ch a ch b, u 3 = ch a sh b cos cp, 
u 2 = ch ash b sin cp, u 1 = sha (3.9) 

and the inhomogeneous coordinates have the form 

th z3 = th b cos cp, th z2 = th b sin cp, 
th z1 = th afch b. (3.10) 

In terms of the inhomogeneous coordinates this co­
ordinate system resembles a cylindrical coordinate 
system with the (plane) radial variable tanh b. The 
coordinate plane z 1 = 0 is orthogonal to the z 1 axis 
and the distance a is measured from that plane. 

For the Laplace operator we obtain 

/';.L = ch-2 a /Ja ch2 a -/Ja 

+ ch-2 a (sh-1 b~ sh b ~ +sh-2 b :;2 ). 

The Cylindrical System C 

The system C is very similar to H: 

u0 = ch b ch a, 
u2 = sh bsincp, 

u3 = sh b cos cp, 
u1 = ch b sh a. 

(3.11) 

(3.12) 

The similarity becomes apparent in terms of in­
homogeneous coordinates 

th z3 = th b cos cp, th z2 = th b sin cp, 
th z1 = th a. (3.13) 

We see that the difference consists in the third 
(the axial) coordinate. In the system C the distance 
between planes is measured along the axis of the 
cylinder, so that the coordinate surfaces are equi­
distant planes. 

In the coordinate system the operator 6 L has 
the form 

/';.L = ch-1 bsh-1 b ~ chbshb ~ 

(3.14) 

The "Orispheric" Coordinate System 0 

Finally, we consider the "orispheric" coor­
dinate system: 

u 0 = + [e-a + (r2 + f) ea], u 3 = + [e-a + (r2 - 1) eo], 

u 2 = rea cos cp, u1 = rea sin cp. (3.15) 

In this coordinate system the coordinate surface 
a = constant is an '' orisphere'' in the Lobachevskil 
space. 

In the "orispheric" coordinate system the 
Laplace operator has the following form: 

a2 a ( 1 a a 1 a ) 
/';.L = aa2 + 2 &; + e-2a r 8, r 8, + r'i a<p" • (3.16) 

It is easy to see that the C system can be obtained 
from the 0 system by means of the following co­
ordinate transformation 

rea = sh b, ea I ch b = ch ac, (3 .17) 

where ac denotes the coordinate a in (3.12). 
After carrying out the transformation (3.17), the 
two systems differ only by a permutation of the 
axes. 

Let us now consider the kinematic diagram in 
the coordinate systems that were introduced. Since 
we restrict ourselves to binary reactions, and ac­
cordingly to plane diagrams only, we will not con­
sider the Lobachevskian system. 

In the S system the coordinates will be: the 
angle e (one half of the scattering angle in the 
c.m.s.) and the length of the segment s1, which 
determines the energy of the particle 1 in the 
c.m.s. 

In the H system the point 1 is determined by the 
segment sB', i.e., the velocity of the Breit system 
with respect to the c.m.s., and by the length of the 
segment B'1, which determines the energy of this 
particle in the Breit system. 

In the C system the particle 1 is determined by 
the segment sB, i.e., the velocity of the "recoil" 
Breit system (the system in which the sum of the 
momenta of the particle 1 and the recoil particle 
vanishes). The S, H, and C systems thus reflect 
the symmetries of the s-, t-, and u-channels,· 
respectively. 

In the 0 system, the coordinate a is the distance 
from the "orisphere" with the center in the point 
k(l, 1, 0, O), defined by the equation a = ln (ku). 
A scalar product of the type ku is often used as an 
independent variable in problems of quantum elec­
trodynamics. Two other variables u2 and u 1 deter­
mine together with a, an invariant rectangular 
three-dimensional cartesian system in Lobachev­
skil space. 

4. THE EIGENFUNCTIONS 

In this section we obtain the eigenfunctions of 
the Laplace operator on the hyperboloid in the five 
systems S, L, H, C and 0. We use the usual method 
of separation of the variables. It is known (cf. [ 11 • 12~ 
that the eigenvalues of the n-dimensional Laplace 
operator are -l (l + n - 2). For n = 4 the eigen­
values is - l (l + 2). When one goes over from the 
sphere to the hyperboloid, l is no longer an integer 
but can take on any complex value. Since in this 
case the sign of /::,. is negative [cf. Eq. (3.4)] the 
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eigenvalue equation will have the form 

11Lf = o (a + 2) f. (4.1) 

In order that a (a + 2) be real it is necessary that 
either 

a= - 1 + ip (p- real), (4.2) 

( J2 1 d m 2 ) ( 1 ) 
db2 + cthbdb- ch2b B (b)=- q2 + 4 B (b). (4.9) 

The solutions of these equations can be put in the 
form 

(4.10) 

or 

a- real. 

