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It is shown that, in general, when rotating liquid He II is heated, vortex lines of two types 
are formed, in the superfluid and normal parts. The lifetimes of the "normal" vortex lines 
are estimated. A complete set of hydrodynamic equations is derived for He containing both 
vortex types. The dispersion law for the elastic oscillations of a system of "normal" vortex 
lines is found. 

As is well known, quantized Onsager-Feynman 
vortex filaments are produced in the superfluid 
part of rotating liquid He below the A. point. The 
presence of these filaments gives rise to unique 
elastic properties of the liquid, which were inves­
tigated in detail both theoretically and experimen­
tally [1•2]. 

The Tbilisi school [3] has recently carried out 
experiments showing that the elastic properties of 
liquid He are retained for a rather long time when 
the latter is heated above the A. point. The present 
paper is devoted to a theoretical analysis of the ef­
fects connected with heating of rotating liquid He II. 

1. We consider first one vortex filament located 
at the center of a cylindrical vessel of radius R at 
a temperature T 0• In this case there occurs in the 
liquid superfluid motion with velocity 

Vs = 1ijmr, (1) 

where m is the mass of the atom of the liquid, r 
the distance from the vortex axis. The normal 
part is assumed to be at rest (vn = 0 ). Assume 
now that the helium is heated to a temperature 
T > T 0 (for example, with the aid of a gamma 
source). Let us determine the resultant velocity 
Vn. We assume first that the viscosity Y) of the 
normal part is zero. Then vn is determined sim­
ply from the momentum conservation law 

where 

that is, 

Ps, = Ps (To), Ps = Ps (T), 

~Ps 1i 
v --­
n- Pn mr • 

(2) 

(3) 

Here l:::..ps = Pso- Ps -change in the density of the 
superfluid part upon heating. The velocity Vs re-

mains obviously unchanged by the heating. The 
presence of finite viscosity causes the velocity 
distribution (3) to be incorrect for r ;;:;. a(t) 
( t -time elapsed after the instant of heating). 
For a(t) we obtain from dimensionality consid­
erations 

a (t) ~ V rtl/Pn· (4) 

Thus, as a result of heating the vortex part in 
the superfluid part turns into two vortex filaments 
-an ordinary "superfluid" filament with circula­
tion 21rn/m, and a "normal" filament, the circu­
lation of Vn around which is, as follows from (3), 
equal to ( l::.ps I Pn )27rn/m. In this case a (t) plays 
the role of a time -dependent radius of the core of 
the "normal" vortex. Let us calculate the energy 
per unit length of the "normal" filament. 

II: p v2 
En = ~ n2 "2:nrdr. 

a 

Substituting (3), we get 

e =;n; -- In-( ~Ps 1i ) 2 R 
n Pn Pn m; a(t)· 

(5) 

The value of l::.ps becomes appreciable (of the or­
der of the density of He) only if the temperature T 
is not too far from the A. point. We shall therefore 
consider the region of temperatures close to the 
point, where Ps ;;:;. Pn at T < Tt... We note that if 
the temperature T is above the A. point, then only 
a ''normal'' vortex filament occurs during heating. 

2. Assume now that a cylinder containing He II 
and rotating with angular velocity w is heated. The 
number N of vortex filaments per unit cross sec­
tion area prior to heating is determined by [1] 

N = mwf:n1i. (6) 

As a result of heating, the same number of "nor-
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mal" filaments is produced in the liquid. Owing 
to the finite viscosity of the normal part, this sys­
tern of vortices vanishes ultimately, but the corre­
sponding relaxation time T is quite large. Indeed, 
when t ~ T we should have a ( t ) ~ N 1/ 2• Substi­
tuting here (4) and (6), we get 

(7) 

When ry/ Pn ~ 10-4 and w ~ 10-7 we get T ~ 7 min­
utes. This is precisely the order of relaxation 
time observed by Andronikashvili et al [3]. 

We now derive the hydrodynamic equations for 
liquid helium containing two types of vortices, as­
suming that t « T. These equations are general­
izations of the equations obtained by Hall [1 J and 
by Bekarevich and Khalatnikov [4] in the presence 
of "superfluid" vortex filaments only. We intro­
duce the velocities Vs and Vn, averaged over re­
gions whose linear dimensions are large compared 
with the distance between vortices, and also the 
vector Wn, the direction of which coincides with 
the direction of the "normal" vortices in the given 
place, and the magnitude of which is equal to the 
number of these vortex filaments which cross a 
unit surface perpendicular to wn, multiplied for 
convenience by the circulation 21rtim - 1 b.ps I Pn· We 
shall start, as usual, from the conservation laws. 
We write the equations for the conservation of 
mass, energy, and momentum in the following 
fashion: 

aplat + div j = 0, 

aE I at + div (Qu + q) = 0, 

a;; a <o> ) 0 Tt + ox (IT;k + n:;k = , 
k 

(8) 

(9) 

(10) 

where Q0 and rrf~ -energy and momentum fluxes 
in the absence of vortices and dissipation, p -
density of the liquid, j -momentum per unit vol­
ume, E -energy per unit volume connected with 
the internal energy € by the relation 

E = f pv~ + pv. + e. (11) 

Here p = j - pvs -momentum in the coordinate 
system moving with velocity Vs. For the differ­
ential of € we have (see C4J) 

de = TdS + fldp + (vn - V8 , dp) + A8dw, + Andwn, (12) 

where T, S, and 1-L are respectively the tempera­
ture, entropy, and chemical potential, Ws =curl Vs, 

n b 
As= p -ln-

•2m ao' 
A - ("'P·)~In-b-· 

n - Pn Pn 2m a (t) ' 

and a 0 -interatomic spacing. 
We write down also the equations for super-

(13) 

fluidity, growth of entropy, and Wn: 

av.l at+ (v.V) v, + Vfl = f, 

as I at + div Svn = R IT (R > 0), 

awn/at =rot {cp + [VnWnl}. 

