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Expressions for the averaged electromagnetic field Green's function in an infinite medium 
with strong dielectric-constant fluctuations are deduced for the cases ka « 1 and ka » 1, 
where a is the fluctuation correlation radius of the medium. For ka « 1 the result reduces 
to a variation of the propagation constant and to the appearance of longitudinal waves. For 
ka » 1 additional weakening of the mean field does not reduce to a change in k. The mean 
square field fluctuation for ka « 1 is also computed; if multiple scattering is taken into ac­
count it is found to be smaller than the value obtained in a perturbation-theory first approxi­
mation. 

INTRODUCTION 1. THE PERTURBATION SERIES AND THEIR 
SUMMATION 

If the average value of the dielectric constant 
(E) = const, and if E ( r) = [ 1 + E 1 ( r)] (E) ( ( E 1) 

THE problem of electromagnetic wave propaga­
tion in a medium with fluctuations in its macro­
scopic parameters occurs in many different areas 
(plasma studies, geophysics, etc.). In most cases 
these problems are investigated with the help of 
some variant of first-order perturbation theory. 
However this method cannot be used to treat the 
propagation of waves in a medium with strong 
fluctuations (for example, near the plasma fre­
quency or near a critical point) nor can it be used 
in a medium with slightly fluctuating parameters 
in those cases where the field fluctuations turn 

= 0), then, after elimination of the magnetic field, 
Maxwell's equations can be written in the form 

out not to be small. Several papers have appeared 
recentlyC1- 3] in which attempts have been made to 
go beyond the limits of perturbation theory in par­
ticular cases. These papers have made widespread 
use of the diagram techniques of field theory. The 
present paper builds on the results of a preceding 
paper[2], which has treated the scalar wave equa­
tion for the case ka « 1 (a is the correlation 
radius for the fluctuations in the medium); the 
present paper extends these results to Maxwell's 
equations and also treats the case ka » 1 and 
gives a more consistent treatment of the field 
fluctuations. As in [ 2] we limit ourselves to the 
case of a monochromatic source proportional to 
exp( -iwt) and consider a medium for which 
J-1. = 1, u = 0, and E ( r) is a random function of the 
coordinates. 

(1) 

where k2 = (E) w2c-2, and ni is the unit polariza­
tion vector of the point source. The equation 
LijEj ( r) = fi ( r), with the radiation conditions for 
free space, has the solution Ej ( r) 
= Mji ( r, r') fi ( r') or, in inverted form, 

Mii (r, r') /; (r') = ~ GJ; (r, r') ft (r') d3 r', (2) 

where the kernel G~j of the operator Mij has the 
form 

G0 (R) = - exp (ikR) (4nRt1 , R = r- r'. (3) 

In the Fourier representation 
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(3a) 

Applying the operator Mki to (1) and making use 
of the equation MkiLij = okj• we obtain 

Ek (r) = - k2Mki (r, r') 81 {r') Ei (r') + niG2i {r, r0). {4) 

Solving the integral equation {4) by successive 
iterations, we obtain the perturbation series 
Ek(r) = Gkj(r, r 0)nj where 

Gki (r, r0) = G~i (r, r0) - k2M,ci (r, r') 81 {r') G~i (r', r0) 

+ (- k2)2 Mki (r, r') 81 (r') Mu (r', r") 81 (r") 

(5) 

The function Gkj ( r, r 0 ) is random, since it 
contains E 1• In what follows we will be interested 
in the average value < Gkj ( r, r 0)) = Gkj ( r, ro) 
and also in the mean square of this function. To 
average equation (5) one must know the moments 
of the function E 1: 

etc. We will consider the random field E 1 to be 
Gaussian. In this case < E 1 ( r 1 ) ••• E 1 ( r 2n+ 1)) = 0, 
and the even moments can be expressed in terms 
of the second moment. For example 

(81 (r1) e1 (r2) 81 {r3) 81 (r4)) = Bs (rv r2) Bs (r3, r4) 

+ B 8 (r1, r3) BE (r2, r4) + BE {r1, r4) BE (r2, r3). (6) 

Analogous formulas hold for the higher moments 
as well. These relations may be obtained easily 
with the help of the following rule, which we ex­
plain using (6) as an example: 

(81 (r1) 81(r2) 81 {r3) 81 {r4)) = 81 (r1) 81 (r2) ~\ (r3) 81 (r4) 

+ 81 (r1) s1 (r2) 81 (r3) s1 (r4) + 81 (r1) s1 (r2) 81 (r3) 1::1 (r4). 