B (b) = (ch br'1'P=~~~+im (th b), 

(4.3) and the eigenfunctions are 

(4.11) 

It is known from the theory of group represen­
tations that these values correspond to unitary 
representations of the Lorentz group. Here Eq. 
(4.2) corresponds to the fundamental series of 
representations and (4.3) corresponds to the 
secondary series (cf. [ 13]). 

It is convenient to carry out the substitution 
a = 1 + ip, after which real values of p corre­
spond to unitary representations (of the funda­
mental series) of the Lorentz group. In this case 
the eigenvalue is a(a + 2) = - (p 2 + 1) and we 
can write (4.1) in the form 

(4.4) 

The following calculations are aimed at finding 
the other quantum numbers. We note that in the 
case of a two-dimensional hyperboloid the eigen­
values are a (a + 1); the reality condition yields 
a = 1/2 + iq (with q real), and the eigenvalue is 
a(a + 1) =- (q2 + 1/4). 

We start with the S system. Separating the co­
ordinates e and cp by means of an ordinary spher­
ical function (the factor Pzm (8, cp) eimcp, m = 0, 

± L .... ) , we obtain the equation 

rl 1 d , 2 d l (l + 1}l ( 2 ( - 1 .-, -1 sh a d- - - 11, · A (a) = - p + 1) A (a). 4. 5) s _1- a c rz .a s a J 

It is easy to check that the solution of this equation 
has the form 

A (a) = (sh ar'/, rj},:'f~ (ch a). (4.6) 

Thus the (unnormalized) eigenfunctions in the S 
system are 

(p, l, m i a, 8, <p) = (sh af'1'P_}),:'{~ (ch a)P1m (B,<p) eim"'. 
(4. 7) 

The expansion with respect to the coordinate a is 
a generalization of the well-known Moller-Fock 
expansion L14]. 

In the Lobachevskil system we can eliminate the 
coordinate c by means of the function eimc (with 
m real; this is a Fourier expansion). Then we ob­
tain for the determination of the eigenfunctions in 
the L system the two equations 

( d2 + 2 d q2 + 'I•) 2 (4 ) 
d2 -111 d- - - 1 2- A (a) = - (p + 1) A (a), .8 \ a c a a CJ a 

<p, q, mla, b, c) 

= (ch a V ch bt1P=!i,+iq (th a) P=!1;+im (th b) eimc. (4.12) 

In the next system, H, the operator which is 
included in brackets in Eq. (3.11) has the eigen­
value - (q2 + 1/4) and the eigenfunctions 

P~'Ji,+iq (ch b) eim"', (4.13) 

where m is an integer. Replacing the bracket by 
the eigenvalue, we obtain the equation 

(!!!_ + _2_. .'!_ - q' + If•) A (a) - - ( 2 + 1) A (a) 
Ja2 cth ada ch2 a - P · 

(4.14) 
The solutions of this equation are the functions 

A (a) = (ch at1 P~;,+iq (th a). 

We thus obtain for the H system: 

(p, q, m I a, b, <p) 

(4.15) 

(4.16) 

In the "orispheric" coordinate system we 
separate the variables r and cp by means of the 
Bessel function Jm ( Kr) eimcp. Equation (3.18) re­
duces to the form 

Its solution will be a Macdonald function (Bessel 
function of imaginary index and imaginary argu­
ment): 

B (b) = xb K;" (xb). (4.18) 

Thus in the 0 system the eigenfunctions will be 

(v, x, m I b, r, <p) = xb K;, (xb) lm (xr) eim"'. (4.19) 

Finally, we consider the cylindrical system. Separ­
ating the variables cp and a in the operator (3.14) 
by means of the functions esincp and eiTa, we ob­
tain the equation 
d2B dB 
dJJ2 + (th b + cth b) db 

(4.20) 

The solution of Eq. (4.20) is a product of a hyper­
bolic and a hypergeometric function: 
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"'+ 1- ip- ;,; + 1· 2 ,m , 

and the eigenfunctions in the C system are 
shmb 

(p T m I b a (jl) = ei ('ra+mcp) . 
' ' ' ' chm+l-tPb 

(4.21) 

