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It is shown that in Newtonian theory the gravitational field can be described by means of a 
three-dimensional metrical form. This permits us to compare directly the relativistic 
gravitational theory with the Newtonian theory. A limiting process is described in which 
the gravitational fields of the general theory of relativity go over into the corresponding 
gravitational fields of the Newtonian theory. A calculation is made of the Newtonian rep­
resentation of a gravitational field with a metric describing a space of the second type of 
maximum mobility (according to the classification of A. Z. Petrov ). It is shown that by 
means of the limiting process referred to earlier a correspondence can be set up between 
quantities in the general theory of relativity and similar quantities in Newtonian gravita­
tional theory. 

1. G-SYSTEMS IN NEWTONIAN MECHANICS 

WE consider a gravitational field described by a 
potential <I> which is produced by masses of density 
p. Let xi be rectangular cartesian coordinates in 
an inertial reference system, and ~i coordinates 
related to the coordinates xi by the transforma­
tion t> 

xi= xi (t, £,"), (1.1) 

where t is Newtonian time. We shall refer to the 
coordinate system ~i as a G-system if it satisfies 
the following requirements: 

1) the points ~i = const move as freely falling 
particles, i.e., 2> 

xi ,oo = <D,; (t, xk); (1.2) 

2) the velocity field xi ,0 = Vi (t, xk) is irrota­
tional, i.e., there exists a function q; (t, xi) such 
that 

v; = <Jl.i (t, xk). (1.3) 

Moreover, one can assume without loss of gen­
erality that 

(1.4) 

l)Greek indices take on the values 0, 1, 2, 3, while Latin 
indices take on the values 1, 2, 3. 

2)A comma in front of a subscript denotes ordinary differ­
entiation, with the subscript zero indicating diffe.rentiation 
with respect to time. Thus, for example, xi,oo = a2xi;ae, 
~.i = a~!axi, xi,k = axi;a~k etc. Covariant differentiation is 
denoted by a semi-colon. 

G-systems always exist. They can be deter­
mined in the following manner. According to con­
dition 1) the functions xi(t, ~k) from the transfor­
mation (1.1) must satisfy the differential equations 
(1.2). Let the general solution of the system (1.2) 
be of the form 

(1. 5) 

For the arbitrary constants we shall take the initial 
values 

(1. 6) 

The relation 

x' ,ok x• ,i- x• ,oi x• ,k = 0 (1. 7) 

is an integral of the system (1.2). Indeed, assuming 
(1.2) we have 

( x• , ok x• , i - x• , 0; x• , k), 0 = X 8 , oolr x• , i - x• , ooi x• , k 

= <D, srXr, k X 8 , i - <D, srXr, i X 8 , k = 0. 

Consequently, if condition (1. 7) is satisfied at the 
instant t = 0, then it will also be satisfied at any 
arbitrary time L But Eq. (1. 7) is the condition that 
the velocity field xi,o =vi should be irrotational, 
since (1. 7) can be rewritten in the form vi k - Yk i 
= 0 where v · = v xs · = xs ,xs · are the c~mpon~nts 

' 1 s '1 '~r- '1 ' 
of the velocity Vi in the coordinate system e. 
From this it follows that it is sufficient to satisfy 
condition 2) only at the initial moment t = 0 by 
choosing the initial conditions (1. 6) taking (1.3) 
into account: 

ki =<pi (0, £,'') = u,; (£,k), (1. 8) 
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where we have introduced the notation u ( ~i) 
= cp ( 0, ~i). By introducing expressions (1. 8) into 
the right-hand side of (1.5) we obtain the transfor­
mation 

i i k 
X = F (t, ~ , u. j), (1.9) 

which satisfies conditions 1) and 2), and which, 
consequently, defines the G-system ~i. The func­
tion u ( ~ i) can, evidently, be chosen in an arbitrary 
manner. The set of G-systems is equivalent to the 
set of differentiable functions u ( ~ i ) of the three 
spatial coordinates ~i_ 

Let the expression for a line element in a G­
system be of the form 

Then we have 

rik = x•. i x•, k• 

• k J;.ik yrsx', rX ,s = u • 

(1.1 0) 

