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The cross sections for photoproduction of vector meson pairs on nuclei and protons are 
calculated by the random star method up to such energies for which the existing approximate 
formulas are inapplicable. The region of applicability of the obtained nonrelativistic formu­
las and of existing ultrarelativistic formulas is determined. An approximate formula for 
intermediate energies is proposed. 

1. INTRODUCTION 

To check on the hypothesis concerning the inter­
mediate vector boson [t] in weak interactions, 
various experiments have been proposed re­
cently [2-to]. Pontecorvo and Ryndin [2] proposed a 
neutrino method of generating vector bosons in the 
reaction v + Z- w + f.l (e) + Z. The cross sec­
tion of this reaction [2•4•7] is very small ( ~ 10- 35 

- 10- 37 cm2 ). Budini and Furlan [s] estimated the 
inverse process of generation of negative bosons 
by electrons, e + Z - w + v + Z. The cross sec­
tion of this process is close in order of magnitude 
to the cross section of neutrino generation. Baldin 
and Nguyen Van Hieu [B] estimated the contribution 
of the pole diagrams for the photoproduction of 
single vector bosons. B~setti [9] estimated the 
cross section of the photoproduction of neutral 
.vector bosons on a proton ( ~10- 35 cm2 ). The an­
nihilation of the baryon pairs of vector bosons 
was estimated by Zichichi [to]. Markov [3] and 
Bludman and Young [5] proposed to seek pairs of 
vector bosons in the purely electromagnetic 
photoproduction process. At low energies this 
process is greatly suppressed by the form factor 
of the nucleus, owing to the very large momentum 
transfer during pair production. However, the 
cross section increases rapidly with energy. 

In the present paper we calculate the photopro­
duction cross section for pairs of vector bosons 
with magnetic moment y = 1 [ Lagrangian L ( x) 
= -ie 1j! {3f.llj! ( Af.l + A~)]. For the lack of anything 
better, we carry out the calculation in the Born 
approximation. In the ultrarelativistic limit, the 
cross section for production on nuclei was calcu­
lated by Cristy and Kusaka as far back as in 1941, 
and recently by Lyagin and Tsukerman et al. [tt] 

Pair production on a proton was not calculated at 
all. The analytic method of calculating cross 
sections for pair production is cumbersome (even 
in the case of spin % ). In this connection, a gen­
eral method was developed for numerical calcu­
lation of the cross sections with an electronic 
computer directly from the Feynman diagrams [t 2]. 

It is applied here to the photoproduction of vector 
boson pairs. 

2. INITIAL FORMULAS 

The cross section for the photoproduction of 
pairs of vector bosons on nuclei (Fig. 1) is given 
in the lowest order in a by the formula 

dcr = Z2cx3dp+dp_F2 (I q-p+-P-1 a)(\ (qo _ p 0 _ p_o) 
8n•qop+oP-o I q -p+- P- I • + 

s+,s-,a 
( 1) 

+ ~4 [i~ (- p_ + q) + mr1 ~p.} w<-) (- p_, s_). (2) 

In these formulas q, p+' and p_ are the four­
momenta of the photon and of the positive and 
negative bosons af.l ( q, cr )-polarization vector of 
a photon with spin state cr, w(+) (p+, s+) and 
w(-)( -p_, s_ )-wave functions!) of the produced 
positive and negative bosons with spin states s + 
and s_ respectively, F-form factor of the nu­
cleus, which depends on the product of the mo­
mentum transfer and the mean square radius a 
of the nucleus. The expressions for F, corre-

l)The normalization is in accordance with w(±)/34 w<±) 
= ± 2p+ 0 (the signs are matched here, p0 = VP2 + m2); 

w = w*TJ•• TJ• = 2/3! - L 

894 
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FIG. 1. 

sponding to different distributions of a charge, 
are given by Hofstadter [13]. In the calculations 
we shall use the following form factors: 1) F 2 

= 1 (pure Coulomb nucleus, 2) F 2 (I q- p+ - p_ I 
a)= [ 1 + 1/ 6 I q- p+- p_ 12 a 2 ]- 2 ("Yukawa-2" 
model [13] ). 

Nonrelativistic limit. The Born approximation 
cannot be applied in the nonrelativistic limit. One 
can hope, however, that such a formula can pro­
vide a tentative estimate. There has been no 
exact theory developed to date, owing to the large 
mathematical difficulties, which in the case of a 
point like nucleus are also fundamental [14 • 15]. 