F ( IlL+ 1- ip + iT 
X 2 ' 

m + 1- ip- il: ) --'-----2"'---- , m + 1; th2 b • 

( 4.22) 

This concludes the construction of sets of ortho­
gonal functions in the five coordinate systems. It 
can be shown that the four systems S, H, 0, and C 
exhaust all coordinate systems possessing axial 
symmetry and constructed out of spheres, 
"orispheres," and hyperboloids. (The L system 
does not possess this property and has been treated 
here only because it is very similar to the other 
ones; the remaining coordinate systems also in­
clude ellipsoidal coordinate surfaces.) It will be 
shown below that the restriction to orthogonal sys­
tems is not mandatory, and that one can carry out 
expansions also with respect to non-unitary repre­
sentations (where the quantum number p is an 
arbitrary complex number). 

5. THE "ORISPHERE" METHOD AND EXPAN­
SIONS ON THE CONE 

We have constructed various eigenfunction sys­
tems for the Laplace operator on the double­
sheeted hyperboloid. We must now normalize these 
functions, or what is equivalent, we must find in­
version formulas for the expansions with respect 
to these functions. The derivation of all these in­
version formulas is based on the method of "ori­
spheres,'' developed by Gel'fand and Graev. 

In order to explain this method, we consider 
the classical Fourier transform in n-dimensional 
space: 

(5.1) 

where (only in this and the following equation) 

The expression (5.1) can be reduced to integra­
tions over planes: 

Cf> (k, p) = ~ f (x) o (kx- p) dnx (5.2) 

followed by the one-dimensional Fourier trans­
formation 

F (k) = ~ cp (k, p) eiPk dp. (5.3) 

The integral transformation (5.2) (the integra-

tion over planes) is called a Radon transform. 
Gel'fand and Graev[ 3] have shown that invariant 

expansions of functions on any homogeneous mani­
fold can be decomposed similarly. In this case the 
role of the planes is taken by the so-called "ori­
spheres". For the upper sheet of the double­
sheeted hyperboloid u2 = l, u2 = u5 - u~ - ... 
- u~ the "orispheres" are the sections of the 
hyperboloid by planes of equation uk = 1, where 
k is a point on the cone k2 = 0 (these planes are 
parallel to the generators of the cone). 

With each function f(u) defined on the hyper­
boloid we associate a function on the cone 

~ dnu 
h (k) = f (u) b (uk - 1)- , 

uo 
(5 .4) 

(5.5) 

where dnu/u 0 is the invariant measure on the hy­
perboloid. The mapping off (u) on h (k) will be 
called the Gel'fand-Graev integral transform. 

For n = 2m + 1 the inversion of this transforma­
tion has the form 

f (u) = (-t)<n-1)/2 \' t><n-1) (uk - 1) h (k) 
2 (21t)n-1 ,l 

and for n = 2m it has the form Sl 

Here 
dnk dkt ... dkn 

To- ko 

is the ilwariant measure on the cone. 

(5.6) 

(5.7) 

(5.8) 

It is convenient to consider functions on the cone 
because the concept of homogeneous function is 
meaningful on the cone. The expansion of a func­
tion in homogeneous components <I> (k, a) has the 
form n 

&+ioo 

h (k) = 2~i ~ <!> (k,o)da, (5.9) 
S-ioo 

(5.10) 

It follows from Eqs. (5.4) and (5.10) that 

~ dnu 
<!> (k, a) = f (u) (uk)"- . 

uo 
(5.11) 

6 )Here the divergent integral has to be understood in the 
sense of its regularized value, obtained by means of analytic 
continuation in the power exponent. 

7 )The value of o is chosen so that all poles of the function 
<I>(k, a) be situated outside the strip 0 .:S Re a .:S 8. 
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From Eqs. (5.6), (5.7) and (5.9) it follows that, for 
n =2m+ 1 

&+ioo 

I (u) = (-1)(n-1)/2 \' r (cr + n -1) (' ID (k,rs) (ukra-n+1 dn-1 kdrs 
2i (2n)" ~ r (cr) .\ 

and for n =2m 

(-1t/2-1 
I (u) = --2i (2n)n 

8-ioo r 

5+ioo 
(' r (cr + n -1) 
~ r (cr) 

5-ioo 

X ctg :n:cr ~ ID (k, cr) (ukfa-n+I d"-1 kda. 
r 

(5 .12) 

(5.13) 

The integration contour r is an arbitrary path on 
the cone, which intersects all the generators of the 
cone, and dn-tk is the measure on this cone, de­
fined by the equality d (tk) = tn-3 dt dk. For 
u = - (n - 1)/2 + ip, where p is real, the inte­
gral transformation (5.11) and (5.12) is unitary. 

