
SOVIET PHYSICS JETP VOLUME 19, NUMBER 4 OCTOBER, 1964 

TRANSITION RADIATION FROM A UNIFORMLY MOVING CHARGE CROSSING A DIFFUSE 

BOUNDARY BETWEEN TWO MEDIA 

A.A.GALEEV 

Novosibirsk State University 

Submitted to JETP editor September 17, 1963 

J. Exptl. Theoret. Phys. (U.S.S.R.) 46, 1335-1343 (April, 1964) 

The high-frequency part of the spectrum of transition radiation is treated in the quasi
classical approximation in the case in which the characteristic length a in which there is a 
considerable chanffie of the dielectric properties of the medium is much larger than the wave
length: a » c/w£ 2• For such frequencies the radiation is exponentially small, in analogy 
with the phenomenon of "over-the-barrier" reflection in quantum mechanics. [5] 

1. INTRODUCTION 

GINZBURG and Frank [t] have shown that a 
charge moving with a speed less than the phase 
velocity in the medium radiates not only when its 
velocity changes during the motion but also when 
the optical properties of the medium vary along 
its path, so that there is a change of the speed of 
the electromagnetic field carried along by the 
charge as it moves through the medium. The case 
treated by these authors, and also in several other 
articles on transition radiation, is that of media 
with sharp interfaces. This is a good approxima
tion for radiation of wavelengths A much larger 
than the distance a in which a considerable change 
of the dielectric properties of the medium occurs. 
For the short-wave part of the spectrum of transi
tion radiation, however, it is very important to 
take into account the diffuseness of the boundary. 

Of course the treatment of the problem in the 
general case of arbitrary wavelengths is compli
cated, 1) and therefore we shall confine ourselves 
to the calculation of the transition radiation in the 
limit in which the wavelengths A of the radiation 
in the medium are much smaller than the charac
teristic length a of the inhomogeneity of the 
medium. In this limit, which is a natural com
pliment to the treatment of sharp bounding sur
faces, the transition radiation decreases exponen
tially as the length of the electromagnetic wave 
decreases, and the calculation consists of a sep
aration of this exponentially small effect, in ana-

l)This sort of treatment has been given by Amatuni and 
Korkhmazyan [ 2 ] for one particular form of the coordinate 
dependence of the dielectric constant, for which an exact 
solution can be obtained. 

logy with the way such effects are separated out 
in the theory of over-the-barrier reflection in 
quantum mechanics and in problems of the 
"nonconservation" of adiabatic invariants. 

2. THE FUNDAMENTAL EQUATIONS 

Let us consider a medium whose dielectric 
properties vary with the coordinate z. To deter
mine the field produced by a particle moving uni
formly along the z axis through the inhomogen
eous medium, we use the Maxwell equations: 

div H = 0, rot E = - c-1oH!ot, 
div ~E = 4nell (r- vt), 

1 a 8 E 4n ( 
rot H=c-~+cevll r-vt), ( 1)* 

where E and H are the electric and magnetic 
field strengths; e is the charge of the particle; 
v is the velocity of the particle: c is the speed 
of light in vacuum; and £ is the "dielectric con
stant" treated as an operator. [3] 

We introduce the vector and scalar potentials 

H =rot A, E = - c-1oA!ot - grad <p (2) 

and subject them to the Lorentz supplementary 
condition in the medium: 

divA + c-1o~<plot = 0. (3) 

Then the first two equations of the system (1) are 
satisfied identically. Next it is helpful to expand 
the potentials in Fourier integrals with respect to 
the time t and the coordinates x and y: 

A (x, y, z, t) =~A (w, k, z) e-iwt+ikrdkdw. (4) 

*rot = curl. 
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Then when we use Eqs. (2) and (3) we get from 
Eq. (1) the equation for the Fourier transform of 
the vector potential A: 

-. ---dtvA+ e(z w)--k· A d2A \?e . [ w2 '] 

dz 2 e ' c2 

= - 4ne ~ eiwzjv 
c v 

(5) 

The only nonvanishing component of the vector 
potential is the component Az = A in the direction 
of motion of the particle, and after the substitution 

A= Ae'f, 

we have the equation 

d2.1 ~ ,(02 2 v-I 1 )"]~ 
- .l Le (z w)- - k - e 1- A 
dz2 l ' c2 \ ve 

= - 4Jte eiwzjv • 
c y;.; 

When we have found the Fourier transform 

(6) 

(7) 

A ( w, k, z) of the vector potential we can easily 
find the scalar potential cp( w, k, z) from Eq. (3) 
and the electric and magnetic fields of the radia
tion from Eq. (2). 

