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The low temperature properties of a ferromagnetic Fermi fluid are investigated by quantum 
field theory methods. 

THE problem of the determination of the equili
brium properties of a macroscopic body reduces 
to the estimation of the energy spectrum of the 
elementary excitations of this body. As was shown 
by Bloch[t] on the basis of the Heisenberg model, 
a ferromagnetic system possesses excitations cor
responding to the oscillations of the mean magnetic 
moment and having the dispersion law w ~ k2• Lan
dau and Lifshitz [ 2] have shown that this dispersion 
law is not the specific mark of the Heisenberg 
model. Further theories have developed in the 
direction of improvement of the previous theory; 
however, their feature is that the ferromagnet 
was regarded in them as a system of rigidly fixed 
spins, which, of course, does not readily occur in 
metals. Only Abrikosov and Dzyaloshinski1[3] 

have considered spin waves in ferromagnetic 
metals, basing their work on the Landau phenom
enological theory of a Fermi fluid. They showed 
that even in a metal, where the electrons are not 
rigidly fixed at the lattice nodes, the spin waves 
have the same dispersion law. 

As had already been shown by Landau, [4 , 5] 

excitations associated with the oscillations of the 
spin density of the system can exist in a nonferro
magnetic Fermi fluid. These oscillations have the 
same nature as zero sound, which corresponds to 
the deformation oscillations of the surface of the 
Fermi system. The spin oscillations noted have a 
linear dispersion law, just as zero sound. 

In the present research we have attempted to 
ascertain whether a connection exists between the 
noted zero-sound spin waves and the spin waves 
discovered earlier in ferromagnetic dielectrics. 
It was shown that transverse spin oscillations of 
the zero-sound type do not take place in a ferro
magnetic Fermi fluid. This is explained by the 
fact that there are two different Fermi surfaces 
for a non-vanishing mean macroscopic magnetic 
moment, corresponding to the two values of the 
spin direction. Since the difference of the limiting 

Fermi momenta of these surfaces is non-zero, 
transitions of particles from one of them to the 
other is impossible without energy and momentum 
change. This is indeed the physical reason for the 
different nature of spin waves in a ferromagnetic 
Fermi fluid. 

In the present paper it is shown, by means of 
methods of quantum field theory and without the 
drawing up of any concrete models, that the spin 
waves in a ferromagnetic Fermi fluid have a 
quadratic dispersion law. The interaction of 
particles with spin waves has been considered 
and an expression has been found for the vertex 
corresponding to the emission of particles with 
zero momentum by the spin wave. It has been 
shown to be possible to express this in terms of 
quantities characterizing the Fermi spectrum of 
the excitations of the system. Account is taken of 
the magnetic dipole interaction of the spins. This 
interaction leads to a change in the spectrum of 
the spin waves that is identical in accuracy with 
that obtained earlier in the work of Holstein and 
Primakoff[s] for the case of a ferromagnetic 
dielectric. 

It is shown in the present work that, besides 
the spin waves, the Fermi excitations of the sys
tem also make a contribution to the temperature 
dependence of the magnetic moment at low temper
atures. This contribution is proportional to T 2• 

It was shown that the contributions to the heat 
capacity and the magnetic moment from the spin 
waves and from the Fermi excitations are inde
pendent in the lowest order in the temperature; 
one can therefore compute them exactly. The con
dition for the appearance of ferromagnetism is 
found to be a certain relation for the two-particle 
vertex part. Relations are obtained for the effec
tive masses of the excitations, as well as an ex
pression for the longitudinal static magnetic sus
ceptibility at T = 0. 
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1. PROPERTIES OF THE VERTEX PART FOR 
SMALL TRANSFERRED MOMENTA 

It is known that the Green's function G and the 
vertex part r play fundamental roles in the theory 
of a Fermi fluid. The Green's function 

for the case of a ferromagnetic Fermi fluid is a 
matrix which, from general considerations, can be 
written in the form 

Gar;= G+ H- Oa.r;-!- msa{i) + G_ ( + Da.(l- msa.r;) . (1) 

Here m = H/H, H is the external magnetic field; 
§ = (§X, sY, sz) is the spin matrix of a particle 
with spin Y2• For convenience, we always assume 
that the magnetic field is directed along the z 
axis. In this case, 

P+ 1 ... z 
a.~ = z U«f; ± Sa.(;• 

In the momentum representation, the Green's 
function is simply expressed in terms of the 
self-energy part I:aj3 ( p): 

(2) 

G~~ (p) = (e -1- 11- p2/2m) Oar;- 2!-1 0Hs:r; - I:a.r; (p), . 

where 

~a.r; (p) = ~+ (p) P!13 -1- ~- (p) P~13 (3) 

llo is the Bohr magneton and 11 is the chemical 
potential of the system. 