(14) 

(15) 

(16) * 
The unknown quantities q, 1fik• f, R, and rp which 
are contained in (9) -(16) must be determined from 
the condition that relations (8), (10), and (14)-(16) 
lead automatically to (9). 

Carrying out the time differentiation in (11) we 
obtain after some transformations, with allowance 
for (8), (10), (14)-(16) and the explicit forms of 
Q0 and rrf~ (see [4]) 

E + div {Q0 + (n:vn) + As [V8 , f + [w,, Vn - v,]] 

+ An [Vn(jll} I= R + ( JC;k - AsWl)ik - AnWnbik 

w .w k w .w k) iJv . 
+A,~+ An~ ~ + (f + [w,, Vn- v,l, j 

w 8 wn iJxk 

- PVn + rot A8Vs) + cp rot AnVn, (17) 

where 

From a comparison of (17) with (9) we get 

q = (n:vn) + A8 [v., f + lw., Vn - v,]] + An [vncpl. (18) 

- (f + [w., Vn - v.], j - pvn + rot A8V8 ) - cp rot An'~n· 

(19) 

The condition that R be positive enables us to de­
termine the form of the quantities of interest to us 

where Tik is the usual tensor of viscous stresses, 
(3 > 0, and y > 0. The expression for f does not 
differ from the corresponding formula in the paper 
by Bekarevich and KhalatnikovC4J. Equations (8), 

(10), and (14)-(16) comprise the sought system of 
hydrodynamic equations. 

Let us determine the order of magnitude of the 
coefficients a, (3, and y in (21). To this end we 
note that since the vortex filaments in the normal 
part are macroscopic formations [ a(t) » a 0 ], we 
can calculate a, (3, and y in principle by carry-
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ing out explicit averaging of the ordinary (that is, 
unaveraged) hydrodynamic equations over volumes 
that are large compared with N-312• In this case 
these coefficients will be expressed in terms of 
the viscosity 7], the density, and the circulation, 
the order of magnitude of which is h/m. It is 
now clear from dimensionality considerations that 
a, {3, y ~ 71m/ph ~ 10-1• We note that (21) is writ­
ten out in such a way that in an ideal liquid ( 71 = 0) 
we have a = {3 = y = 0. 

3. Let us consider on the basis of the equations 
obtained the elastic oscillations of the liquid. Since 
the superfluidity equation (14) is not changed by the 
presence of "normal" vortices, weakly damped os­
cillations, corresponding to the bending of the 
"superfluid" vortex filaments, can occur in the 
system when p « Ps· The frequency Q of these 
oscillations is connected with the wave vector k 
by the relation [1 J 

Q = 'Ask2 IPs' 

where it is assumed that Q » w. 

(22) 

Let us stop to discuss the inverse limiting case 
Ps « Pn· This includes, in particular, the case 
T > Tt.., when Ps = 0. Assuming the liquid to be 
incompressible and neglecting the small terms, 
we transform the equations (10) and (14) with al­
lowance for (16): 

Vn + (vnV) Vn =- p~1 Vpn + AnP~l(wnV) 'Ym (23) 

Wn =rot {[vnwnl + A11 p~1 (wnV) 'Yn}· (24) 

It is necessary to add to these equations the con­
tinuity equation 

div Vn = 0. (25) 

Putting 

Vn '= [wr) + V~, Wn = Wno + W~, 

where v~ and w~ are small increments propor­
tional to exp [ i ( k • r - m ) ] , and eliminating the 
pressure by taking the curl of (23), we obtain for 
k II w and Q » w 

Q [kv~] + 'l.,p~l/; [k, w) = 0, (26) 

- iQw;, + AnP~1k [k, w~] = 0. (27) 

The system (26) and (27) has non-trivial solutions 
only if the corresponding determinant vanishes: 

QW [ Q2 -- (Anp~lfc2)2 ] = 0. (28) 

From (28) with allowance for (13) we obtain the 
law for the dispersion of the oscillations 

~Ps !ik2 b 
Q=--ln-

Pn :.!.m a (t) • 
(29) 

With increasing time t, the frequency Q decreases 
logarithmically and vanishes when t » T. 

We note in conclusion that the presence of oscil­
lations with a dispersion law (29) can be observed 
in experiments on the vibration of a disc in rotat­
ing liquid helium if t < T. 

I am grateful to I. M. Khalatnikov and L. P. 
Pitaevskii for a discussion of the results of the 
present work. 
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