(6a) 

Here an equal number of dots is used to designate 
a pair of factors which occur together within the 
overall averaging sign. One must take the sum of 
the products of all possible combinations of the 
2n factors taken two at a time. The number of 
terms in this expression is ( 2n - 1)!! 
= 1 · 3 · 5 ... ( 2n - 1). 

In averaging (5) one need keep only the even 
terms in the expansion. Applying (6a) we obtain 
...., 0 
Gki ~r, r 0) = Gki (r, r 0) 

+ k4Mki (r, r1) 81 {r1) Mil (r1, r 2) e1 (r2) G?i (r2, r0) 

+ k8Mki (r, r1) 81 (r1) Mu {r1, r2) 81 (r2) 

X M1m (r2, r 3) s1 (r3) Mmn {r3, r4) 81 (r4) G~i (r4, r 0) 

+ kBMki (r, r1) 81 (r1) M;z (rv r 2) 81 (r2) 

X Mlm (r2, r3) 81 (r3) Mmn (r3, r4) 81 (r4) G~i (r4, r 0) 

+ k81Yhi {r, r1) 81 (r1) Mil (r1, r2) 81 (r2) Mlm (r2, r3) 

X 'el (r3) Mmn (r3, r4) e1 (r4) G~i (r4, r 0) + . . . (7) 

We associate Feynman diagrams with expression 
{7) according to the following rules. 

1. The kernel of the operator Mki ( r 1, r 2), i.e., 
G~i ( r 1, r 2 ), is represented by a solid line whose 
ends correspond to points r 1, r 2 and to the indices 
k, i respectively. 

2. The correlation function BE ( r 1, r 2 ) is rep­
resented by a dotted line whose ends correspond 
to the points r 1 and r 2• 

3. The factor k2 is represented by a point (a 
vertex of the graph) at which a single dotted line 
and two solid lines meet. 

4. Integration is performed over the coordinates 
of all internal vertices of the graph, and convolu­
tion is carried out over all indices of internal 
vertices. 

These rules set up a one-to-one correspondence 
between the analytic description of individual terms 
in the series {7) and their graphical representation 
and permit one to write formulas graphically. 
Equation (7) is represented graphically in Fig. 1, 
where Gkj is represented by the heavy line. 

A diagram is called weakly connected if it can 
be divided into two parts by cutting one solid line 
(in Fig. 1 diagrams 3, 6, 7, 8, 9, 12 on the right 
hand side of the equality are weakly connected). 
The remaining diagrams are called strongly con­
nected. We now consider the subsequence of 
strongly connected diagrams Kij ( r, r 0 ) (which 
includes diagrams 2, 4, 5, 10, 11 and 13-20 in 
Fig. 1). Since each of the diagrams belonging to 
Kij begins and ends with the line G~n' we can 
write for Kij 

K;i (r, r 0)= ~ ~ G?1 (r, r1) Q1n (r1, r2) G~i (r2, r 0) d3r 1d3r2, 

where the function Qzn ( r 1, r 2 ) (''the mass opera­
tor") is represented by the graph of Fig. 2 or by 
means of the series 

Q;j (r1, r2) = k 4BE (r~o r2) cri (rio r2) 

+ k8 ~ ~ G?1 (r1, ra) G?n (r3, r 4) G~i(r4 , r2)Bs (r1, r4) 

xBs(ra, r2)d3rad3r 4 + ... (8) 

All the weakly connected diagrams which con­
tain only two strongly connected elements occur in 
the sum of graphs shown in Fig. 3a. For example, 
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graph 3 in Fig. 1 is obtained if one takes the first 
term in Qij• etc. All weakly connected graphs 
which contain only three strongly connected ele­
ments occur in the sum of the graphs represented 
in Fig. 3b, etc. It follows that Gij can be expanded 
as shown in Fig. 4. 