In the Fourier representation, the vertex part 
r is connected with the two-particle Green's 
function 

G~1ya (xl, x2; X 3 , X 4) = (T ('ljl .. (x1) 1jJ13 (x2) 'ljl~ (x3) 'ljlt (x4))) 

in the following way: 

G~1ya (pl, P2; Pa• P1 -1- P2 - Pa) 

= Gay (PI) Gr;a (p2) 0 (pl - Pa) (2n)4 

- Gaa (pl) Gr;y (p2) o (p2 - p3) (2n)4 

+ iGay, (pl) Gr;y, (p2) Gy,y (Pa) Gy,a (p1-!- P2- Pa) 

Let us consider the behavior, at small transferred 
momenta, of the transverse components of the 
vertex part, which, as will be seen below, play the 
fundamental role in the investigation of the prop
erties of a ferromagnetic Fermi fluid. These 
components of r correspond to the scattering of 
quasiparticles with spin flip. In the absence of 
magnetic spin-spin interactions, there are two: 

r 12,21 and r21,12· 
As Landau has shown, [ 5] the special features 

of the vertex part 

over the momentum transfer k correspond to the 
Bose excitation of the system. The presence of 
such singularities in the transverse components of 
r is easily understood from the following physi
cal considerations. The magnetic moment of the 
system in a constant magnetic field can be written 
in the form M = MH/H. The static magnetic sus
ceptibility in this case will be 

aM; M ( H;Hk) aM H;Hk 
'Xik = aHk = T! o;k-~ + aHJl.2. 

It is easy to see that the transverse components of 
x become infinite for H = 0. On the other hand, x 
is connected by a simple linear relation with the 
vertex part (see, for example, [7] ), from which 
follows the presence of singularities in the trans
verse components of r. Evidently the excitations 
corresponding to these singularities of r are 
equivalent to oscillations of the mean value of the 
magnetic moment, i.e., to spin waves. Landau has 
shown[ 5J that in a nonferromagnetic Fermi fluid 
the singularities of r correspond to zero-sound 
vibrations. Let us see the connection between the 
zero-sound vibrations and the singularities corre
sponding to spin waves. 

The presence of singularities of the first type 
is seen from the equation which is satisfied by the 
vertex part: 

raf3,y8 (Pv p 2 ; k) = F~~.ys (p1 , p2; k) 

- i ~ (::~4 ri1~,.f3x,(p 1 , q; k) Gx,x, (q) Gx,x, (q -1- k) 

X fx,r;,x,a (q, p2; k), (4) 

where r(t) is the set of all possible diagrams for 
r which cannot be cut by the two lines G ( q) and 
G (q + k). The integral in (4) consists of regions 
far from the point q 0 = 0, I q I = P± ( P± is the 
Fermi momentum for the different spin directions), 
and regions in the vicinity of the given point, where 
the Green's function has the form 

G± (e, p) = a±/[e- v± (/p/- P±) 

+ io sign <1 pI - P±)], (5) 

v± is the velocity on the Fermi surface for the 
different spin directions. This velocity can be 
written in the form v± = P± /m±, where m± is the 
effective mass of the excitations on the correspond
ing Fermi surfaces. This latter region of integra
tion also makes a contribution to the singularity of 
r; this occurs, naturally, in the case in which the 
spin directions coincide, so that the poles of the 
Green's function come together as k- 0. 
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As in the case of a nonferromagnetic Fermi 
fluid, the product of the Green's functions can be 
described in the form of a sum of special and 
regular parts: 

2:rtia! kv 
Cx,x, (q) Cx,x1 (q + k) = ~ (J) _ ~V+ 6 (q0) 0 ([ q \ -· P+) 

+ + 2:rtia: kv_ o 
X Px,x,Px1x4 -j- ---v:::- (I)_ kv_ 6 (q) 6 (J q J- p_) 

( cp does not contain singularities; therefore it is 
taken at k = 0). We introduce the quantities 

rw (p1, p 2) =lim r (p1, P2; k), 
lklfoo,w-+0 

fk (pl, P2l =lim r (pl, P2; k), 
wflkj,lki~J 

[C~ (p)l"' =lim C± (p) G± (p + k), 
lk!/w,W-+0 

[G~ (p)]k =lim G± (p) G± (p + k). 
wf~kl, k:~o 

(6) 

Just as was done for the nonferromagnetic 
Fermi fluid, [ 5] we can easily obtain for r an 
equation in which the integration takes place only 
over the Fermi surface: 

r<X{l,yo (pl, P2; k) = r~f3,yo (pl, P2) 

a2 p2 \' v k 
+ (2;)3+v+ J dQqr~l.Yl (pl, q) (J) ~ v,.k rl{l,lo (q, P2; k) 

a2 p2 \' k + (2~)3-v_ J dQqr <X2,Y2 (pl, q) (J) ~ y_k r2~,20 (q, P2; k). 
(7) 

Then the connection between the two limiting values 
of r follows directly: 

r~{l,yo (pl, P2l = r~{l,yo (pl, P2l 

a!p! \' 
(Z:n)3 v,. .\ dQqr~l.n (pl, q) r~ll.10 (q, P2l 

(8) 

In (7) and (8), the integration takes place for q0 

= 0 and q on the Fermi surface; dQq is the ele
ment of solid angle. 

