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The nonstationary quantum problem in which the bound state of a quantum system at first 
approaches and then merges for a certain time with the continuous energy spectrum, due to 
the slow variation of an external parameter, is considered in the general form. Such condi
tions may occur during collisions between negative ions and atoms. The energy distribution 
of the emitted particles (electrons) is obtained and the probability that the system remain 
in the bound state (i.e., no electron is detached from the negative ion) is determined. 

1. INTRODUCTION 

THE nonstationary problem in which, under slow 
variation of the external parameters of the system, 
two discrete energy states turn out to be close to 
each other and a transition occurs between them, 
has been thoroughly analyzed in quantum mechan
ics. To calculate the probability of such a transi
tion it is possible to employ in different cases the 
formulas of Landau and Zener[ i], Landau and 
Teller[2J, Zener and Rosen[3J, and others[ 4J. 

None of these formulas are usable, however, if, 
following the change in the external parameters, 
the discrete energy level comes close to and then 
merges with the continuous spectrum of the energy 
operator. In this case we deal with interaction not 
between two but between an infinite number of 
energy levels, so that attempts to consider such a 
process in the two-level approximation and to use, 
for example, the Landau-Zener formula are incor
rect. This can be seen at least from the fact that 
in this case there is no limitation preventing the 
merging of the levels, similar to the Neumann
Wigner theorem for discrete levels. A specific 
example of such a merging process are collisions 
of a negative ion A- with an atom B, when for a 
distance R between nuclei, smaller than some 
critical value R0, the bound state of the negative 
molecular ion AB- vanishes. This is known to 
take place, for example, in I1 + H collisions, 
since there is no negative ion of the compound 
atom He-. 

Hirschfelder et al. [fi] calculated the term of the 
negative molecular ion H2 and found the value of 
R0 for which the term H2 crosses the term H2, 

but the part of the curve given in that paper for 
H2 with R < R 0 is meaningless. It is obvious that 
in a variational calculation of such a term, as the 
number of varying parameters increases we 
should simply approach the boundary of the con
tinuous spectrum, that is, to the term H2, and the 
deviation from this term determines only the error 
made in the choice of the function, and nothing else. 
There is no justification whatever for assuming 
that such a curve determines, for example, the 
position of some quasistationary state against the 
background of a continuous spectrum. 

We note that merging is impossible when atoms 
or positive ions collide, since the removed elec
tron is in this case in the effective Coulomb field 
and there is an infinite number of discrete states 
near the boundary of the continuous spectrum. 

It is obvious that when the distance between the 
nuclei becomes smaller than R0, the bound state 
disappears and the wave function of the weakly 
bound electron is a wave packet made up of the 
states of the continuous spectrum, which gradually 
spreads out. After the collision, with further in
crease in the distance between the nuclei to 
R > R0, the bound state is re-established, part of 
the spread-out wave packet is again "captured" 
in the produced effective potential well, and the 
remaining part goes to infinity. 

The questions that must be answered by the 
theory are as follows. 

1. What is the probability w that the electron 
will remain in the bound state, that is, the prob
ability that no ionization will take place? 

2. What is the energy spectrum W (E) of the 
electrons produced during ionization? 
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2. FORMULATION OF THE PROBLEM AND THE 
TRANSFORMATION TO THE INTEGRAL 
EQUATION 

In order to proceed to consider the formulated 
problem concerning the merging, we note that if 
the discrete state is far from the boundary of the 
continuous spectrum and the change in the external 
parameters is slow (low velocity of colliding 
particles), then the wave function of the system 
develops adiabatically in time, and no transitions 
take place. The adiabaticity condition is violated 
only when the discrete level and the continuous 
spectrum are quite close to each other. In this 
case the ionization potential of the system is very 
low, and the wave function of the weakly bound 
electron has dimensions that are appreciably 
larger than the region in which the effective po
tential differs noticeably from zero. The electron 
is principally in that part of space in which no 
forces act whatever, so that its wave function 
satisfies the Schrodinger condition for a free 
particle. The presence of an effective potential 
well of variable depth can be taken into account 
by specifying the logarithmic derivative of the 
wave function as a function of t on the boundary 
of the well or, neglecting the well dimensions, at 
the origin. (Questions connected with the correct
ness of the assumptions made here and below, that 
is, the limits of applicability of the theory, will be 
discussed in Sec. 5 below.) 