From Fig. 4 we obtain the integral equation 
represented in Fig. 5 (the Dyson equation). In 
fact, if one solves (graphically) the equation in 
Fig. 5 by using successive iterations and inserts 
in the right hand side of this equation the sum 
given by the right hand part of Fig. 5 in place of 
the wide line, one obtains the series shown in 
Fig. 4. We now write the equation of Fig. 5 in 
analytic form: 

Gii {r, r0) = G~i {r, r0) 

+ ~ ~ G?t (r, r1) Qln {r1 , r2) Gni(r2 , r0) d3r1d3r2• (9) 

When the fluctuations of E are statistically sta­
tionary, i.e. when BE(r1, r 2) = BE(r1 - r 2), it 
follows from ( 8) tha!_ Qij ( r 1, r 2) ;: Qij ( r 1 - rz). 
Then we also have Gij ( r 1, r 2) = Gij ( r 1 - r 2) and 
the integral in (9) is a double convolution. Hence 
when written in the Fourier representation, (9) has 
the form 

g;f (x' = {!~; (x) + (2:n) 6g~t (x) qzn (x) gni (x), (9a) 

where the Fourier transforms (designated by the 
corresponding lower case letters) are taken as in 
(3a). Equation (9a) can be solved particularly 
easily in the case of statistically isotropic fluctua­
tions, for which qij has the form 

q;j (x) = (c'\ii- X;Xpt-2) q 1 (x) + X;XjW2q 2 (x). (10) 

In this case 

gii (x) = {8n3 [k2 - x2 - 8n3q1 (x) ]}-1 { 6;i 

X [ 1 + 8n3 ql (x) -:. q" (x) ]} • 

- = -- + -<Z>--

FIG. 5 

(11) 

Thus Gij ( R) has been expressed in terms of the 
function Qij ( R). The latter, however, is given 
only in the form of the series (8). One may obtain 
an integral equation for Qij which expresses it in 
terms of a new unknown function (the vertex func­
tion) which leads ultimately to a nonlinear integral 
equation. We will not follow this course but will 
limit ourselves to investigation of the two limiting 
cases ka « 1 and ka » 1, where a is the correla­
tion radius of the fluctuations. 

FIG. 4 
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2. THE LIMITING CASE ka « 1. 

In this case we need consider only certain of 
the first terms in the expansion (8) of the function 
Qij ( R) in powers of the small parameter k. If 
one takes only the first term of the series for 
Qfr and calculates gg>(K) according to (11), then 

this function will sum the series represented in 
Fig. 6; this series is obtained from Fig. 4 if in the 
latter one takes only the first term in the series 
shown in Fig. 2 in place of Qij· 

Calculating the Fourier transform of Q~P ( R) 
= k4BE ( R) Grj ( R), we can obtain for the islJtropic 
case, after a rather complicated calculation, 
q~!>(K) in the form (10), where 

lJ 
00 

(I) k' (' [sin xr ( i 1 ) 
ql (x) = 2n• ~ Bs (r) Go (r) -------xr- 1 + kr - k"r" 

0 

+ (~ - sin xr) (1 + .1.!_- - 3-)J r 2dr (12a) 
x2r2 x3r3 kr k 2r2 ' 

00 

(1) k' (' G ( [sin xr ( 1 i 1 ) qz (x) = 2n" ~ Be (r) o r) ----,:z;;- + kr - k2r2 
0 

+ (2 sin xr _ 2 cos xr _ sin xr ) (1 + 3i __ 3_)] r2dr. 
x3r3 x 2r2 xr kr k'r2 

(12b) 

As was shown in [2], for the case of a scalar 
equation and a specific correlation function, the 
asymptote of the function G! ~> ( R) for R » a is 

lJ 

determined by the spectrum (11), in which one 
must put q 1,2 (K)- q 1,2 (0). Putting K = 0 in (12), 
we obtain 

00 

(l) (0 (1) (0 k' \ 2 ql . ) = q. ) = ;w- ~ Bs (r) G0 (r) r dr, (13) 
0 

_ -~- = [q.1 (x) - q2 (x)J 
8n3 - x2 x=o 

k" ~ ( . k 2r 2 ) 2 =iOn" ~ Bs (r)G0 (r) 1- zkr- 3 r dr. 
0 

(14) 

Putting these expressions in (11) and introducing 
the notation 

00 

k~ = k2 -8n3 qp> (0) = k2 + fk 4 ~ Bs (r) eikr rdr, (15) 
0 

we write g~~~ in the form 
lJ 

gj}> (x) z [8n3 (ki- x2)]-1 [6;j- X;Xjk1 2 (1- p)l. (16) 