It is not difficult to see that (7) separates into 
equations, which are not connected with each other, 
for longitudinal and transverse components of r. 
The equations for the longitudinal part of r deter
mine the singularities, which correspond to zero
sound oscillations of the Fermi fluid. The equations 
for the transverse components have the trivial form 

r 12,21 (pl, P2; k) = r~2,21 (PI> P2l, 

r21.12 (PI> P2; k) = r~l,l2 (pl, P2l· 

This means that the zero-sound excitations do not 
have an effect on the excitations of the spin-wave 
type. 

We proceed to the investigation of the singulari
ties of the transverse components of r. These 
singularities can be regarded as brought about by 
the presence of bound particle-hole states 
with nearly equal values of the momentum and 
opposite spin directions. From the unitarity rela
tion it follows that, near the pole corresponding to 
the bound state mentioned, one can write down the 
following equation for the vertex part r 12 , 21: 

G+ (PI) C_ (PI+ k) f12,21 (PI P2; k) G_ (P2 + k) G+ (P2) 

= - ~+ (PJ,k) D (k) ~- (p2 , k); 

D (k) = 1/ [w- w (k) + i6]. 

Here w ( k) is the frequency of the spin waves. 

FIG. 1 

(9) 

We represent the right-hand side of (9) by 
graphs as shown in Fig. 1. The wavy line in the 
drawing corresponds to D ( k). The plus and minus 
signs denote the signs of the spin direction relative 
to the external magnetic field. 

Inasmuch as we are interested only in small k, 
we expand the quantities entering into (9) in terms 
of k. The relation (A.lO) is obtained in the appen
dix and connects the component r 12 , 21 for k = 0 
with the Green's function of the system. This 
formula can be used for finding the values at the 
pole of r in zero order of k. Actually, a compar
ison of (9) with (A.lO) near the pole gives 

w (0) = 2f10ll, (10) 

~± (p, k) = Y ftciMo [G,. (p)- G_ (p)]. 

In the last equation, k corresponds to the polar 
value w = 2J.t 0H, k = 0; 

M 0 = - ift 0 lim\ (d2•p)• eis~ [C+ (p) - C_(p)l 
-r-+0 e) 1t 

is the mean value of the magnetic moment per 
unit volume of the system. 

In order to obtain a representation of the next 
terms of the expansion of the quantity w ( k) in k 
and 

\' d•p J (2:rt)• ~± (p, k), 

we determine the imaginary part of the function 
u-1 ( k) as k ~ 0. The graphs shown in Fig. 2 
make a contribution to it. Using the unitarity 
relation, we can show that the graph of Fig. 2a 
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a b 

FIG. 2 

makes a contribution (/) I w - 2J.LoH 13, and Fig. 2b, 
(/)I w - 2J.LoH 1

5/ 2• It is then clear that the expan
sion of the given quantities has an analytic form, 
at least up to terms of the order of k4 inclusively. 

For the frequency of the spin waves, we have, 
with accuracy to k2, 

(11) 

We see how the form of the pole of the vertex 
part changes with account of the relativistic spin
spin interaction. For this purpose, we need to sum 
the chain of graphs which includes this interaction. 
Then, by virtue of the fact that the interaction does 
not contain the spin, the quantity D( k) will enter 
into the set of equations connecting it with the polar 
parts of the components r11,22• r22,11 for which we 
introduce the following notation: 

G+ (pl) G_ (pl + k) fu,22 (pl, p~; k) G+ (p 2 + k) G_ (p2) 

= - ~+ (P1, k) n- (k) ~+ (p2, k), (12) 

G_ (pl) G+ (PI + k) f22.n (pl, P2; k) G_ (p2 + k) G.,_ (p2) 

= - ~- (p1, k) D+ (k) ~- (p2, k). (13) 

We represent the pole vertices graphically as in 
Fig. 3. 

>z<QQ 
FIG. 3 

This system of equations is represented graph
ically in Fig. 4, where the thin lines denote 

D 0 (k) = 1/[ro- 2fl0H- ak2 + ib]. 

II ( k), B+ ( k), and B_ ( k) are the sets of diagrams 
containing the spin-spin interaction for the spin 
transitions + -- - +, - - - + +, and++ - - -, 
which cannot be cut by a single wavy line. 

Solving the graphical equations, we get 

D(k) = [w + A(k)l/[w2 - A 2 (k) + B+ (k) B_ (k)l. (14) 

D± (k) = B± (k)/ [w 2 - A 2 (k) + B+ (k) B_ (k)]. ( 15) 

Here we have introduced the notation 

A (k) = 2r0H + ak2 + II (k). 

Let us determine II(k), B+(k), and B_(k). 
The magnetic spin-spin interaction can be regarded 

-- = --+~+----@----

---@r-+-----05---
FIG. 4 

as the interaction with the electromagnetic field, 
possessing the interaction Hamiltonian 

:1e;nt = 2flo ~ dnp~ (x) Scxi>'IJli> (x) H (x); 

H ( x) is the operator of the magnetic field. Inas
much as this interaction is a srrall relativistic 
effect, we consider it in lowest order. It is not 
difficult to see that in this case the desired quan
tities are determined by the graphs pictured in 
Fig. 5. 