We thus arrive at the following formulation of 
the problem. It is required to solve the Schro
dinger equation for the free electron under the 
assumption that the wave function is spherically 
symmetrical, that is, the equation 

( 1&2 .&) - 2 072 - l Tt 'ljJ (r, t) = 0, (1) 

under the boundary condition 

--. =f(t). ( 1 .0\jl) 
\jJ or r=O 

(2) 

The function f ( t) is shown in Fig. 1. 
When t ~ ± oo, f ( t) ~ -a < 0, and the effective 

Hamiltonian has one discrete eigenvalue - a 2 /2 
and an eigenfunction exp( -ar). When f = 0 
merging with the continuous spectrum takes place, 
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FIG. 2 

and when f 2: 0, the bound state is missing, and at 
large f the eigenfunctions of the continuous spec
trum are close to the diagonal functions of the free 
particle, that is, 1/Jk f::::! sin kr. 

It is seen from the foregoing that if we consider, 
as usual, the terms as functions of the internuclear 
distance, then the term corresponding to the bound 
state and the boundary of the continuous spectrum 
should come in contact at the point R0, as shown 
in Fig. 2; the crossing of the two curves at a cer
tain nonzero angle is impossible. (We are refer
ring all time to 1: -terms-states with identical 
symmetry.) 

Another initial condition, supplementing (1) and 
(2), is the requirement that as t ~ -oo the func
tion 1jJ ( r, t) have the form 

'¢(r,t)=V2aexp{-ar+ia2 tj2} ast-+-oo. (3) 

If we integrate (1) under conditions (2) and (3), 
then as t ~ oo the function assumes the form 

'ljJ (r, t) = cV2a exp {- ar + ia2tj2} + R(r, t). 

The square of the modulus of the coefficient c 
determines the probability w that the ionization 
will not occur and that the electron will remain in 
the bound state. The residual term R( r, t) tends 
to zero for all r and represents a spreading wave 
packet. For large t this packet characterizes a 
free particle and consequently, expanding R(r, t) 
in a Fourier integral, we obtain as t- oo the mo
mentum distribution of the emitted particles. 

It is clear from qualitative considerations that 
the more abrupt the change in the function f(t), 
the slower the decrease in the distribution of the 
emitted particles at large momenta and the faster 
the spreading of the wave packet. It is also clear 
that the principal role is played by the behavior of 
the function f(t) near the merging points, that is, 
the derivatives f(t 1 ) = -f(tz), and in addition the 
time T = tz - t 1 during which there is no bound 
state. The value of f ( t 1) can be expressed in 
terms of the velocity of the colliding particles 
(more accurately, in terms of ( dR/dt)Ro) and 
the derivative ( D2J/dR2 )Ro' where J ( R) is the 
electron binding energy in the system AB-. These 
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quantities are thus characteristic parameters of 
the problem. 

To continue the analysis, we change over from 
the semi-infinite interval 0 ::s r < oo to the infinite 
interval - oo < x < oo, and replace r by x in (1). 
Then the boundary conditions (2) will be automati
cally satisfied if we introduce in (1) a potential 
f ( t) o ( x) and consider a solution which is sym
metrical in x. Indeed, integrating the equation 

- _!_ a•ljJ- i olJl = -I (t) 6 (x) 'ljJ 
2 ox•, ot (4) 

with respect to x in a small interval from - E to 
+ E and letting E go to zero, we obtain precisely 
the condition (2). 

We now write down a formal solution of (4), 
regarding the right half as an inhomogeneity and 
using the Green's function for the operator 
- ( Yz) Fi /ax2 - ia/at (which is similar to the 
Green's function for the heat-conduction equation): 

G ( - , t t') - 1 [i (x- x')" + . n J t' < t· x x , - - V2n (t- t') exp 2 (t- t') l 4 , , 

t'>t. 