This expression differs from g~j ( K) [ cf. (3a)] in 
that k has been replaced by k1 and a factor 
( 1 - {3) has appeared. Calculating the Fourier 

transform of ( 16) we obtain 

(1) ( ... 1 - ~ i)2 ) ( ) G;j (R) = Uij + -.-&R. i)fl. G1 R' 
kl l J 

Before analyzing these formulas we will point out 
their limits of applicability. To do this one must 
calculate kl, taking into account successive terms 
in the expansion of the function Qij. The calcula­
tions give the following expansion: 

k? = k~ + const · o4k7a5 + const. o4k8a6 In (1/ka) + ... 
(18) 

For ka « 1 we will have ka In ( 1/ka) » 1, so 
that one need keep only the second term in the 
above formula (the term connected with the third 
diagram in Fig. 2). Expanding eikr in (15) we 
obtain 

00 

cr 2 = (e;) = Bs (0), u 2a3 = 4n ~ B 5 (r) r2dr, 
0 

00 

flcr 2a2 = 4n ~ Bs (r) rdr. 
0 

(15a) 

The next to last formula determines the correla­
tion scale factor a, and the last formula is written 
down from dimensional considerations and in­
cludes a numerical factor p, which depends on the 
form of BE ( r). 

Comparing the second term in (18) with (15a) 
and requiring that their ratio be small, we obtain 
the condition 

(19) 

When tT2k2a 2 « 1 (19) is satisfied automatically. 
For tT2k2a 2 » 1 the following condition follows 
from (19); 

(20) 

When (19) is satisfied it follows from (18) that 

k = k1 + const · a4lc7a5k11 + ... 
Since k occurs in the exponent with the factor R, 
the last term may be neglected only if tT4k7a 5ki1 R 
<< 1, or 

(21) 

We put k = p + iy0 and assume that y 0 « p. 
Then using (15a) one may obtain an expression for 
k 1 ( accurate to terms linear in y 0 ); 

FIG. 6 
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k1 = pnerr+ irerf, 

n3 = } 1 1 + f1Cl2p2a2/6n, 

(22) /41 = k8 ~ ~~~Go (r, PI) Go (Pr. P2) Go (p2, Pa) Go (pa, P4) Go (p4, ro) 

X Bs (pi> P2) Bs (pa, p4) d3P1 ... d3 p4, 

The effective refractive index neff may differ 
considerably from the initial value, equal to unity, 
since it has not been assumed that the quantity 
CT2p2a 2 is small. The effective absorption Yeff 
consists of two terms. The first is proportional 
to y 0, but it is multiplied by a factor greater than 
one which takes account of the increase in absorp­
tion due to multiple scattering. The second term 
in (22c) is CTinvlneff• where CTinv is the effective 
cross-section for single scattering into the back 
hemisphere. Thus taking account of multiple scat­
tering diminishes the attenuation due to scattering. 
For the case ka « 1 one may obtain the following 
expression for the quantity {3, 

~ = -!o (n~ff- 1). (23) 

The coefficient {3 describes the appearance of a 
longitudinal wave. 

With the help of the general formula (17) one 
may calculate the average field of a point dipole 
in the far field. It has the perpendicular component 

Gj_ (R) =- [exp (ik1R)j4nR] sin 8, (24) 

where () is the angle between the dipole moment 
and the direction from its center to the point of 
observation; the longitudinal component is 

Grr (R) =- ~ [exp (ik1R)/4nR] cos 8. (24b) 

Thus the amplitude of the longitudinal wave is 
comparable with the transverse component if 
{3 ~ 1, i.e., if according to (23), neff differs sig­
nificantly from unity. 

3. THE LIMITING CASE ka >> 1. 

This limiting case is essentially that of geo­
metrical optics. As is well known, the depolarized 
component of the field scattered from fluctuations 
is of order ( ka)-2 compared to the primary po­
larized component, and for ka » 1 it can be 
neglected. Hence when ka » 1 we can neglect 
the depolarization term in (1) o2Ej /CJxiCJXj; when 
this is done the equation separates into three 
scalar equations. The Green's function of the 
scalar equation is G0 ( R) [ cf. (3) ]. The averaged 
Green's function will be represented by the series 
in Fig. 1, with G0 in place of Grj, 

Let us compare the fourth order diagrams 
( 3, 4, 5 in Fig. 1). The first of these is 

and the second is 

/42 = k 8 ~~~~Go (r, P1) Go (pi> p2) Go (p2, Pa) Go (pa, p4) Go (p4, ro) 