(1.11) 

(1.12) 

We shall show that the coefficients Yik satisfy 
the system of equations 

R 00 = - 4nGp, 

where 

Roijk = 0, (1.13) 

(1.14) 

Roiik = ar;k!a~i - ar;Jo£" + rfkri• - r~ir"., (1.15) 

pik = 02 In Yr!o'f,iar," - ank;ar,• + rtrr~k - r~kr~r· 
(1.16) 

Here rt are Christoffel symbols constructed 
from y·k r·k = 11 y·k rk = yksr. y = det {y·k)· l • l /2 l ,0• i IS• l • 

G is the gravitational constant. Since (1.10) is the 
metric form for a Euclidean space, while (1.16) is 
the Ricci tensor for this space, then evidently 
pik = 0. 

We now proceed to evaluate expression (1.14). 
Differentiating with respect to ~k the equation 

(1.17) 

which follows from (1.3), and having in mind that 
Bcp ,da~k = <P ,is x~k we obtain 

(1.18) 

Taking into account this expression we shall obtain 
from (1.11) 

ril, = <p. rs xr. i x•. k (1.19) 

and further 

rii. k = x• . ij x• . k• (1.20) 

But if we differentiate expression (1.17) with re­
spect to t, then in virtue of (1. 2) we shall obtain 

<D, i = <p' io + <p' is<p, s' 

from which it follows that 

(1.21) 

(1.22) 

We now have in accordance with (1.12) and (1.19) 

r~r: = <p cp , rs , rs (1.23) 

and a ln -IY!at = r~ = <P,ss• from which it follows, 
on taking (1. 22) into account, that 

o2 In Vr!ot2 = ll<D - cp cp • , rs , rs 

Adding (1.23) and (1.24) we obtain 

Roo = ll<D. 

(1. 24) 

(1.25) 

From this it can be seen that the first equation of 
(1.13) is the Poisson equation for the potential <I>. 

Finally, simple calculations show that on the 
basis of (1.12), (1.19) and (1.20) Roijk is equal to 
zero, so that the second equation of (1.13) will also 
be satisfied. 

We now prove the converse: if the coefficients 
Yik satisfy the system (1.13), then (1.10) is a 
metric form written in the G-system, with the 
gravitational field being determined by masses 
of density p. 

In order to prove this we consider the system 

(1.26) 

The integrability conditions for this system have 
the form 

arf/o'foh - arfJar,i + riir~h - r~hr~i = o, 

ar~/ot - ar~;ar,i + rfir~ - r~r~i = o. 

(1.27) 

(1.2 8) 

The left-hand side of (1.27) contains the Riemann­
Christoffel tensor composed of Yik· It is equal to 
zero in virtue of the third equation of the system 
(1.13), since in the case of a three -dimensional 
space the vanishing of the Ricci tensor results 
also in the vanishing of the curvature tensor. The 
left-hand side of (1.28) contains the expression 
yksRojis• which vanishes as a result of the second 
equation of the system (1.13). Thus, the integrabil­
ity conditions for the system (1.26) are satisfied. 

The relation 

(1.29) 

is an integral of the system (1.26). Indeed, it can 
be easily shown that in virtue of (1.26) and of the 
formulas 

(1.30) 

we have 
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Consequently, we can determine nine functions 
A.f(t, ~j) which satisfy the system (1.26) and also 
the relation (1.29). For this it is sufficient to 
choose the initial values (A.\( )0 at some fixed point 

. 1 
( ~ 1 ) 0 at the instant t 0 in agreement with condition 
(1.29). We note that the functions A.f are defined up 
to an arbitrary orthogonal transformation with con­
stant coefficients. 

As can be seen from (1.26), the functions A.f 
also satisfy the condition A.f,j -A. f,i = 0 which is 
the integrability condition for the equations 

x". i = !.'[. (1.31) 

Therefore, the system (1.31) has solutions xi(t, ~k) 
which are defined up to arbitrary additive functions 
fi ( t ). 