We obtain 
t 

'ljJ (x, t) = / 2n e-ain/4 ~ 1 (t') 'ljJ (0, t') 
-co 

(5) 

[ ix• J dt' 
xexp 2 (t- t') Vt- t'. 

Putting now x = 0, we arrive at an integral equa
tion for the function 'II ( t) = 1j! ( 0, t) 

t 
'Y (t) = 1 e-ain/4 \ I (t') 1fT (t') dt' • (6) 

V2n ~ Vt- t' 
-oo 

If we solve the resultant integral equation and 
obtain 'II for specified f(t) then, substituting the 
solution in the right half of (5), we obtain the un
known function 1j! ( x, t). 

However, Eq. (6) is apparently difficult to solve 
analytically if the function f has a form of any de
gree of complexity. 

In the simplest case, when f(t) =-a= const 
< 0, we have the obvious solution exp (ia2t/2). It 
is easy to verify that in such a case this function 
actually satisfies the equation, and substitution in 
(5) gives the function (3). 

If f ( t) depends linearly on t, then we can 
readily verify that the solution of (6) can be repre
sented in the form of a contour integral. Yet, as 
can be seen for example from Fig. 1, it is pre
cisely in the regions of interest to us-in the vicin
ities of the merging points-that the function f ( t) 

can be approximated in natural fashion by a linear 
function. 

3. SOLUTION OF THE EQUATION WITH A 
LINEAR APPROXIMATION FOR f ( t) 

We put in (6) 

I (t) = ~ t 

and seek the solution of the equation in the form of 
a contour integral 

'Y (t) = ~ eiut Z (u) du. 
c 

(7) 

The form of the integration contour will be made 
more precise subsequently. Substituting (7) in (6) 
and proceeding as usual, we obtain for Z the 
equation 

Z (u) = - ,~13 Z' (u). 
r 2u 

Solving this equation we obtain an expression for 
'11: 

'Y = A~ exp [~ (2u)'f, + iut ]au, 
c 

( 8) 

with both branches of the contour going to infinity 
in such a way that the exponential under the inte
gral sign decreases. 

Substituting the solution (8) in Eq. (5) for 
1j! ( x, t) and carrying out the necessary integrations, 
we obtain 

'ljJ (x, t) = A~ exp [~ (2u)'h+ iut- }f2u J x 1] du. 
c 

In order to get rid of the ambiguity, we intro
duce the variable v = ffu. We then obtain an 
especially simple expression for lj!: 

'ljJ =A~ exp [~ v3 - v Jx 1 + iv; t J vdv, 
c 

( 9) 

from which we see directly that 1j! is a solution of 
the Schrodinger equation for the free particle. It 
is also easy to verify directly, by differentiating 
(9) with respect to the parameter and integrating 
by parts, that the boundary condition (2) is actually 
satisfied. 

It remains only to determine the form of the con
tour C. To this end it is sufficient to consider the 
behavior of 1j! at x = 0 and t- -oo. When 
t- -oo we can write in the adiabatic approxima
tion 

At the same time the function 1j! should de-
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FIG. 3 

crease for all x like some power of t as t ~ oo. 

The saddle points for the integral (9) have at 
x = 0 values v = 0 and v = -t. The behavior of 
the modulus of the exponential under the integral 
sign is shown in Fig. 3, where the shaded regions 
are those in which the exponential is larger than 
unity in absolute value. The right and left saddle 
points correspond to values 0 and -{3t, depending 
on which is larger. By calculating the integral by 
the saddle point method, we find that the integration 
contour has the form shown in Fig. 3. Then as 
t ~ - oc the actual asymptotic form of 'l1 is 

(11) 

and as t ~ oo it decreases: 

'¥ (t) ~- tVz;~sts. 