X Bs (PI> Pa) Bs (p2. p4) d3P1 ... d3P4· 

The characteristic length over which the function 
G0 ( R) varies significantly is the wavelength A.. 
The characteristic length over which BE ( R) 
varies is the correlation radius a. For ka » 1, 
i.e., for a» A., the function BE ( R) is very smooth 
in comparison to G0 ( R), and the integrals I41 and 
I42 can be found approximately by taking BE ( 0) 
outside the integral sign. In this case we obtain 
I41 ~ I42 ~ I43 • It is clear that the same estimates 
are valid for diagrams of higher order. Hence one 
may obtain the approximate value of the averaged 
Green's function if each of the terms in the series 
in Fig. 6 is multiplied by the number of diagrams 
of the given order, equal to ( 2n - 1) !! , and the 
resulting series is summed. 

This operation can be carried out explicitly. 
We use the notation a 20CT20 to designate the inte­
gral represented by the diagram of order 2n 
occurring in the series of Fig. 6 (the factor 
BE ( r) = CT2bE ( r) occurs n times in the diagram 
of order 2n ; bE ( r) is the normalized correlation 
function). The sum of the series in Fig. 6 has 
been calculated above; it is obtained from (11) if 
in the latter one replaces Qij by Q~~l. For the 

lJ 
case of a scalar equation ( cf. [ 2]) one has 

()() 

n=O 

1 (' exp(i-uR)d3x 

= 81t3 J k2- x2- ~zk• S Go (p) b, (p) exp (-ixp )d3p 
(25) 

(this formula was considered to be an approxima­
tion in describing the case ka « 1, but it is the 
exact sum of the series in Fig. 6). 

We are interested in the sum of the series 
()() 

G2 (R) = ~ a2n (R) o2 n (2n- 1)!!. (26) 
n=O 

Assuming that this series converges we put 

and interchange the order of summation and inte­
gration: 

()() ()() 

G2 (R) = ~ (nx(1' exp (- x) [ ~ a 2n (R) (2xo2t J dx. 
o n=O 
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Using (25) we obtain G1 ( R, 2xa2 ) for the internal 
sum, i.e., the function G1 in which a2 has been 
replaced by 2xa2• Introducing a new variable of 
integration t 2 = 2xa2, we obtain 

(27) 

In this way G2 ( R) is obtained from G1 by aver­
aging over if with a Gaussian weighting factor. 

The calculations that follow will be made for a 
particular correlation function of the type BE ( r) 
= cr2exp(-ar). In this case the integral (25) can 
be calculated exactly ( cf. [ 2] ) and is given by 

(28) 

C1. 2(t) = - in [ 1 ± ( 1 + a 2 (;::_~;ik)2 (
1'], (28a) 

x1.2(t) = ~ [k2 - (a - ik)2 ± V a2 (a - 2ik)2 + 41.:4t2 (', 

V 2 (28b) 

where t 2 has been written in place of a2• 

We will not calculate the integral (27) exactly 
but will rather investigate its asymptotic value as 
R- oo. To do this we apply the method of sta­
tionary phase to (27), since (28) contains a rapidly 
oscillating factor exp ( iK 1, 2R). The stationary 
point is t = 0. Expanding K 1, 2 ( t) and C1, 2 ( t) is a 
series for t = 0 and then calculating the integral 
(27), we obtain 

G2 (R)::::::; G0 (R) [1 + ~ k2 r:}Ra-1 (1 + ia/2kt 1r1'. (29) 

It follows from (29) that even for ka « 1 the 
average field decreases with separation more 
rapidly than G0 ( R), although this additional de­
crease is not exponential. 

We now compare (29) with the expression ob­
tained by applying perturbation theory to the 
eikonal equation. According to geometrical optics 
the field of a point source at the origin is given by 

R 

E (R) = - (4:rtR)-1 exp {ikR + ik ~ n1 (r) dl}, 
0 

where n 1 is the deviation of the index of refraction 
from ( n) = 1, and the integration is carried out 
along the ray. In the case I n1 I « 1, we can put 
n 1 R< Et/2 and carry out the integration along a 
straight line. Expanding the exponent in a series 
accurate to terms of second order and averaging, 
one easily obtains a formula valid for R » a: 

co 

[ k2R \ J (E (R)) = G0 (R) 1-~ .) B. (x) dx + .... (30) 

0 

When BE (x) = a 2 exp( -ax), (30) agrees with 
the first term in the expansion of the function 

G2 ( R) ( cf. [ 2]) in powers of a2, if one neglects 
in (29) the small term ia/2k compared to unity. 
Hence for the exponential correlation function, 
(29) can also be written in the form 

co 'I 
G2 <R> =Go <R>(1 + ; k2R~ BE <r>drf '. (29a) 

0 

It is an open question whether or not the asymp­
totic expression (29a) remains valid for correla­
tion functions of a more general type. However 
in any case its series expansion coincides with 
(30), and for Bdp) = a 2exp(-ap) this expression 
goes over into ( 29). 