We now consider the transformation of coordi­
nates 

i i k 
X = X (t, S ). (1.32) 

It follows from (1.29) that 

(1.33) 

Consequently, we have 

ds'2 = Yrsd£rd£ 8 = A?A~d£"d"£8 = dxpdxp, 

from which it can be seen that xi are orthogonal 
cartesian coordinates. Moreover, it can be easily 
shown that on the basis of (1.26) and (1.33) the 
functions (1.32) satisfy the relation (1.7), i.e., the 
condition that the motion of the points ~i = const 
should be irrotational with respect to the axes of 
the cartesian coordinates xi. 

Differentiation of (1. 7) yields 

x• . ook x• . i - x• . ooi x• , k = 0. (1.34) 

Assuming that 

xi, no = <Di (t, x") (1.35) 

and noting that 

xi. oc·li = o<D;fa£" = <lli.s :18 ''" 

we can write (1.34) in the form 

(<Ds, r - <Dr, s) :18 ,; xr, k = 0, 

from which it follows that 

<Di," - <Dk, i = 0. 

Consequently, there exists a function <I> ( t, xi) such 
that <Pi = <I> ,i. As a result of this (1.35) t~ansforms 
into equation (1.2). Since the functions x1 (t, ~k) 
are defined up to arbitrary additive functions ·{i(t ), 
then the quantities <Pi, are in accordance with 

(1.35) determined up to arbitrary additive func­
tions "{i ( t ) , and the function <I> is consequently 
determined up to an additive term of the form 
"{ s xs + f ( t ) . This ambiguity can be removed with 
the aid of limiting conditions, for example by re­
quiring that <I> = 0 at infinity. 

Finally, by repeating the calculations carried 
out above it can be shown that Eq. (1.25) holds. 
From this it follows in virtue of the first equation 
of the system (1.13) that <I> satisfies the Poisson 
equation 

11<D = - 4rtCp. (1.36) 

Thus <I> is the potential of the gravitational field 
prod~ced by masses of density p, the points ~i 
= const move in accordance with (1.2) as freely 
falling particles, and their motion is irrotational. 
The converse theorem stated above is, therefore, 
proved. 

We see that to each gravitational field there 
corresponds a metric form of the form (1.10), 
(1.13) and, conversely, to each such metric form 
there corresponds a gravitational field produced 
by material bodies of density p. This means that 
in Newtonian theory the gravitational field can be 
described by means of the metric form (1.10), the 
coefficients of which satisfy the system of equa­
tions (1.13). The latter equations can be regarded 
as the fundamental equations of the Newtonian 
theory of the gravitational field. 

2. G-SYSTEMS IN THE GENERAL THEORY OF 
RELATIVITY 

In the general theory of relativity a coordinate 
system is said to be semigeodesic if in these co­
ordinates the four -dimensional metric form is of 
the form 

(2.1) 

Here the time -like coordinate lines are geodesic, 
i.e., they are world lines of freely falling particles, 
while space-like coordinate hypersurfaces inter­
sect the congruence of the parametric lines of t 
orthogonally. ·We shall say that a semigeodesic 
coordinate system is a G-system if as c-oo the 
coefficients Yik and their derivatives have finite 
limiting values. 

The coefficients Yik satisfy the equations of the 
gravitational field 

R,>., ,~ - x (r:,,- + g1,J), (2.2) 

x = S::tC/c~, (2.3) 
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Here R00 is given by formula (1.14), 

where Roijk is defined by formula (1.15), 

(2. 5) 

(2. 6) 

(2. 7) 

Pik is the Ricci tensor composed of Yik· T JJY is 
the mass tensor, 

(2. 8) 

The mass tensor and the coefficients (2 .4) can 
be written in the following general form [i]: 

3 

T -- v F + 1 "' . vs I TTS I J'V-Pot..LJI\1 c'l.-L..JP 8 p.v v, 

s.=l 

T','To- V 81 ivs' 0 = 0, 

(2.9) 

(2.1 0) 

(2.11) 

(2.12) 

where Po is the invariant material density, Pi are 
the proper partial pressures, VJ.J. is the four­
velocity of matter; 

(2.13) 

(2.14) 

Wi is the velocity of matter in the three-dimen­
sional space of the coordinates ~ i, vi I JJ. are three 
mutually orthogonal space-like unit vectors per­
pendicular to the unit vector V w 

3. TRANSITION TO THE NEWTONIAN LIMIT 

The world-line of an arbitrary material point 
(including photons) satisfies the condition ds 2 :::: 0 
or, in accordance with (2.1), the condition v2 ::s c 2, 

where v is the value of the three -dimensional ve­
locity of the particle. Consequently, in a G-system 
the constant c has the meaning of an upper limit 
on the velocities of material objects. 