3. THE SOLUTION OF THE EQUATIONS 

The presence of the small parameter 
c£' I w£ 312 < 1 enables us to solve the equation ( 7) 
in the "quasi-classical approximation" (cf., 
e.g., [4J) The Green's function which satisfies the 
equation 

dZG~:: ~) + [ e (z, Ol) ~:- k2- Ve (;e)"] G (z, s) (8) 

=-c - 6 {z - £), 

is obviously of the form 

G (z £) = {ljl- (~) ljl+ (z)/w (~). 
' w- (z) ljl+ (~)/w (z), 

(9) 

where 1/J + ( z) is the solution of the homogeneous 
equation (8) which for z - + oo becomes a plane 
wave travelling in the positive z direction, and 
for z - - oo the function 1/J- ( z) is a wave travel
ling in the negative z direction: w ( z) is the 
Wronskian determinant, which in our case is a 
constant. 

It must be noted that the solutions 1/J + and 1/J

cannot be defined simply as the quasi-classical 
solutions with the corresponding exponentials [4] 

z 

'IJ±(z)=)_p exp {±i~pd~}· (10) 
z 

where 

since Eq. (10) does not include the "over-the
barrier" effects, which in our case give the 
transition radiation. The over-the-barrier ef
fects can be included by using the method de
veloped in a paper Pokrovski1 and Khalatnikov ,C5J 
since our homogeneous equation (8) is of the 
same form as the Schrodinger equation considered 
in that paper. To do this we must continue the 
solution 1/J + ( z), which has the form ( 10) for 
z - + oo, into the region z - - oo not along the 
real axis, but along the so-called level lines, on 

z 
which the phase J pdz of the quasi-classical 

z 
function is real and the two solutions (10) are of 
the same order of magnitude. The solutions ( 10) 
are not valid near the complex turning points 
t 1 = z 1 + i1) 1, where p( ttl= 0, and also near 
poles of p ( z). At these points the asymptotic 
expressions (10) must be joined onto the exact 
solutions. 

The rules for passing around such points in 
typical cases have been formulated previously. [5J 
The result is that on the level line nearest to the 
real axis and connecting z - - oo and z - + oo 

(for example, in Fig. 1 the line L1 + L2 passing 
through the turning point t 1 ) we get the correct 
solution of the homogeneous equation ( 8). We then 
have to continue it from the level line to the real 
axis of z. We can then write the Fourier trans
form A in the form 

z 

X (w, k, z) = - 4ne { I IP- m IJl+ <zl ei"'~;" d£ 
c .\ w(~) Ve 

-oo 

(11) 

This formula is not very suitable for calculat
ing the field near the diffuse boundary, since in 
this region the solutions 1/J + and 1/J- are quite 
different from the quasi-classical solutions ( 10), 

and in order to include the exponentially small 
effect we need a very accurate continuation of 
1/J + ( t), 1/J- ( t) from the level lines onto the z 
axis and the calculation of an integral of a 
rapidly oscillating function. Therefore we con
sider the field A ( z) in the radiation zone, where 

FIG. 1. 
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the medium can be regarded as completely 
homogeneous and the dielectric constant £ ( z, w) 
as equal to constant values c:± ( w) for z - ± oo. 

Then for z - + oo we get 
+co 

A = 2Jte {'1\J+ (z) \ 1Jl- (~ eiwE,jv d£ 
w j Ve 

-co 

where, in accordance with Eq. (10), we have set 
w =- 2i. 