-~ ~-n=-~-------~~ 

B.c= ~--------(fr>---

-~ 1~. 8_=. ~~---------~ ~· 

FIG. 5 

The discontinuous line in the drawing corre
sponds to the Green's function of the magnetic 
field 

F;k (x1 - x 2 ) = - i (T (H; (x1) Hk (x2))). 

It is clear that in zero order in the interaction it 
corresponds to the Green's function of the Maxwell 
equations without interaction: 

However, when substituting Fik in the expressions 
for II ( k), B+ ( k), and B_ ( k) it is necessary to 
discard the term proportional to Oik• since it 
represents an interaction which commutes with 
the basic Hamiltonian; therefore, it reduces simply 
to renormalization of the initial conditions. Taking 
into account all of this, we can write 

. _ 16 n11~k+k- 1 d4p1a•p2 . 
II (k) - k• .\ (21ij8 ~+(PI> k) ~- (p 2 , k) 

4 M k+k- • 
= Jtflo o~· (16) 



976 P. S. KONDRATENKO 

(18) 

In expanding the integrals in (16) -(18), we retain 
the lowest order in k. As will be seen below, this 
turns out to be entirely sufficient. 

FIG. 6 

the explicit expressions for A ( k) and B± ( k), we 
get 

. (' d4k 
6M (0) =- 2lfl0 .l (2n)' [D (k)-D 0 (k)J. (23) 

2. MAGNETIC MOMENT FOR T = 0 Substituting 

Dzyaloshinski'l[B] has shown that in the absence D (w, k) = [w +A (k)l/ (w- w (k) + i6) (w + w (k)- i6), 
of relativistic spin-spin interaction, the magnetic 
moment per unit volume of a ferromagnetic Fermi 
fluid is equal to 

where 

(19) we find 

We calculate the correction to the expression (19) 
brought about by the spin-spin interaction. It is 
evident that we can write 

(20) 

It is not difficult to verify directly that the change 
of the self-energy part due to relativistic interac
tion of the spins is 

- (' d4p,d4p'Jil.4k • 
b~a;(j (p) - .l (2n)12 Qa:x,x,, (jx,x, (p, P1• P2 + k, P1 + k, P2) 

(21) 

Q is the three-particle vertex part. We can show 
that only small values of the momentum k are im
portant in the calculation of 6~ 01{3 (p). Therefore, 
for oGil we use the expression close to the pole 
in k. By virtue of this, taking into account the 
relation 

6c (p) = c (p) 6~ (p) D (p) 

and integrating (21) over p1, p2, we get 

JI.M 2 ~ a•pa•k ~ ~ ~ 
u = - ifl 0 lim Sp -(2 )" ei"G (p) szG (p) 

"t'~+O 3t 

X [ Q (p, k) (D (k) -D 0 (k)) + Q+ (p, k)D- (k) 

+Q_(p,k)D•(k)]. (22) 

From the graph of Fig. 6, it is seen that the 
quantities 

2flo lim Sp I (tp)• ei<TG (p)~z G (p) Q(p, k), 
"t'~+O J 1t 

are derivatives with respect to the magnetic field 
of A ( k) and B± ( k), respectively. Making use of 

I dk A (k) - w (k) 
6111. (0) = -flo j (2n)" w (k) (24) 

The latter formula is identical with the result ob
tained by Holstein and Primakoff[e] for the case 
of a ferromagnetic dielectric. 

Thus the total magnetic moment of the system 
is determined, with accuracy up to quantities of 
first order in the magnetic spin interaction, by 
the formula 

- ~ 3- 3 - (' ~ A(k)-w(k) (25) 
M (0) - 3 (2n)2 [p + P _] flo .l (2n)a w (k) • 

3. THE CONDITION FOR ONSET OF 
FERROMAGNETISM 

It is well known that the self-energy part 
changes, for an infinitesimally small change in the 
Green's function, according to the equation 

6~"13 (p) =- i ~ (~~~- r~~1,f3x, (p, p') 6Cx,x, (p'). (26) 

We assume that the total magnetic moment of 
the system is changed by some infinitesimally 
small angle. In this case the Green's function and 
the self-energy part change in the following way in 
first order, as follows from ( 1) -( 3): 

6G"13 (p) = [G+ (p)- G_ (p)l (6m+s;13 + 6m_s~13 )!2, 
6~"13 (p) = [~+ (p)- ~- (p)] (6m+s;13 + 6m_s~13 )/2, 

s± = Sx ± is'Y. (27) 

Substituting (27) in (26), and neglecting the mag
netic spin-spin interactions, we find 

~+ (p) - ~- (p) 

= - i ~ (:~: rW.21 (p, p') [G+ (p')- G_ (p')J. (28) 

If the system considered is close to the ferromag-
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netic transition, then the quantities 1:+ - :E_, G+ 
- G_ can be regarded as small; all factors with 
them can be set equal to zero. 