We assume that the constant c increases with­
out limit, i.e., following the example of Newtonian 
mechanics, we assume the possibility in principle 
of arbitrarily large velocities of material objects. 
Further, we shall assume that as c - oo all the 
ratios of the form v/c, where v is the velocity of 
some material particle, tend to zero. If the limit­
ing value of the constant c is taken to be infinite 
the last assumption does not impose any limitation 
on the magnitude of the velocities of material bod­
ies; even infinite velocities are not excluded. 

Under the assumptions made above we have the 

following limiting values. From (2.13) and (2.14) 
it follows that 3> 

a--. 1, (3.1) 

Taking into account that in accordance with (2.10) 
and (2.13) we have vsf 0 vsf 0 = w2/a2, we obtain 
then 

(3.2) 

and from this we conclude that 

(3.3) 

From (2.12) it follows in virtue of (3.1) that 

jili --> V'',Vs'k· (3 .4) 

Now, having in mind (3.1) and (3.3) we obtain 

xT 00 --> 8nGp0 , (3. 5) 

Tio __. - PoU ,, (3. 6) 

where we have introduced the notation 
3 

Pik = ~ p8VsliV•l,, (3. 8) 
S=l 

and further 

(3. 9) 

The expression Qik contains only the coeffi­
cients Yik and their derivatives which, in accord­
ance with the properties of a G-system, have finite 
limiting values as c - oo . Therefore 

(3 .10) 

We now proceed to investigate the transforma­
tion of coordinates 

t = t (t, £"), (3.11) 

which gives the relation between two G-systems 
( cf., Appendix). We shall refer to the set of G­
systems in which their velocities with respect to 
one another satisfy the requirement lim (vi/c) 

c-oo 
= 0 as a G-family. It can be easily shown that in 
the case of a G-family as c-oo the relativistic 
equations for the relative velocity (A.11) and (A.12) 
go over into the Newtonian equations (A.4) and (A.5). 
This means that as c - oo the relativistic G-family 
goes over into the set of coordinate systems inter­
related by the same transformations as the New-

3>Naturally wi, w2 , V~, p0 , Pi contained in the right-hand 
sides of (3.1), (3.2), (3.4)-(3.8) should be interpreted as the 
limiting values of the corresponding relativistic quantities. 
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tonian G-systems in a certain gravitational field. 
These transformations are obtained from (3.11) 
by means of the transition to the limit c - oo and 
have the form 

t = t, (3.12) 

since on the basis of (A.8) t 0 - 1, t i- 0. In the 
' ' limit c-oo the metric tensor (2.4) can be decom-

posed into an infinite invariant g00 and the three­
dimensional tensor with respect to the transforma­
tions (3.12) 

(3 .13) 

as can be seen from (A.9). 
We now turn to the field equations (2.2) written 

in the G-system. As a result of the transition to 
the limit c - oo they go over, in accordance with 
(3.5), (3.9) and (3.10), into the equations 

R 00 =- 4nGp0 , (3 .14) 

which are satisfied by the limiting values (3.13). 
The first and the third equations of the system 
(3.14) coincide with the first and the third equa­
tions of the system (1.13), while the second equa­
tion (3.14) differs from the second equation of the 
system (1.13). However, if the gravitational field 
has the property that in a G-system 

lim Roijk = 0, (3.15) 
C-+00 

then as c- oo Einstein's equations (2.2) written in 
the G-system go over into the Newtonian equations 
(1.13). The limiting values (3.13) which now satisfy 
the system (1.13) consequently define a certain 
gravitational field with the potential <I> in the sense 
of the Newtonian theory. This field corresponds to 
a distribution of matter of density Po and can be 
regarded as a Newtonian representation of the 
relativistic gravitational field Yik under consid­
eration. 

