HIGH-ENERGY GAMMA TRANSITIONS IN Ga⁷² DECAY

V. D. VITMAN, B. S. DZHELEPOV, and Yu. N. PODKOPAEV

Leningrad State University

Submitted to JETP editor July 27, 1963

J. Exptl. Theoret. Phys. (U.S.S.R.) 46, 1479-1480 (April, 1964)

USING a γ hodoscope, we investigated at the Scientific Research Institute of Physics of Leningrad State University, the Ga⁷² γ spectrum in the energy range above 2000 keV. The measurements were carried out with two Ga⁷² specimens, with activity ~3 and 5 Ci.

In the course of our investigations we identified the previously known^[1-3] 2205, 2500, (2490+2508), 2846, 2976 and 3340 keV γ lines, and observed γ rays with energy ~ 3100 keV. A detailed study of the γ spectrum in the 3000-4000 keV range made it possible to detect γ rays with energy 3680 ± 40 keV. The half-life which was found in accordance with the change in intensity of the 3680 keV γ line is (13 ± 3) hours, which indicates that this line belongs to the Ga⁷² γ spectrum (T_{1/2} = 14 hours). Gamma rays of this energy were observed for the first time in Ga⁷² decay.

The figure shows the form of the Ga⁷² γ spectrum (after subtraction of the background) obtained with a magnetic field intensity of 1322 Oe (range of E_{γ} which could be recorded by the instrument is 3050–5360 keV); the dashed curve shows the resolution of the spectrum.

The ratio of the intensities of the 3338 and 3680 γ transitions, which was found by comparing the areas of the corresponding lines, is 1:(0.061 \pm 0.004). In addition, the ratios of the intensities of the 2976, 3338 and 3680 keV transitions to the intensities of the 2205, 2500 and 2846 keV transitions were determined. The data from ^[3] were used for determining the intensities expressed as the number of photons per disintegration.

The investigations show that in Ga^{72} decay there are no transitions with higher energies whose intensity would be greater than 2×10^{-7} photons per disintegration.

In the table, the results of our investigations are compared with those obtained by other authors.

We also investigated the Ga⁷² γ -ray spectrum in the 3000--4000 keV range by means of a scintillation γ -spectrometer. From this, we obtained confirmation of the existence of low-intensity 3700 keV γ rays.

Experimental $Ga^{72} \gamma$ -ray spectrum in the 3000-4000 keV energy range. At H = 1322 Oe, the recording probability was optimum for 4300 keV energy; under these conditions, the 2976, 3338 and 3680 keV lines were attenuated 172, 5.1 and 1.8 times respectively. On the left_sharp drop in the 2976 keV line; N_number of nuclei; continuous-line curve_sum of the spectrum components; O_experimental points of the histogram.

Since the first Ge^{72} level has an energy of 690 keV, and the decay energy is 4000 ± 10 keV, the γ rays with energy 3680 keV point directly to the existence of an excited state of the Ge^{72} nucleus with this energy.

The presence of 3680 keV γ rays means that in Ga⁷² decay there occurs a β^- transition with endpoint energy ≤ 320 keV and intensity not less than $5 \times 10^{-4} \%$ disintegrations. The quoted half-life of this β transition is ft $\leq 2.4 \times 10^9$ (log ft ≤ 9.4). It seems most probable that this β transition leads directly to an excited state of the Ge⁷² nucleus with

E, keV	γ-transition intensities (10 ⁻⁴ photons/disintegration)			
	[1]	[*]	[³]	Our data
2976 3050 3100 3340 3680	$\frac{-13}{-3}$	4 2	$\overset{7\pm2}{\sim^2}$	$\left.\begin{array}{c}9,8{\pm}2.0\\0.7\\0.75{\pm}0.22\\0.05{\pm}0.02\end{array}\right.$

energy 3680 keV. In this case, this state cannot have the 1⁻ quantum characteristics which have been imputed to the excited state of the Ge⁷² nucleus with energy 3740 keV which was found in As⁷² decay^[4]. With 1⁻ characteristics, the β -transition would belong to the 3⁻ \rightarrow 1⁻ type and would be twice-forbidden (log ft \geq 12).