Leaving in rol ( s +' s_, u) only terms of zero 
degree in p+ and p_, we obtain (see the appendix) 

~ [~ (s+. s_, o) [2 =- 16. (3) 
s+, s_, a 

Making suitable simplifying assumptions in the re­
maining factors, we arrive at the formula 

d - zzctadp+dp_ pz (2 " ( -) 
cr- (4:n:)'m' ma) u qo- P+o- P-o , 

c; = :n:Z2ct3F2 (2ma) (q0 - 2m)2 
4m2 m' 

(4) 

(5) 

This process differs from the photoproduction 
of pairs with spin Y2 in the isotropy of the cross 
section and in the fact that the decrease with 
energy is only quadratic. For comparison we 
present the known formulas for the cross section 
of the last-mentioned process in the same approx­
imation 

de; = Z'cta dp+ dp_ [P+ q]' + [p_ q]' 
(8:n:)2m7 q2 

x F 2 (2ma) 0 (q0 - P+o - P-o), (6) 

cr = :n:Z2ct3F 2 (2ma) (q0 - 2m)a 
12m' ma 

(7) 

The photoproduction of pairs of vector bosons 
on protons is represented by the four diagrams 
of Fig. 2, so that the initial expression for the 
cross section takes the form 

~ = al'- (q,o) {u (p', s') {rp. [iy (p'- q) + mpl-1y., 

+ Yv [iy (p + q) + mpl-1 yp.} X 

(8) 

X n (p, s) w(+) (p+, s+) ~.,wH (-p_, s_) (p+ + p_)-2 

+ u (p', s') YvU (p, s) (p' - Pt2 u;(+l (p+, s+) 

X {~p. [i~ (p+- q) -1- m]-1~., 

+ ~v li~ (- p _ _j_ q) + m]-1 ~p.} wH (- p_, s_)}. (9) 

In these formulas u ( p, s) and u ( p', s') are the 
wave functions of the initial and final states of the 
proton in a state with momenta and spins p, s 
and p', s' respectively(normalization uy4 u 
= 2p0 ); mp is the proton mass, and v0 is the 
relative velocity of the photon-proton system. 
The remaining notation is the same as in ( 1) and 
(2). 

'-=:(~:r;_:~~::r:~-
p p• p P' p p•tt-• 

a b c Y d 

FIG. 2. 

The calculation was carried out without ac­
~ount of the magnetic moment of the proton and 
of the form factors, using (8) and (9) directly. At 
low energies the square of the Hofstadter form 
factor of the proton is Fb ~ 0.1. We can there­
fore expect in the region of low energies that our 
cross section will be higher than the true one by 
one order of magnitude. 

Nonrelativistic limit. If we retain in rol only 
the zeroth powers of P+ and p_, then we can 
easily calculate the sum over the spin states2): 

2(mp+2m) { (' m ) 
"' 1 ~ 2 = ----- 14 - 20 1 - + 2 .LJ n~2m P "~P m 

a, s, s', 

[ I m )2]( m )2} + 1 + 4 ( 1 + ,: 1 - mp + 2m ==: ~. ( 10) 

The integration over the momenta then yields for 
the cross section of the photoproduction of vector 
pairs on protons the following limiting expression: 

where M2 = -(p + q)2, and T3 = M- mp- 2m 
has near threshold the following form 

mp (mp + 2mt1 [q0 - 2m (1 + m/mp)l in the L.S. 

(11) 

(mp + 2m)2 [go- 2m (1 - mj(mp + 2m)] 
in the C. M.S. 

2)These calculations are carried out by the method in­
dicated in the appendix. 
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3. CALCULATION METHOD AND RESULTS 

The idea of the numerical method 3l which we 
propose [12] for the calculation of the Feynman 
diagrams is briefly as follows: in the absence of 
integrations over the internal lines of the dia­
grams, assignment of the numerical values of the 
initial and final states reduces the calculation of 
the amplitude only to multiplication of numerical 
matrices, which can be carried out with a com­
puter. The cross section (differential da and 
total a = J da) is then obtained as the weighted 
mean of the squares of the moduli of the ampli­
tudes. The averaging is over the entire aggregate 
of physical states: 

N 

a= lim_!__ 2] a(n), 
N-+ooN I 

If the states are described by a small number 
of variables (the dimensionality of the vector p is 
equal to 2 or 3), then they can be assigned in 
accordance with the usual rules for calculating 
the quadratures. In problems with the least 
degree of complexity, however, the phase space of 
the states has many dimensions, and the compo­
nents of the vectors p (the momenta and the pro­
jections of the particle spins) must be chosen in 
accordance with a random law (the Monte Carlo 
method). Depending on the choice of the phase 
space, the weighting factor W changes (the 
Jacobian of the transition to the new space is 
added), and the art of calculation consists in so 
choosing the p representation as to make W 
follow the variations of I ID2 1- 2. 