We shall show that the Newtonian representation 
of the gravitational field Yik does not depend on 
the choice of the G -system within some particular 
G-family and is· therefore defined by means of the 
G-family. Let the system of coordinates t, gi be 
some other G-system from the given G-family and 
let 

""' lim r;k = rik" 
C->00 

Since in the limit c - oo the system of coordinates 
t, ~i goes over into a Newtonian G-system deter­
mined in a gravitational field of potential <I>, and, 
as has been pointed out earlier, in the limit the 
coordinate systems t, ~i and t, gi are related by 

the transformation (3.12) which satisfies condi­
tions (A.4) and (A.5), then in accordance with the 
proof given in the Appendix the coordinate system 
t, gi also goes over into a Newtonian G-system de­
fined in the gravitational field <I>. In the latter G­
system the tensor (3.13) has the components Yik" 
From this it can be seen that the coefficients 
Yik describe the same gravitational field as do 
the coefficients Yik· 

The independence of the Newtonian representa­
tion of the gravitational field Yik on the choice of 
the G-family, i.e., the problem of the uniqueness 
of the Newtonian representation is not discussed 
in this paper. According to physical considera­
tions the uniqueness of the Newtonian representa­
tion is probable. In any case we see that Einstein's 
gravitational theory contains the Newtonian theory 
within itself as a limiting case. 

McVittie[2J, in solving specific problems, re­
peatedly used in his book the limiting transition 
c - oo in order to obtain formulas of the Newto­
nian gravitational theory from the formulas of the 
general theory of relativity derived for a weak 
gravitational field. We did not base our discussion 
on approximate relativistic formulas and on a spe­
cific form of the mass tensor. 

Example 1. In a centrally-symmetric gravita­
tional field produced by a mass m the transfor­
mation 

- / Vr+k [ c-r = ct - 2k V p + k2 In V P _ k • 

P'/, = r% - 3_ kct 
• 2 ' 

(3.16) 

(3 .17) 

relates the Schwarzschild coordinates T, p, e, cp 
to the G-coordinates t, r, e, cp, in terms of which 
the metric form has the form 

(3 .18) 

In this special case the coefficients Yik do not de­
pend on the parameter c. Therefore, the expres­
sion for the three -dimensional Newtonian line ele­
ment corresponding to the form (3.18) has the form 

(3 .19) 

where p is defined, as before, by relation (3.17). 
With the aid of the transformation given by for­
mula (3.17) the metric form (3.19) is transformed 
to the form 

ds2 = dp2 + p2 (d8 2 + sin2 8d<"p2), 

from which it can be seen that p, e, cp are the 
usual polar coordinates in Euclidean space. 

The rectangular cartesian coordinates x, y, z 
are given as functions of t, r, e, cp by the formula 
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X = p sin 8 COS 8, y = p Sin 8 sin cp, Z =p COS 8, 

where p is defined by relation (3 .1 7). The poten­
tial of the gravitational field (3 .19) is evaluated on 
the basis of (1.2) from the equation 

d<l> = x.~0dx + y,00dy + z, 00dz = - Gmp-2dp, 

from which it follows that <I> = Gm/ p. 
Thus, the Schwarzschild solution has for its 

Newtonian representation a gravitational field pro­
duced by a point mass m. We note that the limiting 
transition is valid not only for large values of p, 
where the field is weak, but also arbitrarily close 
to the central body. 