On the double-sheeted hyperboloid the equa­
tions so obtained Bl are the analogs of the Fourier 
expansion of functions defined in n-dimensional 
euclidean space. The analogy becomes even more 
obvious if one notes that uk = e1 (u, k), where l (u, k) 
is the distance from the point u to the orisphere 
uk = 1. 

The further expansion of the function is now 
carried out on the contour r. To different choices 
of this contour will correspond different expan­
sions. We restrict ourselves to the physically in­
teresting case of n = 3. In this case the following 
choices of the contour are of interest: 

a) r is the intersection of the cone by the plane 
k0 = l, i.e. the sphere ki + k~ + k~ = L k 0 = 1; 

b) r is the section of the cone by the planes 
k3 = 1 and k3 = - 1, i.e., the upper sheets of hy­
perboloids; 

c) r is the section of the cone by the plane 
k0 + k3 = 2 (a paraboloid); 

d) r is the section of the cone by the cylinder 
k5 - k~ = 1. 

These types of sections correspond to the differ­
ent coordinate systems S, H, 0 and C considered 
above. Case a) corresponds to the S system, case 
b) to the H system, case c) to the 0 system, and 
case d) to the C system. 

6. DERIVATION OF THE INVERSION FORMULAS 

We now derive the inversion formulas belonging 
to the eigenfunction systems of the Laplace opera­
tor which were derived in Sec. 4. 

8)For n = 3 these equations (5.11) and (5.12) have been 
obtained before Gel'fand and Graev by I. Shapiro[']. 

The Inversion Formula in the S System 

We start from the case when the section r is 
the sphere k0 = 1. In this case the function <I>(k, a) 

is defined on the sphere and therefore can be ex­
panded in a series of spherical harmonics 

ID (k, rs) = ~ azm (o) Yzm (k), 
l,m 

(6.1) 

where k is a point onthe sphere. We substitute 
the expansion (6.1) in Eq. (5.12). It follows that 

&+ioo 

f (u) = 2(~n)• 2J ~ cr (cr + 1) alm (o) 
l, m 8-ioo 

X\ (ukrHY1m(k)d2kda, 
r 

(6.2) 

where d 2k is the usual euclidean measure on the 
sphere r. 

We have to compute the integral 

I = ~ (ukr"- 2 Ylm (k) d2k. 
r 

(6.3) 

Let u = (u0 , u'), where u0 = cosh a. We choose 
the polar axis along u' and go over to spherical 
coordinates; after simple calculations we obtain 

I= (-1)1(2n)'/,r(-cr-,1) p=~l~'!,>(cha)Y. (6 ).(6.4) 
f(-r:;-1-1)(sha)l' '' lm ,cp 

Substituting the value of I in Eq. (6.2), we obtain 
8+ico 2J (-1)1+1 r· r (1- r:;) alm (u) 

f (u) = 2i (2n)'/, ~ r (- cr- l-1) (sh a)';, 
l,rn 8-ko 

(6.5) 

We now compute the coefficients azm· From Eqs. 
(6.1) it follows that 

a1m = ~ ID (k, cr) Yim (k) d2k. (6.6) 
r 

Substituting in this equation the expression (5 .11) 
for <I>(k, a), we obtain 

azm (a)= ~ f (u) ~ (uk)" Yim (k) d2k d:~ . (6. 7) 
r 

Repeating the calculation of the integral (6.4), we 
find 

( ) _ (-1)1 (2n)';, r (cr + 1) (' 1. ( ) ( h )-'/,p- (/+'/,) 
a1m a - zr (cr _ 1 + i) ~ u s a a+'!, 

X (ch a) Yim (fl, cp) d•u • 
uo 

(6.8) 

In terms of the coordinates a, e, and cp we have 

u~Id3u = sh2a <;in fJ da d6 dcp. (6.9) 

Eqs. (6.5) and (6.8) give the expansion of the func-
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tion f ( u) in terms of the eigenfunctions of the 
Laplace operator. 

The derived results become simpler if a = - 1 
+ ip, i.e., if we consider only the unitary case. In 
this case they become 

I ( ) = -v (-1)1 f r (ipJ aim <Pl 
u LJ (2n)'/, .\ r (ip- I) (sh a)';, 

l,m 0 

X P=lJ,:'{~ (ch a) Ycm (e, cp) p2 dp, (6.10) 

X W~-1 (b, cp) {a;;, (T, a) P=~=~ (- th a) 

+a:;;. (T, a) P=~=~ (th a)} dT dcr. 