4. THE CORRELATION FUNCTION OF THE 
ELECTROMAGNETIC FIELD 

We now consider the correlation function of the 
field 

B;i (r1 , r2) = <[E; (r1 ) - (E; (r1)) l IE; (r2) - (E; (r2))]) 

(31) 
and insert expression (5) for Ei in the right hand 
side of (31). We therefore obtain the expression 

W;i, Zk (r1 , r2; r0 , r~) = <[Gil (r1 , r 0)- (Gil (r1 , r 0))l 

X [G;k (r2 , r~)- <G;k (r2 , r~))]). (32) 

The functions Gil ( r, r 0 ) contain the random 
E 1 which are assumed to be Gaussian, as before. 
In representing (32) graphically we use the same 
rules of correspondence given previously with a 
single difference: solid lines at the bottom part of 
a diagram represent the function Gf~ ( r 1, r 2 ), and 

the points on the lower lines represent the factors 
k* 2• The vertices of a line, and points, and dotted 
lines have the same meaning as before. Inserting 
the series (5) in (32) we can obtain a formula 
( cf. Fig. 7) where the function Wij,Zk is repre­
sented on the left hand side of the equal sign. 
Because the average value has been separated out 
of Ei, the diagrams for W do not contain uncon­
nected diagrams (diagrams whose various parts 
are not connected). Figure 7 illustrates clearly 
the rule for construction of diagrams of order 
higher than 2n. One must put a single point on the 
upper line and ( 2n - 1) points on the lower line 
and then connect these by dotted lines in all possi­
ble ways. One then puts two points on the upper 
line and (2n - 2) on the lower line, etc. 

A diagram in Fig. 7 is called weakly connected 
if it can be divided into two parts by one cut 
through two solid lines (upper and lower), each 
of which contains at least two vertices (on either 
of the lines). The weakly connected diagrams in 
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Fig. 7 are 2, 4, 5, 7, 9; the diagrams 1, 3, 6, 8 
are strongly connected. 

We now consider the sum of the strongly con­
nected diagrams U. Each term in U is terminated 
by four solid lines, i.e., U can be represented in 
the form 

= ~ ~ 1 ~ G;~ (ri, PI)Gn (r2, p2) Qab, pq (pi. p2; pa, p4) 

X G~I(Pa• ro) G~~ (p4, r~) d3pi ... d3p4. 

The function Qab,pq is shown in Fig. 8 (part of 
the diagrams of sixth order are obtained from 
those shown by a 180° rotation around either the 
horizontal or vertical axes). 

The sum of the strongly connected diagrams 
has the form shown in Fig. 9a. The sum of all 
weakly connected diagrams containing only one 
element belonging to Qab,pq has the form shown 
in Fig. 9b. The diagrams 2, 4, 7, 9 from Fig. 7 
belong to the set in Fig. 9b. 

The sum of all weakly connected diagrams con­
taining only two elements from Qab,pq and an 
arbitrary number of strongly connected elements 
from G consisting of external solid lines and 
solid lines uniting two elements from Qab,pq• has 
the form shown in Fig. 9c. Diagram 5 from Fig. 7 
belongs to this set. 
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Continuing this discussion we obtain the expan­
sion for Wij,lk shown in Fig. 9d. In a manner 
analogous to the way the Dyson equation (Fig. 5) 
follows from the development of Fig. 4, the equa­
tion shown in Fig. 10 (analogous to the Bethe­
Saltpeter equation) follows from the development 
of Fig. 9d. In fact, solving the equation of Fig. 10 
graphically by successive iteration we obtain the 
development shown in Fig. 9d. We now write this 
equation in analytic form: 

= m~ G;a (ri' PI) c;b (r2, P2) Qab, pq(pu p2; Pa· p4) 

X Gpl (Pa• ro) G~k (p4 , r~) d3pi ... d3p4 

+ ~m G;a (ri, PI) c;b (r2, p2) Qab,pq (PI• p2; Pa· P4) 