Example 2. Let us consider the gravitational 
field with the metric form 

the coefficients oj which satisfy the Einstein equa­
tions RJ.Lv = 0. This (according to Petrov's clas­
sification) is a gravitational field of the second 
type (space of the second type of maximum mo­
bility) [a]. We go over to a G-system by means 
of the transformation 

't = t + ~Ifc, yl = ~c (ct -~~), y2 = ~2, y3 = ~3, 

so that 

ds2 = c2dt2 - (d~1) 2 - sh2 (t + ~1/c) (d~2 )2 

(3.21) 

It can be shown that the condition (3.15) is satis­
fied. Therefore, there exists a Newtonian repre­
sentation with the metric form 

(3.22) 

The rectangular cartesian coordinates x, y, z are 
related to the coordinates ~i by the transformation 

X= ~1, y = ~2 sh t, z = ~3 sin t, 

satisfying conditions (1.26) and (1.31). Proceeding 
in analogy with the preceding example we obtain 
for the potential of the gravitational field (3. 22) the 
equation 

d<l> = ydy- zdz, 

from which it follows that 

<1> = ~ (y2 _ z2). (3.23) 

At infinity the field (3.23) does not vanish-a prop­
erty which is also possessed by the gravitational 
field (3.21) [3]. 

The gravitational field (3.23) can be produced 
by infinite masses situated at infinity. 

*sh =sinh. 

4. THE PRINCIPLE OF CORRESPONDENCE 

In this section we shall consider the limiting 
transition c -- oo for an unspecified form of the 
gravitational field Yik· With the aid of such a lim­
iting transition which, in fact, is accomplished in 
a semigeodesic coordinate system of a general 
form, a correspondence is established between 
the theories of Newton and of Einstein. The gen­
eral expressions and quantities of the general 
theory of relativity are placed in correspondence 
with certain general expressions and quantities of 
the Newtonian gravitational theory. More exactly: 
if in a semigeodesic coordinate system the rela­
tivistic quantity A has for c -- oo a limiting value 
different from zero or infinity, then this limiting 
value represents a quantity in the Newtonian the­
ory which corresponds to the quantity A. 

This principle of correspondence enables us to 
analyze quantities of the general theory of relativ­
ity with the aid of concepts of Newtonian theory 
and simplifies the determination of the physical 
meaning of certain expressions in the general 
theory of relativity. 

Example 3. In a semigeodesic coordinate sys­
tem the Riemann-Christoffel tensor has the fol­
lowing components: 

(4.1) 

Roijk. defined by formula (1.15), and 

(4.2) 

where Phijk is the three-dimensional Riemann­
Christoffel tensor composed of Yik· If there exists 
a Newtonian limit for the gravitational field Yik• 
then in accordance with (3.15) Roijk-- 0. More­
over, in view of the last equation of the system 
(3.14) Phijk-- 0 and, consequently, in accordance 
with (4.2) Rhijk-- 0. However, the components 
Roiok in general do not tend to zero. Simple calcu­
lations show that in virtue of (1.12), (1.18), (1.19), 
and (1.21), 

We see that the Reimann-Christoffel tensor corre­
sponds in the Newtonian gravitational theory to a 
second rank tensor whose components in a system 
of rectangular cartesian coordinates are equal to 
second derivatives of the potential <I>ik [2,4]. 

Example 4. In the general theory of relativity 
the integrability conditions for Einstein's equations 
(2.2) have the form 

T~ia= 0. (4.3) 

Taking into account the fact that in a semigeodesic 
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coordinate system the four-dimensional Christoffel 
brackets are given by the formulas 

{ 0 \ 
0 ij = 0, 

{ ; } - ri 
0 i - " 

and that on the basis of formulas (3.5)-(3.8) we 
have 

where pf = yks Pis• we can easily show that as 
c- 00 the equations T~;u = 0 and c2T[u = 0 take 
on the form 

a CVr Po)! at+ a (}~"r Pou;•)Ja~· = o, 
Po (ow;/ot + w•wi;s) + PL = 0 

(here a semicolon denotes three-dimensional co­
variant differentiation). These are the hydrody­
namical equations of Newtonian mechanics written 
in a G-system, i.e., the Newtonian equations of 
motion of the sources of the gravitational field. 