The computation of a;n and a~ yields 

a± (T a) = r (-r) r (-cr--r-1) r (-r-cr) 
m ' r(-r-m+1)r(-cr) 

d3u = sh2 a sh b da db dcp. 

(6.15) 

(6.16) 

( ) = (-1)1 (2n)'/, r (- ip) 1 I ( ) ( h )-';, 
aim p 2[(-ip-l) .l u s a 

P- (l+'j,) ( h· ) y• ( } d"u X -'J,+ip c . a tm e, cp. - . 
Uo 

As noted in Sec. 5, the unitary case corresponds 
to the values a = - 1 + ip, T = - 1/2 + iq. For 

(6.11) these values, (6.15) and (6.16) take the form 

The Lobachevskian system is inconvenient for 
the investigation of two-particle scattering, since 
it does not possess an azimuthal angle. Therefore 
we will not derive inversion formulas for this sys­
tern. 

The Expansion in the H System 

The expansion in the H system is carried out in 
a completely analogous manner. We select as con­
tour r the section of the cone by planes u3 = ± 1. 
This section decomposes into the upper sheets of 
two two-dimensional hyperboloids r + and r_. 
We denote by <I>+ (k, a) and <I>_ (k, a) the values of 
<I>(k, a) on these hyperboloids and apply to the func­
tions <I>+ (k, a) and <I>_ (k, a) the expansion on the 
two-dimensional hyperboloid (cf. Appendix). Sub­
stituting the result in Eq. (5.12) we find 

co S+ioo E+ioo 
1 1 -v (' \ r (1 - -r) 

I (u) = - 8 (2n)• LJ .l a (a + 1) .\ r (m _ T) T ctg nT 
m=-oo S-ioo e-ioo 

X am (T, a) ~ (ukr"-2 W:'T-1 (k) d2kd't' da, (6 .12) 
(r++r-> 

This time we have to compute the integrals 

I± = ~ (ukr"-2 W:',_l (k) d2k. (6.13) 
r± 

These are done in analogy to the integral (6.4) and 
yield the result 

I _ r(cr+-r+2)r(cr~-r+1) 
±- r (cr + 2) (6.14) 

x(ch at1P=~=~ (~ th a) g):',_1 (b,cp). 

Therefore 
1 

I (u) =- 8(2n)4 cha 

S+ioo S+ioo 

X~ ~ 
m &-ioo 

(' r(cr+-r+2)r(1--r)r(cr--r+1) t 
.\ [ (cr) [ (m- T) T C g 1t't' 

e-ioo 

I ( ) = _..!:__ ( ch a )-1 

u 2 (2n)4 

co co 

x ~ (' p2 (' r (lf•+ ip+ iq) r (If•+ ip- ig)[(1f2- iq) qcth nq 
.l .\ r (1 + ip) r (m + 1/, iq) 

m o o 

X w:~;,+iq (b, cp) { a:;,P=!f,+iq (- th a) 

+ a:;;.P=!f.+iq (th a)} dp dq, (6 .17) 

a± (p, q) = _r_(,__-_1.:..::12_+~ig_,)7r_,_(l;-:-/•-,--____,_ip_-""ig,..,_),r___,(--'c1/2=--~ip'-----.:.+_i_.:._g,__) 
m r (1(2 + ig- m) r (1 - ip) 

(6.18) 

The Expansion in the 0 System 

In the "orispheric" coordinate system the 
calculations are performed in the same way as 
above. We select as contour r the section of the 
cone by the plane k0 - k3 = 2 and parametrize 
this section as follows: 

k0 = 1 + p2 , k2 = 2p cos a, k3 = - 1 + p2 , 

k1 = 2p sin a. 

we assume 
21t co 

<1> (k,a) =~~'I' (x,e, a) eixpcos(O-oc>x dx de. (6.19) 
0 0 

(Hankel transform) and substitute into Eq. (5.12). 
After simple transformations we obtain 

&+ico 

I (u) = - -.-1- I a (o + 1) e-a (o+2) 
2z (2n)" .\ 

S-ioo 

21t 00 

X ~ ~ 'I' (x, 8 , a) eixr cos (6-'>') 
0 0 

21t 00 

x ~ ~ ei><P cos <O-oc) (e-2a + p2r"-2 xp dp dx dade da. 

0 0 (6.20) 

Further, we have 
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271: co 21t 00 

X ~ ~ (ch b ch e- sh b cos af0- 2ei (mra-rc) de dado d·r. 