In calculations by the proposed method there 
is no need to calculate the traces or for other 
manipulations with the expression for the ampli­
tude, thus greatly facilitating the calculation of 
processes represented by a sum of many dia­
grams or requiring allowance for the form factors 
or terminating with decays of the produced parti­
cles. 

We now turn to our specific problem, photo­
production of pairs on a proton y + p - p' + w 
+ w (Fig. 2). The state of the system is deter­
mined by specifying the following: 1) the spin 
states of all five particles, 2) the momentum p+ 
= I p + I' the directions cp + arid A+ (A+ = cos e +) 
of the boson in the rest system of the two bosons 
ww; by the same token we determine the effective 
mass of the ww system, meaning also the mo­
mentum p' of the secondary proton; and 3) the 

3lApparently a similar method was used also by Lee, 
Yang, and Markstein [7]. 

directions A.' and cp' of the secondary proton in the 
c.m.s. The angles 8' are measured from the in­
teraction axis-the direction of the photon, while 
the angles e + are measured from the direction 
of the ww system; the choice of the planes from 
which cp' and cp + are measured is immaterial. 

This representation of the system states is 
convenient because the limits of variation of each 
of the foregoing quantities does not depend on the 
values assumed by the other quantities. There­
fore all ten quantities could be assumed to be 
uniformly distributed random numbers. However, 
at high photon energies q0 this representation 
will not do. It does not take into account the , 
presence of a pole of the amplitude at the point 
( p - p' )2 = 0, which is close to the physical 
region of variation of the variables. The contri­
bution of the cross section of the state with small 
momentum transfer increases even more if 
allowance is made for the presence of a target 
form factor (for example [1 + Y6 (p _ p')2a2]-1).4) 

To accelerate the convergence of the averages 
over the states to the cross section, it is neces­
sary to choose the states that are closer to the 
pole more frequently than other states, i.e., it is 
necessary to go over to a state phase space 
P1• ... , Ps such as to level-out the expression 

1 = dp'dp+dp_ 1 [i ++ (p _ p')2 a2]-2 
P~ P+o P-o (p- p')' 

X 64 (p' + P+ + p_ - p - q). ( 12) 

It is assumed that (12) is the expression responsi­
ble for the main part of the variations of the 
amplitude inside the state space. 

The method of searching for leveling repre­
sentation is obvious (the equations dx/f ( x) = dp 
are solved, see [16]), and we present only the 
result of the manipulations. We put 

M2+m2 
P - p 
u- 2M ' 

M2-m2 
IPI = 2M p' 

(13) 

M 2 ~ = 4 (p2 + m2) 
ww + ' 

M2+m2 -M2~ 
, p ww 

Po= 2M 

I p' I= (p'2- m2)';, 
0· p ' 

(14) 

4 lin practice this form factor is used only in calculation 
of production of pairs on nuclei. For production of pairs on 
protons, the form factors would enter in a more complicated 
manner, but they are disregarded in our calculation. 
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C = 1 + _!_Aa2 D = L Ba2 
3 ' 3 "' 

( 15) 

~ = B (1 + A.)/(A +B) (C- Df.,), (16) 

li' (A.) = ~B [ 1 + ~D (1 +A.) l/(C +D) (A - Bf,) 

+2D(ln(1-~)-l-~+-+~2 ], (17) 

( 18) 

P+ 

w (p+) = ~ w (p+) dp+. (19) 
o· 

Then we can go over from the representation 
Pt• .•. , P5 ( 0 s Pi s 1) to the representation p', 
p+, p_ using the following rules: p+ is the root 
of the equation 

(20) 

A.' is the root of the equation 

F (A.') = p2F (1}, 

A.+ = ·- 1 + 2p4, 

(21) 
<p+ = 2rtp5. (22) 

We transform I to the variables Pi• and 
readily obtain 

I = (16rt2/ M) W (P+max) dp1dp~dp3dp4dPs· (23) 

Furthermore, all 23 x 32 = 72 spin states u, s, 
s', s+' and s_ of the five particles participating 
in the transformation can be regarded to be 
equally probable and one of them can be chosen 
in accordance with the falling of the random 
number p6 in one of the 72 intervals [ ( k - 1/72, 
k/72] ( 1 :S k :S 72). 