Inasmuch as r <1> does not possess singularities, 
it can be expressed in terms of the value of the 
paramagnetic phase. Making use of operator nota
tion, we write down the equation for the connection 
between r<t) and r< 2>, similar to (4): 

Substituting (29) in (28), we get 

{1- if"' [G2 l"'} (:E+ -1:_) =-if"' (G+- G_). 

Further, since 

lG2 (p)J"' = [G2 (p)]k + 2:rt~a• 6 (e) 6 ( J P j- Po), 

[G2 (p)]k (1:+ (p) -1:_ (p)) = G+ (p)- G_ (p), 

we get, finally, 

1:+ (p) -1:_ (p) = - ~ (~~~ f~2.21 (p, p') 6 (e') 

X 6( I P J-Po) (1:+ (p')-:E_(p')). 

(29) 

(30) 

Here Po is the limiting Fermi momentum of the 
paramagnetic phase. For the paramagnetic state, 
:E+ ( p) - 1:_ ( p) == 0; therefore, the equation (30) is 
satisfied identically, thereby placing no restrictions 

w 
on the value of r t2,2t· 

For the ferromagnetic state, by virtue of the 
non-zero difference in the self-energy parts for 
different spin directions, (30) takes on the meaning 
of the relation for r~, 21 ( p, p'): 

2p2 

(2:)3°v ~ dQf;';,21 (p, p') = - 1, 

e = e' = 0, I PI= J p' I= Po· (31) 

This is also the desired condition for the onset of 
ferromagnetism. 

4. THE MAGNETIC MOMENT AND THE HEAT 
CAPACITY OF A FERROMAGNETIC FERMI 
FLUID AT LOW TEMPERATURES 

At non-zero temperatures, the mean value of 
the magnetic moment per unit volume of the sys
tern is given by the formula 

M (T) = 2f10T Sp 2} ei•~ ~ 12d:)3 sz@ (T; e, p) 
E 

for 't-- + 0, (32) 

where Gap(T; E, p) is the temperature Green's 
function, defined as in the book of Abrikosov, 
Gor'kov and Dzyaloshinskil. [ 9] 

In the limiting case at T = 0, the summations 

over the imaginary frequencies must be replaced 
by integrations in all the diagrams, in accord with 
the formula 

For low temperatures, the mean value of the mag
netic moment will obviously differ from the corre
sponding value at T = 0 by a small temperature 
contribution: 

M (T) = M (0) + 6M (T). 

The method of calculating the temperature correc
tion to mean physical quantities is described in [ 9]. 

Its substance is the following: to obtain the tem
perature correction to the self-energy part 
1: 01 {3 ( 0; E, p), it is necessary that all summations 
over frequencies in the corresp·:mding set of tem
perature technique diagrams be replaced by inte
grations, with the exception of a single frequency, 
over which one must sum; the case in which the 
summation is carried out over two frequencies 
has a small statistical weight and leads to a tem
perature dependence of higher order. The fre
quency shown, over which summation takes place, 
can, for example, be the energy Green's function. 
Then, as shown in [ 9], the temperature corrections 
are determined by the poles of the Green's function 
at low energies, i.e., by the spectrum of Fourier 
excitations of the system. However, one can use 
the transferred energy of the two-particle Green's 
function as the frequency to which the given opera
tion is applied. Then, as will be seen below, the 
corrections will be determined by the Bose excita
tion spectrum of the system. 

We shall be interested in the contributions to 
the magnetic moment and the heat capacity of the 
Fermi fluid due only to Fermi excitations and spin 
waves. It can be shown that the other branches of 
the Bose spectrum make a contribution to the tem
perature dependence of much higher order. We 
shall first calculate the contribution to the temper
ature dependence of the Fermi excitations. 

According to [ 9], the correction to the tempera
ture Green's function due to the Fermi excitations 
is determined by the expression 

6t3J;Il = @lay, (0; e, p) [ T 2}- ~ ~:1 J 
•• 

(33) 

Graphically, this equation corresponds to Fig. 7. 
Here and in what follows, the canceling signs on 
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••'= PI r 

FIG. 7 

lines indicate that in place of integration over the 
· frequency of the line, as is done in the frequencies 

of the uncanceled lines, we should apply the oper
ation 

[ T 2J - ~ de/2n J . 
E 

(34) 

In order to calculate the contribution of spin 
waves to the temperature dependence of the mean 
quantities, it is necessary to apply the operation 
(34) to the transferred energy of the two-particle 
Green's function corresponding to scattering of 
particles with reversal of spins, and since the 
desired corrections are determined by the poles, 
then in the given case, w is the frequency of the 
pole functions. For simplicity, we shall not take 
into account the relativistic spin-spin interaction 
in these calculations. Then the contribution of the 
spin waves to the magnetic moment is determined 

It is not difficult to see that the correction to graphically as shown in Fig. 9. This corresponds 
the magnetic moment of the system from the Fermi to the formula 
excitation is 

[ ~ ~ de J ~ dp A A 6M F (T) = Sp T 4.!- j 211 j (2n:)• sz@J (0; 8, p) 
E 

(' dedp A A F + Sp J (2n:)• sz(\@J (T; 8, p). (35) 

The latter formula corresponds to Fig. 8. 