¹Bishop, Wilson, and Halban, Phys. Rev. 77, 416 (1950).

YIELD OF PHOTOPROTONS FROM CALCIUM

B. S. RATNER

Submitted to JETP editor July 30, 1963

J. Exptl. Theoret. Phys. (U.S.S.R.) 46, 1480-1481 (April, 1964)

THE yield curve of the reaction $Ca^{40}(\gamma, p + \gamma, pn)$ has been measured up to the γ -ray energy $E_{\gamma m}$ = 27 MeV by counting protons in CsI(Tl).

The method differs from that described earlier by us^[1] in the use of pulse shape discrimination of particles. Protons were counted with energies $\epsilon_{\rm p} \ge 5$ MeV. The yield curve of photoprotons as a function of $E_{\gamma m}$, measured with 1 MeV intervals between points, is shown in Fig. a. More exact measurements in the region of the giant resonance indicate the existence of two peaks at energies E_{γ} = 19.0 and 19.9 MeV. The cross section for emission of photoprotons was calculated according to the method of Penfold and Leiss for the yield curve measured every 1 MeV (Fig. b). The peak in the cross section at E_{γ} = 19.9 MeV is 30.6 mb, and the half-width of the resonance curve amounts in all to 2.7 MeV. The integrated cross section for emission of photoprotons with $\epsilon_p \ge 5$ MeV turned out to be 124 ± 10 MeV-mb, and taking into account the unrecorded part of the photoproton spectrum, 280 MeV-mb. The ratio of the photoproton yield from calcium and from copper at $E_{\gamma m} = 27 \text{ MeV}$ is 0.93 ± 0.09 . The ratio of the photoproton yields at angles $\theta = 90$ and 135°, and also at 90 and 45°, measured as a function of energy $E_{\gamma m}$, is constant within the experimental error.

The experimental position of the peaks in the photoproton cross section is extremely close to that found by Miller et al.^[2] in a study of the reaction $Ca^{40}(\gamma, n + \gamma, np)$ and agrees fairly well with the data of Tanner et al.^[3] obtained for the reaction $K^{39}(p, \gamma)Ca^{40}$. According to shell model calculations by Brown et al.^[4] for a potential with exchange forces, the entire dipole sum is exhausted by the two transitions at 19.2 and 20.6 MeV.

²Johns, Chidley, and Williams, Phys. Rev. 99, 1645A (1955).

³Vitman, Voinova, and Dzhelepov, Izv. AN SSSR ser. fiz. **27**, 249 (1963), Columbia Tech. Transl. p. 261.

⁴ Brun, Kraushar, and Meyerhof, Phys. Rev. **102**, 808 (1956).

Translated by Mrs. Rita R. Inston 210

Ca⁺⁰(γ,p+γ,pn) €_D≥5 MeV σ , mb , rel. units *0,5* 19 20 Eym, MeV Yield, 50 Yield, 20 b 03 Q2 a 20 E_y, MeV 25 20 25 *Ε_{γm}*,MeV

a) Yield of photoprotons of energy $\epsilon_{\rm p} > 5~{\rm MeV}$ from Ca⁴⁰ as a function of $E_{\gamma m}$. Upper inset: the same quantity, measured every 0.25 MeV for $E_{\gamma m}$ from 18 to 21.5 MeV. The arrows indicate the location of inflection points in the curve. Root-mean-square errors are shown. b) Cross section for emission of photoprotons of energy $\epsilon_{\rm p} > 5~{\rm MeV}$ from Ca⁴⁰.

¹B. S. Ratner, JETP 46, 1157 (1964), Soviet Phys. JETP 19, 783 (1964).

² Miller, Schuhl, Tamas, and Tzara, Phys. Letters 2, 76 (1962).

³ Tanner, Thomas, and Earle, paper cr/31,

Rutherford Jubilee Conference, Manchester, 1961. ⁴ Brown, Castillejo, and Evans, Nucl. Phys. 22, 1 (1961).

Translated by C. S. Robinson 211