The constant A is equal to ( i/3n )-1/Z. Thus, the 
normalized wave function has a final form 

'\J (x, t) = V;Jn ~ exP(~~ + i ~t-v I xI ) vdv. (12) 
c 

If j x I ~ 0, then the right-hand saddle point shifts 
downward and to the right, while the left-hand 
point shifts upward and to the left, and the asymp
totic form of the function .p is likewise easy to 
investigate. When t- -oc we actually obtain the 
asymptotic form (10), but only for x « {3t2 . For 
very large x, when x » {3t2, the function decreases 
more rapidly, in accordance with 

'\J~exp (-~ V- i~x3 ), 

which is understandable, for at large values of x 
the changes that occur at the point x = 0 should 
not come into play instantaneously in noticeable 
fashion, so that the adiabatic approximation is not 
satisfied for very large x. When x is large the 
function "stores," as it were, the information on 
the value of f ( t) during the preceding instant of 
time, and accordingly decreases more rapidly. 

An investigation of the asymptotic behavior for 
x ~ 0 and t - + oo shows that the function actually 
decreases with increasing t for all values of x in 

accordance with a power law. It is also easy to 
express the function .p (x, t) in terms of the Airy 
function (see, for example [sJ). We obtain 

'lJ (x, t) = _ 2~-'f,ei (/l'l'+'n)/12 :X {elltx/2 <D [Wf,e-in/6 ( x + ~!2 ) ]}. 

However, in the investigation it is more convenient 
to use expression (12) for .p directly in the form of 
a contour integral. 

4. MOMENTUM DISTRIBUTION OF THE EMITTED 
ELECTRONS AND IONIZATION PROBABILITY 

We now consider the momentum representation 
for the function .p ( x, t) as t - oo. To this end 
we multiply (12) by the normalized function of the 
free particle ..f2Ti sin kx and integrate with re
spect to x from zero to infinity. We obtain 

-. /Tf \ (.a 2 ) cp (k, t) = V i~n2 J sin kxdx J exp ~~ + i y t- vx vdv. 
0 c 

If we now shift the contour C in such a way that it 
lies completely in the right half-plane, then we 
can interchange the order of integration and cal
culate the elementary internal integral with respect 
to x. We then get 

1 -. /2\ (iva . v2 ) kvdv 
cp (k, t) = 3t V i~ ~-exp 3~ + l 2 t v2 + k2 , 

If we calculate this integral for t - oo along 
the contour C which passes through the saddle 
point v = 0, then we obtain a function that tends 
to zero for all x. Such a contour, however, passes 
between the poles v = ± ik, whereas the contour 
C' passes after deformation to the right of both 
poles. The difference between the two integrals, 
along the contour C' and the contour C, is the 
integral over the closed contour which encircles 
the pole v = - ik. Calculating the residue of the 
integrand, we obtain 

-./2 { ks ik2 .3n} cp (k,t) = V [rkexp - 3i3 + 2 t -z 4 

+-. /2 (' {ivS . v2 } kvdv 
V in2~ ~ exp 3i3 + l 2 t vz + k2' 

The part which is separated upon integration over 
the residue does not decrease as t - oo and has 
the form of the momentum wave function of a free 
particle. It is this part which gives us the sought
for (and quite characteristic) momentum distribu
tion of the electrons: 

2 { 2k3 } W (k) = 1f k2 exp . - 3~ . (13) 

The normalization condition 
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00 

~ W(k) dk = 1 
0 

is automatically satisfied. The qualitative predic
tion made at the end of Sec. 2 is justified. Indeed, 
for large [3, that is, when f(t) varies very rapidly, 
the spectrum of the emitted electrons shifts 
towards the higher energies. 

Using a linear approximation for f ( t), we ob
viElusly cannot calculate the ionization probability 
directly. Inasmuch as f- + oo as t - + oo, the 
ionization occurs with unity probability, unlike in 
the real case. The momentum distribution ob
tained here for the emitted electrons is likewise 
meaningful only when the ionization probability 
for the real function is close to unity and the sys
tem is almost certain to disintegrate soon after 
reaching the critical distance R0, when the linear 
approximation is still valid. 