In the Appendix, Eq. (A.3) is introduced for the 
derivative of the Green's function with respect to 
the magnetic field for T == 0. In a completely 
similar way, one can get the corresponding 
formula in the temperature technique: 

a~ @~~ (T; 8, p) 

= - 2flo {s~{l + T 2J ~ (::). r <XK,, {lK, (T; 8, p; 8u PI) .. 

In the limit as T ___.. 0 and E == const, we find 

a~ @~~ (0; 8, p) 

2 { z I deldPl r (0· . ) = - flo s"ll + .) (2n:J• <XK,, {lK, , 8, p, 81, P1 

6Ms (T) =- 2fl0 Sp [ T 2J- ~ ~:] 
"' 

~ de dp dk A 0 AZ A 0 x j (2n:)• (2n:)• @J (0, 8, p) s @J (0, 8, p) 

X Q (0; 8, p; ro, k)D0 (0; ro, k). (38) 

Here Q ( 0; E, p; w, k) is the vertex corresponding 
to scattering of spin waves by the particle, similar 
to Q ( p, k) which was used for T == 0 in (22). It is 
obvious that, similarly to (36), we can write 

aD~1 (0; (!), k) - (' de dp A • Az A • 

all - - Sp .l (2n:)• @J (0, 8, p) s @J (0, 8, p) 

X Q(O; 8, p; ro, k). (39) 

Then substitution of (39) in (38) gives 

<'IM. (T) '= [ T 2J- ~ ~:] ~ (::)• D 0 (0; ro, k) a~ D~1 (0; ro, k). 
"' 

Then, in lowest order in temperature, the mag
netic field is determined by the formula 

M (T) = M (0) + [ T 2J - ~ ~:] 
s 

1 dp . a -1 (O· ) [r ~ _ I !!:!:!..] X j (2n:)• @<til (0, 8, p) all @{lex , 8, p + 4.J J 2n: 

"' 

(40) 

X r@l (0; 81, P1) ~z@l (0; 81, P1)lK,K,}. 

The expressions in (40) can be expanded by the 
method used in calculation of the heat capacity of a 

(36) Fermi fluid (see [ 9] ). As a result, we get 

By combining (35) with (36) we get 

bMF (T) = [ T 2_] - ~ ::.] 
E 

I dp (O· a -1 (O· ) X j (2n:)3 @<til ' 8, p) all @{lex ' 8, p . (37) 

oMsfTJ=~" 
Z!lo 

s 
FIG. 9 
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\ dk [ (!) (k) J-1 M (T) = M (0) - 2~-to.) (Z:rt)" exp ---r- - 1 

(41) 

We recall that P± is the limiting Fermi momentum 
and m± is the effective mass of the Fermi excita
tions for different spin directions. 

In order to determine the heat capacity per unit 
volume of the system, we use the well-known 
thermodynamic formula ( BM/BT)H = (88/BH)T, 
where S is the entropy per unit volume. We then 
find from (41) 

a 1 ak [ (!) (k) J-1 + aT .) (Z:rt)" w (k) exp ---r-- 1 . (42) 

We consider two limiting cases for the values 
of the magnetic moment and the heat capacity. If 
the temperature is sufficiently large, T » 2~-t 0H, 
then 

~ ("/2) ( T )'/, T• a 
M (T) = M (0)- 4n'f, flo ~ + 12 aH (p+m+ + p_m_), 

C _ T ( 15 ~ (5/ 2) ( T )'I• . -- 6 p+m+ + p_m_) + 32 -;;:r;- (l , 

t (x) is the Riemann t function. 

(43) 

In the temperature range T « 2~-t 0H, we have 

_ ~ (I_)'/, e-2p.,HjT 
4:rt'l• a, . ' 

C = I_ ( + ) + _1 _ ( 2f1oH )'/, ( 2f1oH )'/, _2p..H/T 
6 p+m+ p_m_ ,1, a. T e . 

B:rt (44) 

For the case T » 2~-t 0H, we investigate the 
problem as to whether the contributions to M and 
C from the Fermi excitations and from the spin 
waves intersect. The presence of the spin waves 
does not introduce into the Fermi spectrum of the 
excitations any singularities which would be essen
tial in the calculation of the first temperature cor
rections. These singularities would appear in the 
imaginary part of the Green's function. However, 
the lowest order contribution of the spin waves to 
the damping of the Fermi excitations is determined 
by the graph of Fig. 10, the value of which 
C/.J J E - J.t j 712• Therefore, the subsequent tempera
ture term in the heat capacity that is associated 
with the Fermi excitations (/) T 7/ 2 ln T; the term 

FIG. 10 

in the magnetic moment (/) T 9/ 2 ln T. The subse
quent temperature terms in M and C from the 
spin waves are proportional to T 512, which follows 
from the expansion of w ( k) discussed in Sec. 1. 