Since in the range of integration of the last two 
integrals we can use £ = £ + = const, p = p + 

= const, we can rewrite this expression in the 
form 2): 

A = 2rrc 'll+ (z) \' 1Jl- (~l eiw,;v dt - 4rr':__ eiwz;v 

IC ,) V e (~) - c V e+ (ffi/v)•- p 2 
~~ + 

Here we have displaced the path of integration in 
the first integral from the real axis to the nearest 
level line L1 + L2 (see Fig. 1). We note that in the 
two last integrals in Eq. (12) the over-the-barrier 
effects cancel each other, and the remainder de
scribes the radiation of a uniformly moving charge 
in a homogeneous medium. [3] In what follows we 
shall omit this part of the radiation 

Accordingly all of the transition radiation is 
described by the integral 

A = 2rre 'll+ (z) I 1Jl- (0 eiwr.,;va~ 
rc .\ fe(O ' 

z--> + 00 (13) 
I.1+Lz 

Precisely similarly we have in the region 
z--oo: 

(13a) 

Substitution of the quasi-classical solutions 
into these integrals would give an incorrect re
sult. This is because the integral itself is ex
ponentially small, whereas on the level lines the 
integrand is by no means small and oscillates 
rapidly, so that the small error in the asymptotic 
solutions changes the order of magnitude of the 
integral. We shall avoid this difficulty if we 
displace the path of integration so as to make the 
exponential factor as small as possible. When the 
path is displaced into the upper half of the ~ 

plane the integrand decreases exponentially 
everywhere owing to the cut-off factor 
exp ( -wv- 1 Im ~). The possibility of such dis-

2>Hereafter we shall everywhere suppose that w < 0, so 
that Jordan's lemma applies. Because A(r, t) is real, for 
negative frequencies w < 0 we have A(-w) = A*(w). 

placement is restricted, however, by the neces
sity of passing around the singularities of the 
integrand, i.e., of the solutions lf!+ ( ~) and lf!- ( ~ ). 
Since the evaluation of the integrals (13) depends 
on the types and relative positions of the singu
larities, it is reasonable to break up our treat
ment of the problem into calculations of the inte
grals (13) in several typical cases. 

a) Suppose the dielectric constant changes 
very little in magnitude, i.e., 

~e _maxe(z,ffi)-mine(z,ffi)<i· ( 14) 
e - mine (z, ffi) ' 

then, obviously, the entire region of rapid change 
of the function p2 ( ~) is concentrated near the 
singularities of £ ( ~, w). Suppose that we have 
as such a singularity a simple pole of £ ( ~) at 
the point ~ 0 with the residue £r· The point ~ 0 is 
a singular point of the differential equation ( 8), 
and consequently is a branch point of the solutions 

± lf! ( t). Therefore a cut must be drawn from ~ 0 • 

We further deform the path of integration L1 + L2 

in Eq. (13) into the contour C around the cut 
running from the point ~ = ~0 (Fig. 1). For non
relativistic speeds v < cc:-1/2 the integrand falls 
off rapidly along the path C as we go away from 
the pole ~ 0 , so that only a region of integration 
~ ~ v/w is important. 

In this paper we confine ourselves to the case 
in which the residue at the pole is not very small, 
so that in the larger part of the region of integra
tion we can use the quasi-classical approximation 
for the "field" ~ w2£r/c 2 ~: 

( 15) 

Using the order-of-magnitude estimate £r 
~ a~£ [a is the characteristic distance over 
which the important change of £ ( z) occurs], we 
rewrite the inequality (15) in the form 

(f)a/!e/c ~ c/v. 

Under this condition we can neglect the term 
£ t/2 ( £ -i/2 )" in the homogeneous equation ( 8) and 
write it approximately in the form 

With the change of variables 

£ = - 2ik0 (~ - ~0), 

Eq. (16) reduces to the Whittaker equation 

W" + (- ~ + ~ + 114 ~ fl 2
) W = 0. 

In the paper of Pokrovski1 and Khalatnikov [s] 
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it is shown that for the solutions we need we can 
choose the Whittaker functions [S]: 

'ljl± (~) = k~'f, exp {=FA ln ±e "'} W±~o, 'I• ( ± ~). (18) 

The values of the function W±A., 112 ( ±n on the 
contour C on the two sides of the cut are connected 
by the formula [B] 

w~.l'- (e-27ti ~) = e-2rtil. w~.. 1'- (s) 

so that the integral along the contour C reduces 
to the integral over ~ from 0 to oo of a Whittaker 
function, a power of the variable, and an expo
nential. The result we obtain is 