In the representation p 1, ••• , p 6 the sought 
cross section is given by the formula 

1 1 

a=~ ... ~d6pW(p)[~(p}[ 2 , (24) 
0 0 

and !m ( p) is calculated from (9) or from (26)­
(32). 

The calculation is carried out in the following 
manner. For a specified value of q0, the integral 
(19) was first tabulated. Then for each next 
(n-th) set p 1, ••• , p6, Eqs. (20) and (21) were 
solved, cp', A.+, and cp + were calculated from 
(22), and then the obvious kinematic formulas 
were used to determine the rectangular compo­
nents of the momenta p', p +' and p_. It was then 
possible to calculate the weighting factor W ( p) 
(25), the components of the propagation functions, 
and the components of the wave functions w C +), 

wC- l, u, and u for the given set of spin indices. 
The ten-row Duffin-Kemmer matrices were taken 
in the following form (see also the appendix) 

0 0 si 0 0 0 0 I - - - - --
0 0 0 ut 0 0 0 0 

~i = - - -- ~4 = - - -- (26) 
si 0 0 0 0 0 0 0 

0 ui 0 0 I 0 0 0 

where the "cross" is one-dimensional; in par­
ticular, 

-i 0 0 

Ua =c 0 • (27) 
-i 

The plus sign at Ui in the "second" row of f3i 
denotes the Hermitian conjugate. 

The remaining matrix elements are 3 x 3 
matrices, namely: 

0 0 0 

0 0 -i 

0 i 0 

0 -i 0 

0 0 

0 0 0 

~ ~ ~ I'; 
-i 0 0 

(28) 

(the known spin matrices for spin 1). In this 
representation the boson propagator is written in 
the form 

X 

[ifl + m]-1 = (- ij3p + m) (- i[3p) + _i_ = ~-,-~-
f-'P (p•+m•)m m (p2 +m2)m 

- (sp)2 + p2 + m2 \ - p, up - im sp 

- p, u+p P! + m2 0 

- i~ sp I .0 - (sp)2 + p2 + m• 
- tmp, - tm up - p, sp 

-imp, 

-imu+p 

- P4SP 
(sp)• + m2 

(29) 
Each one-dimensional column (or row) of this 

inverse operator, after multiplication by p 2 + m 2 

and equating p0 = ±) p2 + m2, will be a renormal­
ized pos.itive- or negative-frequency solution 
wC±l(p, s) [or wC±l(p, s)]. For the orthogonal 
system of solutions w we have taken the first and 
tenth columns and the column orthogonal to them. 
We have proceeded analogously in the choice of 
w. The wave functions and the propagators of the 
fermion were calculated in accordance with the 
usual formulas (see [H]). 

Knowing the explicit form of all the matrices 
encountered in (9), as well as the columns and 
the rows, a computer was used to determine 
by direct multiplication four sets of numbers 
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rv = YP. [iy (p'- q) + mp]-1 Yv 

+ Yv [iy (p + q) + mp ]-1Yp.• 

Kv = u (p', s') rvu (p, s); 

Lv = u (p', s') YvU (p, s), 

llv = ~1'- [i~ (p+- q) + mr1 ~v 

+ ~v [i~ (- p_ + q) + m]-1 ~1'-' 

Tv = w<+> (p+, s+) llvw<-> (- p_, s_); 

Sv = w<+> (p+, s+) ~vw<-> (- p_, s_). 

(30) 

( 31) 

( 32) 

( 33) 

(The column u ( p, s) denotes the wave function of 
the target proton, i.e., depending on the value of 
s the column ( 1, 0, 0, 0) or ( 0, 1, 0, 0 ), multi­
plied by v' 2mp). Finally, recognizing that for our 
choice of axes a11 ( q, u) = o11u, we calculated 

~ (p - v v v v 4 
[ KS LT J 

) - v~ (P++ p_)2 + (p- p')2 ' 
( 34) 

and then the weight of the state u (n) 
= W(p (n)) J ID?(pCnl) !2• Such a procedure was 
repeated N = 500 times for each q0, with N 
sometimes increased to 1,000 and sometimes 
decreased to 250, depending on the scatter of the 
weights of the states u(n). The production of 
1,000 "random stars" consumed 30 minutes. The 
average of u(n) approximated the cross section. 
Along with the average weight, the computer 
evaluated the average angle of emission and the 
momentum of the bosons and protons and the 
error in the calculation of the cross section. 