APPENDIX 

Let the transformation ~i = ~i(t, 1k) specify 
the relation between two Newtonian G-systems 
defined in the same gravitational field described 
by the potential <1>. Let the transformations xi 
= xi ( t, ~ k) and xi = xi ( t, 1k) relate these G­
systems to the rectangular cartesian coordinates 
xi. Since 

we have 

(A.1) 

The derivative ~io = vi(t, ~k) describes the veloc­
ity field generat~d in the G-system coordinates ~i 
by the motion of the points 1i = const. We shall 
refer to vi as the velocity of the 1-system with 
respect to the ~-system. Taking into account the 
fact that in accordance with (1.3) we have xi 0 = 

cp i (t, xk ), xi 0 = cp i (t, xk ), we can write (A.i) in 
' ' ' the form 

(A.2) 

With the aid of (1.11) and (A.2) we evaluate 

(A.3) 

and from this utilizing formulas (1.18), (1.20), 
(1.21), and (A.2), and having in mind that by as­
sumption cp and cp satisfy equation (1.21) for the 
same <I>, we obtain 

V;,o= (ql,s- (jl,s) (jl,rsXr,i - (cp,s- cp,s) ql,rsXr,;, 

V;,k = (qi,,- (jl,s) X 8 ,ik + (qJ,rs - (jl,rs) xr,;X8 ,k, 

From these equations it follows that 

V;,o+ V8 Vs;i = 0, (A.4) 

(A.5) 

These are necessary conditions for the relative 
velocity between the G-systems. But conditions 
(A.4) and (A.5) are also sufficient, i.e., if the 1-
system moves with respect to the G-system coor­
dinates ~i with a velocity vi satisfying conditions 
(A.4) and (A.5), then the 1-system is a G-system. 
To prove this we have to repeat the calculations 
carried out above with the only difference that in 
place of the equation :xi ,o ~ cp,i. which now has to 
be proved, we assume x:i, 0 = cpi(t, xk) and obtain 

1'; = (qir - (jl,r) xr.;. 

Substituting this expression into equations (A.4) 
and (A.5), we obtain for (j)i the following relations: 

<Pi,k- q;k,i = 0, ~.o + (jls,i(jls = <D,;. 

From the first equation it follows that there exists 
a function cp ( t, xi) such that cpi = cp,i• and from the 
second equation, in virtue of the now already proved 
relationxi, 0 = Cf!,i• the equationxi,oo= <l>,i follows. 
From this it can be seen that the "I -system sa tis­
fies the requirements 1) and 2) of section 1 which 
are characteristic of a G-system. 

We now consider in the general theory of rela­
tivity semigeodesic coordinate systems related to 
one another by the transformations 

~i = ~i (t, ~k), 

t = t (t, ~k). 

(A.6) 

(A. 7) 

Equations (A.6) describe the motion of the points 
~~ = const in the coordinate system t, ~i, while 
(A. 7) introduces a new time coordinate t. We 
shall also in this case refer to the derivative 
~i 0 = vi(t, ~k) as the velocity of the (t, 1i) -system 
wi'th respect to the (t, ~i)-system. From the equa­
tion 

we deduce the following relations: 
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From this it follows that 

(Yrs + VrV./C2!12) Sr,iS8 ,k = Yik• 
here we have introduced the notation 

v2 = v.v•, V; = Yisv•. 

(A.8) 

(A.9) 

(A.10) 

With the aid of (A. 8) we obtain the relations 

(A.ll) 

(A.12) 

which are the necessary conditions for the velocity 
of one semigeodesic coordinate system with re­
spect to the other one. But conditions (A.ll) and 
(A.12) are also sufficient: if the (t, ~)-system 
moves with respect to the semigeodesic coordinate 
system t, ~i with velocity vi satisfying these con­
ditions, then the time coordinate t can be chosen 
in such a way that the (t, ~)-system will be semi­
geodesic. 

Indeed, (A.ll) and (A.12) are the integrability 
conditions for the system (A. 8). Consequently, 
there exists a function t ( t, ~ i ) , satisfying condi­
tions (A. 8). By taking the quantity t for the time 
coordinate we obtain the transformation equation 

(A. 7). For the function (A.6) we have only the equa­
tion ~i.o= vi. But, assuming ~i = fi(t, ~k ), we have 
~i = fi [ t, ~k(t, ~j )], so that 

(A.13) 

Now, in accordance with the transformation law 
for the components of the metrical tensor, we have 
in virtue of (A.8) and (A.13) 

From this it can be seen that the (t, ~ ) -system is 
semigeodesic. 
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