I± = \ t!'± (~) iwl;fv dl;, = exp (iffi~o Jv + 3ni/4+ A, In± /,fe) 
- ~ fe e 2'1•k2 8 'I• c o r 

x {< 1 - e+zrtil.) 4r (5/~ r (3;.) 
(ffi/kov ± 1) ;, r (5/z + /,) 

F (_!'i_ 1 =F A _!'i_ =F A. 2ffi + kov ) 
2 ' ' 2 ' 2ffi ± kov 

2nie+irtl. 4f (5/z) r (3/z) 

+ l' (1 + 1.) r ( + 1.) (ffi/kov + 1)'1· r (5!z ± /.) 

x F (~ 1 ±A ~ ± A' 2ffi ± k0v )} 
2 ' ' 2 ' 2ffi + k 0v ' 

(20) 

where F( a, (3, '}', ~) is the hypergeometric func
tion of Gauss. 

We can obtain simpler expressions for I± if 
the particle is nonrelativistic, v « c/£ 1/ 2 • In 
fact, the main contribution to the integral then 
comes from the region ~ ~A.( v£1/ 2/c )2 « A.. 
Moreover, by Eq. (15), A. » 1, and in this range 
of variation of A., ~ we can use the asymptotic 
expressions for W"A,I-l ( ~ ) for A. - 00 • [S] For the 
situation shown in Fig. 1, when arg A. < 7r/2 we 
have 

I+= I 0 {[D_,1, (- iv) + iD_,1, (iv)l e-irtl.- iD_,1, (iv) ei"l.}, 

(21) 

where 

eiw"C.oo/V ( )2 ( 7 ) 
I o = ' (!)" r 2 ev'f4, 2JI -2iver 

and Dp ( ") is the parabolic-cylinder function. 
The first two terms in the expression for I+ 

in Eq. (21) correspond to the quasi-classical 
solution p- 112 exp ( i J pd t) on the two sides of 
the cut, and the third term arises because on the 
left side of the cut there is an admixture of the 
exponential p- 1/ 2 exp ( -i j pd [;), which appears 
when the Stokes line is crossed. For I- there is 
no admixture of the "foreign" exponential 

exp ( i J pd t), since we never cross the Stokes 
line for the solution 1/J- ( t). 

If the distance between the turning point t 1 and 
the pole to is so large that the approximate equa
tion ( 16) is not valid, then for relativistic speeds 
v < c£- t/2 the calculation of the integrals ~ re
quires a knowledge not only of the pole part, but 
also of the whole behavior of the dielectric con
stant £( z) near the pole. In the nonrelativistic 
limit, on the other hand, it is enough to know the 
residue £r at the pole Furthermore, in the 
formulas (21) we must replace the expression for 
the integral 

1;, 

~pdf;,=- :rtA, 
1;, 

which holds only for Eq. (16), by the general 
expression 

In addition, for Im A. » 1 one can always neglect 
the last term in I+, Eq. (21), which appears be
cause of the Stokes phenomenon. 

b) As our second example let us consider the 
case in which the singularity nearest to the real 
axis is a branch point of the function £ ( z, w). 
At this point £( z, w) goes to zero according to 
the law 

e (z w) =[~-so]"'. 
' a (w) 

(22) 

Near this point (I t - to I « a) this main con
tribution is that from the term £1/ 2 ( r,- 1/ 2 ) ", and 
the wave equation ( 8) takes the form 

A"+ [(~- ~o )"' ~z_- k2 + 1- (1 + ct)• J A = 0. 
a c2 4 (~ - \;o)' 

By neglecting the first term in the square 
brackets in the neighborhood of to and making 
the change of variables 

~ = 2k (1;, - 1;,0), (1 + a)/2 = f1 (23) 

we reduce this equation to the form (17). Then 
the solutions we need, which go over into the 
solutions ( 10) with the lower limit of integration 
t 1 =to- ( i/2) [ ( 1 + a) 2 - 1] 112/k (the location of 
the level lines is given in Fig. 2), can be ex-

l 

FIG. 2. 
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pressed in terms of Bessel functions of imaginary 
argument K11 ( ~ /2) [6]: 

'ljJ± m = g-'f, exp (i ~ V~-t2 - 114) Wo, fL (± £) 

= g-'r, exp (± i ~ V [!2 - 114) 

X(± £,/:n)'f, K~'- (± £,/2). (24) 

The calculation of the integrals I± along the 
path C can be done easily by using the connection 
between the cylinder functions on the two sides of 
the cut leaving the point to [6]: 

K (em"iz) = e-m7tfLi K (z) - i:rt si~ m~-tn I (z). 
fL fL Sill ft1t fL 

We give the result only for the most interesting 
case, that of nonrelativistic speeds and a simple 
zero of £ ( z) ( a = 1 ) : 

I± V8na [. w r ± .n:{V3 -1) 
= -k- exp ! v .,0 l 4 . :rt J lt;. 

