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An equation which yields the velocity field in rotating helium II in the general case is derived 
by a variational method. It is shown that formation of an internal irrotational region with a 
circulation much in excess of the circulation quantum h/m is energetically most favorable 
for an annular channel. 

WE investigate here by a variational method the 
distribution of the velocities of helium II in a ro
tating annular channel formed by two coaxial cyl
inders. The peculiarities of the rotation of helium 
II in such a geometry were first considered by 
Bendt and Oliphant [I]. In an annular channel, the 
Feynman vortices are not uniformly distributed. 
The velocity distribution which is energetically 
more favored is one in which there are no Feyn
man vortices in a region bounded by the inside' 
radius r 1 and some radius . ri, and the superfluid 
liquid rotates in irrotational fashion with some cir
culation r which is much larger than the circula
tion quantum h/m; outside the radius q there is 
formed a uniform system of Feynman vortices, 
which imitates the rotation of a solid 1l. 

We begin the analysis of the problem with a 
derivation of an equation that determines in the 
general case the velocity field in the rotating 
helium. For the case of an annular channel this 
equation gives the velocity distribution picture 
given above. 

As is well known, the energy of the vortex per 
unit length is equal to 
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where Ps is the density of the superfluid compo
nent, K -unit quantum of circulation, a 0-radius of 
the core of the vortex, and b-its effective radius. 
We assume that where there are vortices, they are 
distributed uniformly with density 2w/K. The 
energy and the momentum of the superfluid com
ponent are respectively 

!)Strictly speaking, a vortex-free region is produced also 
near the outer wall of the channel. Estimates show that the 
dimensions of this region are sufficiently small and can be 
neglected. 
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Here r 2-outside radius of the channel: the first 
terms in these equations correspond to the energy 
and momentum of a liquid rotating with velocity v, 
and the second, to the corresponding contribution 
of the vortices. Bearing in mind that b ~ w -1/2 

and that w = I curl v J, with Wz = r- 1d ( vr )/dr and 
wr = we = 0, the free energy of the liquid in the 
rotating coordinate system F' = F - Mw0 will 
have the form 2> 
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where w0-angular velocity of rotation of the 
vessel. 

A solution of the variational problem leads to 
the following differential equation: 

4: (r2 ~~~ + r ~; - v) + 2r (v- w0r) (r ~; + v) = 0. 1) 

The equation obtained determines the equilibrium 
distribution of the velocities in rotating helium II. 
We can rewrite (1) in the form 

(v _ w r) _!_ d (vr) + __)(_ ~ _!_ d (vr) = O. ( 1,) 
0 r dr 8n dr r dr 

This equation is satisfied by the solutions v = w0r 
and v = r /27fr (the latter corresponds to the ab
sence of vortices). A mixture of the two is cer-

2)The part of the free energy which is independent of the 
velocity of the liquid is omitted because it is of no impor
tance in what follows. 
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tainly excluded; indeed, by putting in ( 1) v = Ar 
+ B/r we obtain either B = 0 and A = w 0 or else 
A = 0 and B = const. In this connection it is 
natural to assume that the space filled with the 
liquid breaks up into two regions, depending on the 
character of the velocity distribution: a region 
where the liquid rotates with velocity v = w0r, 
and a region where the liquid rotates with veloc
ity v = r /27Tr. 3l It is obvious that the smallest 
free energy corresponds to the case when the ir
rotational region (v = r/2rrr) is the internal re
gion of the liquid. 

Assume that this region extends from r 1 to a 
certain radiu~ ri, the value of which is determined 
from the condition of minimum free energy 

' :rtps f2 ri 
F = - - w2 (r4 - r 4) + :n:p -- In -
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Minimization of the free energy with respect to n 
yields 

w~rt- 2 [2~ + 2: (In :o - {)] worf + ( 2~ r = 0, (3) 

while minimization with respect to r yields: 

(4) 

A simultaneous solution of (3) and (4) yields q /r1 

and r as functions of w0d. Let Ffnin be the energy 
of the liquid corresponding to the obtained distri
bution of the velocities with equilibrium values q 
and r, and let F~ig be the free energy corre
sponding to the rotation of the liquid as a "rigid 
body." If we calculate with the aid of ( 2), ( 3), and 
(4) the difference ,6.F' = F~in - F~ig' then we find 
that for the obtained velocity distribution the dif
ference is negative, so that this velocity distribu
tion is energetically favored. When r 2 = ri, the 

3)Equation (1) is of second order, so that strictly speak• 
ing it would be necessary to make the solutions continuous 
on the boundary between the corresponding regions. However, 
a detailed analysis shows that the dimension of the region 
where the continuity is effected is of the order of yx/w, 
which is yln(b/a0 ) times smaller than the region of irrota
tional rotation. Consequently, in view of the smallness of the 
former we can neglect its contribution to all the processes 
and not join the solutions. The undetermined coefficient r, 
as will be shown later, is determined from the condition that 
the free energy be a minimum. 

entire liquid rotates in irrotational fashion with 
velocity r /27Tr. From (3) and (4) we can calculate 
the corresponding angular velocity Wok· For 
example, for the case when r 2 /r1 = 1.1 we have 
Wok= 4.62 x 10-1 sec-1• Completely irrotational 
rotation of helium was realized in [2]. 

As regards the shape of the meniscus with the 
obtained velocity distribution, it differs little from 
plane, since, as can be seen from (3), with in
creasing angular velocity, when the shape of the 
liquid surface changes noticeably, q becomes 
small and the meniscus becomes nearly parabolic. 
The equation of the free surface with velocity dis
tribution v is of the form 

r 
,..7, crz' \ v2 

(1 ;"z'2)'/, + r (1 + z'2)'/ + pgz- p .l r dr = O. 

Obviously when r » ( o/pg) 11 2 the first two 
terms in (5) can be neglected. In the case when 

(5) 

r 2:: r 1 ~ 1 em this condition is satisfied in the 
entire region of the liquid, so that for the regions 
( r 1q) and for ( rir 2 ) we have respectively 

(6) 

Here we can determine c 2 from the boundary con
dition on the outer wall of the channel, however, 
neglecting surface tension, this constant can be 
set equal to zero. For c 1 the boundary condition 
on ri yields 

(7) 

It follows from (6) and (7) that the presence of an 
irrotational region leads to a decrease in the 
level of the meniscus in this region. 

We are grateful to Yu. G. Mamaladze for a 
discussion of the results. 
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