Thus the Fermi excitations and the spin waves 
in the lowest order in the temperature make inde
pendent contributions to the heat capacity and the 
magnetic moment of the ferromagnetic Fermi 
liquid. 

In conclusion, the author expresses his deep 
gratitude to I. E. Dzyaloshinski1 for suggesting 
the problem, for advice and constant interest in 
the work. 

APPENDIX 

We derive several formulas which connect the 
quantities characterizing the Fermi excitation 
spectrum with the vertex part of the interaction 
of the particles. These formulas are necessary 
for investigation of the singularities of the trans
verse components of the vertex part, and also for 
obtaining the temperature corrections to the 
thermodynamic quantities at low temperatures. 
With their help, we get relations for the effective 
masses of the quasiparticles on the Fermi surface 
and an expression for the longitudinal static sus
ceptibility of the ferromagnetic Fermi fluid. 

To obtain the desired formulas we shall assume 
that our system is located in an additional, infini
tesimally small, external field, which has the cor
responding interaction Hamiltonian 

:Jtint = ~ dl"'ljJ~ (x) <'IU etll (x) '¢13 (x). (A.1) 

Change in the Green's function of the system in 
first order in the value of the external field is de
termined graphically in Fig. 11, which corresponds, 
in the momentum representation, to the equation 

- e~c~~ = e~u"13 (k)- i ~ (;~r. r etx., [3x, (p, q; k) 

(A.2) 

As above, we shall assume that the system is in a 
magnetic field H which is taken into account 
exactly in all the quantities. In subsequent calcu-

IJG "= -®-+.b_ 
FIG. 11 
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lations, we shall neglect the relativistic spin-spin 
interactions everywhere. 

To obtain the first consequence of the relation 
(A.2), we insert the additional constant, inhomo
geneous magnetic field h ( x) = heik · r, which, as 
also H, is directed along the z axis. In this case, 

z 'k 6Ua{3 (x) = 2J.i.oSa{3 he1 • r. As k- 0, we get from 
(A.2) 

o~i G;1 (p) 

= -2fl0 {s~~- i~ <~~. r~x .. ~x,(p, q) !G(q);zG(q)l~,x,}· 
(A.3) 

It is evident that 

[G (p) s'zd (p)l~~"' = ~ !G! (p)lk. "'P~fl- ~ tc: (p)J"· "'P~~· 

In order to obtain a second relation, we place 
the system in an additional, inhomogeneous vari
able magnetic field h ( t) = he -iwt directed along 
the z axis. As w - 0, we find for the correction 
to the Green's function [from (A.2)], 

oc~t = - 2floh { s~~- i ~ (::~. r~x,, ~"· (p, q) 

x [G (q) ;z G (q)e,,.,}. (A.4) 

On the other hand, one can compute the value of the 
correction to the Green's function directly. Since 

:Jeint = 2fl0he-i<»t ~ dr')l~ (x) s~~'i'~ (x) := he-iwtj(fz 

and inasmuch as the magnetic moment is conserved, 
i.e., M commutes with the basic Hamiltonian, the 
change in the quantum operator is determined by 
the formula 

t t 

~ (x) = exp [ iMz ~ h (t') dt'] ~ (x) exp [- iMz ~ h (t') dt' l· 
0 1\ 

(A.5) 

But as w - 0, we have 
t 

~ h (t') dt' ---> ht 
0 

and we get from (A.5) 

\j),. (r, t) = {exp [- 2ifl0;zht)}ll/3 '1'13 (r, t). (A.5') 

For the Green's function in the Fourier repre
sentation in spatial coordinates, we get 

Gil~ (p, l1 , t 2 ) = {exp (- 2ifl0;zht1)}11Y Gys (p, t1 - f 2) 

x { exp (2ifl 0szht2)}s{l 

= G11y (p, t 1 - t2) {exp [- 2ifl0;zh (t1 - t 2)l}y13. 

Finally, in the Fourier time representation, we 

find 

Ga{l (e, p) = G+ (e- fl 0h, p) P~r. + G_ (e + fl 0h, p) P~fl· 

Combining this equation with (A.4), we get 

a (zc-1( )1 - z ·\' d•q r"' ( ) Te S p cx/3 -- Sll(j- ! .\ (2n)• llx,. {lx, p, q 

(A.6) 

To obtain the following relations, we assume 
that the system is placed in an additional, alter
nating homogeneous transverse magnetic field 
hx ( t) ± ihy ( t) = h±e±iwt. Here 

and :Jei is the value of the Hermitian conjugate of 
:Je 1• Then, in first order in the infinitely small 
field, the particle operators are represented in 
the following form: 

t 

\j)cx (x) = 'i'cx(x) + i ~ dt' [V (t'), ')l11 (x)], (A.7) 
-00 

where 

Denoting 

we write down the equation for V 1 ( t) in the form 

iW1 (t) I at = iei:H,t [:Jf0 , :Jf1 l e-i:H,t + imV1 (t). 