To calculate the production of a boson on 
nuclei, we used the same program, putting only 
mp = 50 Ge V, introducing into the form factor 
the effective radius of the nucleus a, (in the cal­
culation of production on a proton we put a = 0), 
and multiplying the cross section by Z 2• It is 
clear that for q0 « 50 GeV this approximation is 
perfectly valid. The same program with mp = 50 
Ge V and a = 0 gave the cross section for the 
production of a pair of bosons on a Coulomb 
center. 

The choice of representation (20)-(22) turned 
out to be inconvenient for large values of q0/m: 
with increasing q0, the error in the determina­
tion of u increased, reaching 20% and above for 
q0/m ~ 50-100. Apparently, in addition to the 
pole at ( p - p' )2 = 0, an appreciable contribution 
to the photoproduction of boson pairs is made at 
high energies also by other states which are not 
taken into account by our choice of variables. 

log a, cm2 

m=fmp 
.~~--~~--~~~--~~ 

1,5 z 3 4 5 7 10 15 zo 30 50 100 
q0 ,GeV 

FIG. 3. Variation of the cross section of the process 
yp -. pww with increasing photon energy q0 • The calculated 
points are marked together with their errors. The curves 
were calculated by formula (35) with parameter x = 0.110. 
Dashed curve - cross section for the production of w in 
the backward hemisphere for m = mp. 

Not knowing the value of the mass of the inter­
mediate charged bosons, we calculated the cross 
section of the process yp - p'wW in the interval 
from threshold q0 =2m+ 2m 2/mp to~ 100 GeV, 
putting m = mp/2, 3mp/4, mp, 3mp/2, and 2mp. 
The dependence of the cross section on the energy 
is shown in Fig. 3. The same figure shows the 
curves calculated with the "empirical" formula 
with one parameter 

(35) 

in which unr and T3 are calculated from ( 11). All 
the calculated points fit best the family of curves 
of (35) with K = 0.110 ± 0.025, in which case l 
= 119 5l. We propose formula (35) for estimates 
of the dependence of the cross section of pair 
production on a proton on the photon energy and 
on the mass of the vector boson in the photon 
energy interval up to 100 GeV. 

S)The high value of X2 is connected with the incorrect 
estimate of the calculation error (the Monte Carlo estimates 
the errors in the integrals of strongly varying functions 
much worse than the integrals themselves). 
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Figure 3 shows also the probability of produc­
tion of vector bosons in the backward hemisphere 
at m = mp· To calculate this probability it was 
necessary to go over to a different representation, 
in which the states close to the pole ( p - p' )2 = 0 
are not distinguished in any way from the other 
states. This curve has an approximate character 
(the accuracy was low here), permitting only a 
crude estimate of the expected yield of bosons 
under conditions closest to experiment. 

Figure 4 shows the course of the cross section 
for the production of bosons on nuclei of lead 
( Z = 82; a= 5.42 F) and on the Coulomb center 
( Z = 1; a = 0), and also nonrelativistic and ultra­
relativistic (the Cristy-Kusaka formula) approxi­
mations to the cross section. We note that our 
calculation gives the cross section precisely in 
the regions where the approximate formulas ''do 
not work." 

In the table (and in Fig. 4) are given the re­
sults of calculations for the production of ww 
pairs on lead at m = 1.3 GeV: the cross section 
u, the average angle of emission 8, and the av­
erage momentum Pw of the boson in the labora­
tory frame. 

The angular distribution of the bosons is 
strongly elongated forward. Thus, in the reaction 
y -- ww on lead ( m = mp) the average angle of 
emission of the bosons varies from 45° .at q0 = 4 
GeV to 12° at q 0 = 10 GeV; in the reaction yp 
-- PwW it decreases (for m = 3mp/ 4) from 16° 
at 4 GeV to go at 30 GeV; for m = 3mp/2 the de­
crease is from go at 10 GeV to 5° at 50 GeV. 

logei;cm2 

-37 1---->-i!-+~L-.c~~~L...c---j 
I 1 3 4 5 6 7 8 9 /0 II 

f0,GeV 

FIG. 4. Cross section of the process y-> ww on the Ph 
nucleus (curve 1) and on the Coulomb center (curve 2) for 
m = mp. The curves 1UR and 2UR- calculated by Cristy 
and Kusaka formula, the curves 1NR and 2NR - by for­
mula (5). Curve 3 - the cross section of y -> ww on lead 
at m = 1.3 GeV. 