X Wpq,lk (pi, p2; r0 , r~) d3pi ... d3p4 • (33) 

The linear integral equation (33) connects the cor­
relation function W with the function Q. In con­
trast to (9) this equation cannot be solved explicitly 
by a Fourier transformation. If we take for Q 
only the first term in the series, i.e., if we put 

Qab, pq(?l, P2; Pa• p4) ~ Q~IJ. pq(?I, Pz; Pa• P4) 

= I k 14 OapObq o (pi - Pa) o (p2 - P4) B, (pl, P2), 
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we obtain the so -called "staircase" approximation 
to the Bethe-Saltpeter equation, summing the dia­
grams of Fig. 11. 

The "staircase" approximation gives satis­
factory results only when ka « 1, since the suc­
cessive terms in the series for Q contain higher 
powers of k. However even in the "staircase" 
approximation, (33) may only be solved approxi­
mately using the limitation ka « 1. This approxi­
mate solution is based on the fact that for the case 
BE ( r) = o.2a36 ( r) one may easily obtain formally 
an exact solution, which may be used as the initial 
approximation for solution with a different correla­
tion function BE ( r) which is not a delta function. 
However, analysis of the solution obtained in this 
way leads to the conclusion that it has meaning 
only when one takes only the first term of the 
series in Fig. 11; i.e., when one may restrict 
oneself to the approximation 

wij, 1" (rl, r2; ro. r;)) ~ 1 k /4 ~~ C;a(r1 , pJ c;b (r2, p~) 
X B, (pl- P2) Gal (pl, ro) G~k (p 2, r~) d3p1d3p2. (34) 

This expression differs from the first term of the 
perturbation theo~ry series (Fig, 7) in replacing 
function G~j by Gij and hence it sums a certain 

infinite subsequence of perturbation series. If 
one uses the function G~~> ( r 1, r 2 ) found above for 

lJ 
Gij then diagrams 1, 2, 4, 7, 9 of Fig. 7 will occur 

in (34) as well as all diagrams containing elements 
of Fig. 6 in arbitrary combinations on the external 
lines. Expression (17) must be used for a!~>. 

lJ 
To simplify calculation of the mean-squared 

fluctuations, the field was treated as a scalar field. 
This calculation does not allow one to take account 
of depolarization effects but it correctly takes into 
account the effect of multiple scattering. The cal­
culation gives the formula 

A = < 1 E (r)- <E (r)> 1•> _ I k [•cr•a• ( 35) 
- I <E (r)> 1 2 - 8:rtYeff 

for the relative magnitude of the field fluctuations. 
Equation (35) is valid for A « 1, in which case 
one need take account only of the first term of 
the series in Fig. 11. This condition is equivalent 
to requiring that the first term in (22c) for Yeff 
(due to true absorption) considerably exceed the 
second term (due to scattering); it also imposes 
a limitation on the absorption y 0• Using this fact, 
(35) may be written in the form 

(35a) 

where the first factor is the value of A found by 
first order perturbation theory. For a2k 2a 2 » 1 
the quantity neff » 1, so that neff ( 2n~ff - 1 )-1 

~ ( 2neff )-1 (/) (era I k I )-1• In this case (35a) be­
comes 

(36) 

i.e., in the case of strong fluctuations of the dielec­
tric constant, the fluctuations of the field are pro­
portional to the third power of the frequency (in 
contrast to the Rayleigh formula) and are propor­
tional only to the first power of cr. Physically the 
slow increase in the field fluctuations with in­
creasing cr is due to the increase in absorption 
Yeff due to multiple scattering, which causes a 
decrease in the region from which waves are 
''gathered'' at the point of observation of the 
scattered wave. 

Note added in proof (Feb. 28, 1964). It has been shown by 
V. N. Finkel'berg [JETP 46, 725 (1954) Soviet Phys. JETP 
19, 494 (1964)] that a term 3"'k2 Dij (R) must be added to the 
right hand side of (3). Taking this term into account has the 
result that the quantity k2 = u/c "2 <E> in the final formulas 
must be replaced by k~ = w2c"2 €0 where fo is a root of the 
equation <(E- €0)(€ + 2Eo)"1 > = 0, where in determining fo 
one must take account of the deviation from a Gaussian dis­
tribution for the random quantity f(r). The author is grateful 
to Yu. Pt. Ryzhov, V. N. Tamorkin and V. M. Finkel'berg for 
pointing this out. 
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