For arbitrary v and a the result can be ex
pressed in terms of hypergeometric functions 
[see Eq. (20) 1. 

(25) 

c) If the singularity nearest to the real axis is 
a branch point to of the function £ ( ?;) and 

8 (\;) = 8o + (~ :(;; r' 
then we cannot make the calculation of I± in 
general form by the method described above, 
since near to the presence of the term 
£t/2( £-t/2 )" in the "potential" leads to singulari
ties of the type 

(~- ~0 )11. 1 
.-a- (\;- \;o)2 ' 

and it is difficult to solve the wave equation. 
If, however, the quasi-classical approximation 

can be used in almost the entire region of integra
tion ~t ~ vI w, as is justified for 

I k•c• I ( c )2 ( v )a 
80 - WZ > v wa ' (26) 

then the integral over the path C going around 
the cut from the point t 0 can be calculated easily 
for nonrelativistic speeds by the method of 
Laplace [7]: 

in: a 
I ± = (-v )1+11. a-~ r (1 + ll) (2eo- k2c2jw2) -~ -~===---'-------'--'- e 2 (1 - e-27tia.) 

w V weg;c (eo- k2c2jw2)'/, 

1;, 

X exp( i w;o ± i ~ pd\;) . (27) 
1;, 

Thus the three cases we have considered 
differ in the coefficients of the exponential in the 
expressions for the vector potential [see Eqs. 

(23), (25), (27)]: 

eiw'C..0/V 

A= A (w, k) 1. 
w• 1 e(~, w) --k2 

c• 

I; ----~----~~~ 
X exp{± i~v 8 (\;, ro) ~:- k2 - Ye ( ;e r d\;} VB, 

I; 

z --> ± oo, (28) 

where 

A (w k) = ~ (~)2 r ('/2) e•'/4 
' c W V -2iver 

x [D_,1,(=t= iv) + iD_,1, (± iv)], 

if to is a pole of £( t) [cf. Eq. (21) 1; 

A ( k) =!.... V32:n:"a [. ~ r + in ("V3- n _ . ~] 00 ' c k exp ! v "'0 - 4 l 4 ' 

~ = s1• 
If to is a simple zero of £ ( t) [cf. Eq. (25) 1; 

2:rte ( v )1+ 11. -Cl r (1 + ll) (2eo- k2c2jw2) ei1ta.f2 
A (w, k) =- - a , 

c w V weg;c (eo- k2c2/w2) 1• 

x (1 - e-27tia.), ~ = So• 

if to is a branch point of£(?;) [cf. Eq. (27)]. 3) 

In cases in which £ ( t) has several singulari
ties of the indicated type, which give the same 
kind of contributions and are at distances much 
larger than the wavelength, we must sum all of 
the contributions in the expression (28). The de
pendence of the effect on the distance from the 
real axis to the nearest singularity of £ ( z) is 
always the same and is of exponential nature. 
Estimating this distance to be ~a, we find that 
the entire effect is of the order e-wa/v. 

From Eq. (28) we can easily get expressions 
for the Fourier transforms of the electric and 
magnetic fields. When, however, we ask for the 
total spatial dependence of the fields and the 
angular distribution of the radiation, we find them 
as integrals of the Fourier transform A ( w, k, z ), 
and it is impossible to calculate them explicitly 
without fixing the explicit form of the function 
£(z,w). 

The writer thanks R. Z. Sagdeev for the atten
tion he has given to this problem, and V. L. 
Pokrovskil and A. M. Fridman for a helpful dis
cussion. 

3>Each of these expressions is the first term of an 
asymptotic expansion in powers of v jc. 
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