The only term in :Je 0 which makes a contribu
tion to the commutator [ :Je 0, Jf 1 ] is 

2fl0 ~ drH')l! (x) s~13')l13 (x), 

By taking into account the commutation rule of 
Fermi operators, we get 

Then 

V1 (t) = floh+ei(<»-2fLoH)I ~ dr')l! (x) S~/3 ')l/3 (x). 

Substituting the last equation in (A. 7) and taking it 
into accountthatV(t) = Vdt) + Vi(t), we get 

(A.8) 

where 

(A.9) 

Finally, we get from (A.8) and (A.9), 
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' floS~~h + ' 
~Ga~ (p, p) = 2 H .,., [G+ (p + k) - G_ (p)l 

w- flo -tu 

, , floS~~h-
X ~ (p - P - k ) + w - 2floH + i6 

X [G+ (p) - G_ (p - k')l 6 (p - p' - k'); (A.10) 

here k' = ( w - 2,u 0H, 0). 
This correction can be obtained from the gen

eral rule with the help of (A.2). As a result of 
comparison of the two results, we get the following 
equations: 

G+ (p) G_ (p - k) 

w- 2floH + i6 [G+ (p) - G_ (p- k')], (A.10') 

c_ (p) c+ (p + k) 

[ . \' d•q . J X 1 - l .\ (2n)• f 21, 12 (p, q, k) G_ (q) G+ (q + k) 

= 2 
1ll .6 [G+ (p + k')- G_ (p)l; (A.ll) 

w- flo -t 

Here k = (w, 0). 
Just as was done for the nonferromagnetic 

Fermi fluid, [to] one can get the following relations: 

fee~~ (p) = 6a(3- i~(;:~.r:x,{lx,(p, q) [G2 (q)l~,x,, (A.12) 

p fe c~~ (p) = p6a(3 

- i~(;:~.qr:x,.~x, (p, q) [G2 (q)l~,x,, 

a~ G~~ (p) = 6afl 

- i ~ (;:~. f~x,,f3x, (p, q) [G2 (q)l~ •. x, ; 

here 

(A.13) 

(A.14) 

(A.15) 

We now obtain relations connecting the effective 
masses of the quasiparticles with the values on the 
Fermi surface. Close to the Fermi surface, we 
get from (5), as E - 0, 

a c-1 _ 1 ae ± -a±, 

In order to get the desired relations for the effec
tive masses, we substitute (8) in Eq. (A.13). In 
this case, we find 

p p+ p p- ...L p .. 
·--- (3--- {l -U(3 

m+a+ a. m_a_ a 1 m et 

- . \' d•q q r"' ( ) G2 ( ) lk 
- l ~ (2n)• m ax,, {lx, p, q [ q x,x, 

p!a! \' "' ( q q ) 
- ( 2n)av+ ~ dQqf al,ill (p, q) ;:;:;: ---,;;:; 

p~a: I "' ( q q \ 
- (2n)"v_ ~ dQqf a2,{l2 (p, q) m - m_ }-

Making use of the relation 

1, "' 2nia! + 
[G2 (p)la{l = [ G2 (p)laJl- -v- Pa{l6 (e) 6 ( J P [ - PJ 

+ 

2nia2 

- v_- P~ll 6 (e) 6 ([pI - p_) 

and the expressions (A.14), we get, finally, 

1 1 P!a! ~ w 
- =-+ <2 l" dQ cos or11 u (O) 1n m+ 3t ' 

2 

+ ~~~:;: ~ dQ cos or~. 12 (O), 

1 1 p:a: ~ w 
- = - + <2 l" dQ cos or 22 22 (8) 1n m_ rt ' 

(A.17) 

The vertex parts entering into (A. 17) are taken 
at zero energies. The momenta lie on the corre
sponding Fermi surfaces; 13 is the angle between 
the momenta. Finally, let us find the longitudinal 
magnetic susceptibility of a ferromagnetic Fermi 
fluid. From (19) we find 

(A.18) 

For 8p±/8H, we make use of (A.3), taking it into 
account that, on the Fermi surface, 

a -1 v+ap+ 
aH C± =- 21-loA± '=a-· aii' 

± 

A+P~{l + A_P~Il = S~(l - i ~ (~~)4 r~x,,{lx, (p, q) 

X ( G (q) izG (q) J~,x 1 • 

Substituting (8) in (A.19), we have 

. (' d4q "' ' ' ' k = l J (2n)• fax,~x, (p, q) [G (q) szG (q)Jx,x, 

Making use of the equation 

(A.19) 
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rc ~P) 'Szc (p)l~~ = [G (p) ;zc (p)J:13 

and (A.6), we get a set of two equations: 

2 2 p2a2 -- 1 
p+a+ -"'-A +-=--=- f"' A = -A++ -2 2 fu.u + 2:rt2v 12.12 - 2a • 

Jt v+ - + 

Here we have used the notation 

10 1 = 10 2 = 0, and p 1, p 2 are taken on the Fermi 
surface. 

Determining ~. A_ from (A.20), and substi
tuting in (A.18), we get the final expression for 
the longitudinal static susceptibility of a ferro
magnetic Fermi fluid: 
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