q,., GeV I a,cm2 1 e. deg I Pw GeV 

3 (1. 66 ± 0.13) -10-37 -90 -0.6 
4 (9 .4 ± 1) ·10-36 -80 -1.4 
5 (5.03 ± 0,45)·10-35 --50 -2,0 
6 (2.07 ± o;22)·10-34 .-50 -2.6 

10 (4.3 ± 0. 7)·10-33 -20 -!1. 7 

The average energy of the produced bosons is 
barely smaller (by 5-10%) than half the energy of 
the primary photon, because the proton energy is 
small and increases very slowly: 

p' = m [1.4 + 0.2 (qo- qo)/qo] 

Figure 5 shows for q0 = 7 Ge V and m = mp the 
dependence of the cross section on the atomic 
number. 

In conclusion we wish to thank Professor M. A. 
Markov for suggesting the topic and for interest 
in the work, to Om San Ha for great help in the 
calculation. We are also grateful to B. N. Valuev, 
V. I. Ogievetskil, and M. I. Shirokov for useful 
discussions. 

APPENDIX 

We wish to make a few remarks on the chosen 
representation of the matrices f3w 

1. The representation (26) corresponds to a 
transition from the Proca equations 

a[LAV- OvAl'-= mU [LV• 

01,Ul'-v = mAv 

to the Duffin-Kemmer equation 

(~l'-al'- + m) \jJ = 0 

for the wave function 

\jJ = (A1, A2, A3,- iA 4 ,- iU23,- iU31, 

- iU n. u 14, u2 •• u3.)· 

(A.1) 

(A.2) 

(A.3) 

(A.4) 

The quantities urn and sm, defined by (27) and 

1,8 
UJ 
1,4 
1,2 
I i--+--c---

0.8 
0.5 

20 40 50 

FIG. S. Dependence of the cross section of the process 
y.., ww on the atomic number Z of the nucleus at m = mp 
and q0 = 7 GeV. The ordinates show the cross section in 
units of 1 o-• 2 cm2 • 
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(28), have the following properties: 

UmU~ + Unu;;. = - (smSn + SnSm) + 2<'1mn• 

SmSnSl + SzSnSm = Sm<'lnl + <'~mnSz, 
Um(u~uz) + Uz (u~um) = Um<'lnl + <'~mnUz. (A.5) 

These properties ensure the satisfaction of the 
Duffin-Kemmer algebra by the matrices f3w 

2. The chosen representation ensures that the 
inverse operator (29) and the solutions w and w 
of the Duffin-Kemmer equation in the p-represen­
tation are real: 

(i~p + m) w = 0. (A.6) 

3. The sum over the spin state 
3 

~ w<±) (± p, s) w<±l (± p, s) = (p2 + m2 ) (± i~p + mt1 t 
S=l 

= (=F i~p + m) (=F i~p) jim, (A.7) 

where f = 1/2p0 for a normalization w (± l {34w(± l 
= ±1 and f = 1/2m for a normalization w(±)w(±) 
= 1 (the signs are matched; Po = .J p2 + m2 ), 
assumes in this representation in the non-rela­
tivistic limit the form 

3 II I 0 +I II ~ w<±l (0, s) w<±l (0, s) = + o o - o =II±, (A.8) 
S=l ±I 0 I 

where !-square 3 x 3 unit matrices, the central 
element is a 4 x 4 matrix, and the remaining 
matrices are rectangular with obvious dimension­
alities. 

4. Formula (A.8) enables us to simplify the 
calculation of the sum in (1) in the nonrelativistic 
limit. The sum over s_ and s+ in (1) is the 
trace 

Sp (AIT_A +II+) = Sp (BB+), (A.9) 

where A is the expression in the curly brackets 
of (2) (matrix), and 

B = II+AII_. (A.lO) 

We write A in the form 

(A.ll) 

where ai · are matrices of the same dimension­
ality as the corresponding elements in the repre­
sentation written out above for II±. Then B is 
written in the form of the direct product: 

B = c X II~ ~ =~II ' (A.l2) 

where 

C = T (au - al3 + aat - a3a) 

is a 3 x 3 matrix. Now 

= 4Sp (CC+). 

(A.13) 

(A.14) 

The calculation then reduces to operations with 
3 x 3 matrices using the properties (A.5). We 
note that because of the relation 

II+~vii_ = 0 

the diagrams (c) and (d) of Fig. 2 made no contri­
bution in the nonrelativistic limit. 
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