0 0 (6.27) 
I = ~ ~ eixp cos (O-a) (e-z" + Pzro-2 pdp da 

0 () 

(6.21) We have to compute the integral 

where K is a Macdonald cylinder function. There­
fore (with e-a = b), we find 

&+ioo 

b \' 1 
f (u) = - i (2n)2 .\ r (::;) 

0-ioo 

X 
2~ r1¥ (x, e, a) (ft 2 eixpcos(O-'P)/(_o_r(bx) dxde da. 

0 0 (6.22) 

The coefficients 1/J (K, e, u) are computed ac­
cording to the Fourier formula: 

'¥ (x e a) = _ 1_ \ <D (k a) e-ixp cos (0-a) d2k 
' ' (2n)2 j ' ' 

where d 2k = 4p dp dQI. Substituting (5.11) into this 
expression we obtain 

2 ( 2 )o+l 
'¥ (x, e, a)= nr(-cr) x 

X ~ f (u) e-ixr cos (O-'l') Ko+t (bx) b-2 d3u, (6. 23) 

d3u = r dr dcp db. 

In the .unitary case a = - 1 + ip. 

The Expansion in the Cylindrical Coordinate C 
System 

Let us finally consider the cylindrical coordin­
ate system. It corresponds to a section of the cone 
by the cylinder k5 - k~ = 1. We chose on r the 
parameters c and Ql: 

k 0 = ch e, k 3 =cos a, 

k1 =she, k 2 =sin a. (6.24) 

We perform a Fourier transformation of the func­
tion <I>(k, u) with respect to the parameters c and 
Ql: 

<D (k, a) = :2,; ~am (T, a) ei (maHc)dr. 

rn 

(6.25) 

Substituting this expansion in Eq. (5.12) and assum­
ing 

u 0 = ch b ch a, 

u3 = sh b cos cp, 

we obtain 

1 
.f(u) =- 2i (2n)s 

co +co B+ico 

U 1 = ch b sh a, 

u 2 = sh b sin cp, 

X~ ~ ei(mopHa) ~ a(a+ 1)am(T, a) 
m=-oo -oo S-ioo 

(6.26) 

I= ~ ~ (ch b ch e- sh b cos aro-Z ei (maHc) de do. (6.28) 
0 0 

Taking out the factor cosh b cosh c in front of the 
bracket and expanding (1 -tanh b COS QI/Cosh cr<T-2 

by means of Newton's binomial formula, we obtain 
after term-by-term integration 

I = 2o+2n r (A) r (B) F (A B + 1· th2b) shmb 
f(m+1)I'(cr+2) ' 'm ' chnt+o+2[;• 

A= m+cr+ iT: 
2 ' 

B __ m +:;- lT 
- 2 (6.29) 

Therefore 

1 th'"aeim'!' +;x> . 
f(u) =- 16n2 i ~ f(m +1) ~ e'm 

m -co 

8-f:ico a (-r cr) o+2 
\ m ' r (A') I' (B) (-2 ) 

X J r (a) ch a 
S-ioo 

X F (A, B, m + 1; th2 b) dadr. (6.30) 

The coefficients am (7, u) have the expression 
co +co 

a (T o) - _i_(' (' <D (k a) e•-i (m<t+•n' d2k 
m ' .- 4Jt2 .) .) ' 

o -co 

d2k = dcpda. (6.31) 

We substitute for <I> (k, u) the expression (5.11). 
After simple manipulations we find 

I' (A') 1' (B') " m ( 2 -o 

am (T, a) = 4nr(m+1JI'(-cr)~ th a ch a) 

where 

i' _ m-::; 1- iT 
.f - 2 ' 

B' ~ m-::;- iT 
2 

(6.32) 

The unitary case corresponds to u 1 + icp. 
These formulas exhaust the problem of expanding 
the scattering amplitude in the four coordinate 
systems we have described. 

APPENDIX 

For the expansion in the H system we have made 
use of expansions of functions on a two-dimensional 
hyperboloid. Introducing the coordinates 

u 0 = ch b, u 2 = sh b cos cp, u1 = sh b sincp, 
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we have 

00 e+ioo 

f ( ) 1 " 1· r (1 - cr) 
u =- 8Jti .2J J am (a) r (m- cr) 

m=~oo 8-ioo 

am (a) = r (cr-=: ~~)+ 1) ~ f (u) w~m (b, qJ) d2u, 

d2u = sh b db dqJ. 
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