In order to estimate nevertheless the probabil
ity that the electron will remain in a bound state 
after the collision, let us call attention to the fact 
that if we have two solutions, lj! 1 ( r, t) and 
lj! 2 (r, t), which satisfy (1) and the boundary condi
tion (2), but with different initial conditions, then 
the integral 

(14) 

does not depend on the time. We see therefore 
that the sought probability is the square of the 
modulus of such an integral, if we substitute for 
lj! 1 a function which satisfies condition (3) as 
t - - oo, and for lj!2 a function which satisfies 
the same condition as t- -oo. The condition (3) 
denotes that the particle is completely in a bound 
state. Thus, the function lj! 1 corresponds to the 
usual formulation of the problem, and for lj!2 we 
stipulate that the particle be in the bound state 
after the collision. 

If we break up the entire interval -oo < t < +oc 

of the variation of the function f ( t) into five parts 
(see Fig. 1), separating the vicinities of the 
merging points, then for the function lj! 1 we have 
in region I the usual adiabatic solution, which 
goes over smoothly in region II into the solution 
considered here, corresponding to the linear ap
proximation f. In region III the latter goes over 
into the solution for the free particle. Analogously, 
for lj!2 we can construct a solution which goes over 
in region V into the adiabatic solution, and in re
gion III into the solution for the free particle, and 
calculate the integral (14) for some value of t in 
the region III. By the same token we eliminate the 

need for continuing the function lj! 1 into the regions 
IV and V, and the function lj!2 into the regions II 
and I. 

It is more convenient to calculate this integral 
in the momentum representation. The function 
c.p 1 (k, t) will be equal in region III to the first 
term of formula (26). For c.p 2 ( k, t) it is easy to 
obtain in the same manner, taking into account the 
shift of the time origin by an amount T, an expres
sion 

.• /2 [ k3 ik2 • 3Jt] cp2 (k, t) = V lf k exp - 3/3 + 2 (t - T) + t 4 . 

We get 
00 00 

I 
\ . 

1
2 I 2 \ ( 2k2 .k. l2 

w = J <p2<p1dk = lf J exp - 3/f + ~ T ) Pdk . (15) 
0 0 

Calculating this integral for large T and ne
glecting the first term in the argument of the ex
ponent, we obtain ultimately 

(16) 

5. DISCUSSION OF THE REGION OF APPLICA
BILITY OF THE OBTAINED FORMULAS AND 
OF THE ASSUMPTIONS 

We first define more precisely the meaning of 
the parameter [3 which enters into the final formu
las. For t < 0 we have in the vicinity of the 
merging point 

( d2J )'/, (d2J )'/, (dR) 
~ = d£2 l=o = dR2 R, dt R,· 

Formulas (13) and (16) can then be rewritten, 
going over to arbitrary system of units and to an 
energy distribution, in the form 

W(E) = yE'1'exp ( -frE'1'), y = 2~' (d~):1 (~"1.):';,; (17) 

= 2nh (d2J )-1 (dR)-2 
w T 3 dR 2 o dt o . 

( 18) 

The quantity ( dR/dt) 0 is the projection of the ve
locity of relative motion of the nuclei on the line 
joining them at the instant when the level merges 
with the continuous spectrum. For different esti
mates it can be replaced by V -the velocity of 
relative motion of the nuclei at infinity. 

Let us proceed now to estimate the limits 
under which the theory is applicable. The distri
bution (13) has a maximum at k = [31/ 3, which cor
responds to an energy [3 213 /2. It is obvious that 
the particle can be regarded as free only in the 
case when the quantity f2/2 with f > 0, analogous 
to the energy of the bound state with f < 0, is 
large compared with [3 213 /2, that is, 
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The linear approximation for f should be valid 
up to the time ± defined by this inequality. Re
placing t by oR/V, where oR is the interval in 
the vicinity of R 0 in which the linear approxima
tion is valid, we obtain 

( d2J) (6R)3 ~ i 
dR2 o hV ~ 

-a condition analogous to the known Massey 
adiabatic criterion. 

(19) 

From the very same condition it follows that in 
those cases when the theory is applicable the 
probability w is small, and also that the integral 
( 15) can be calculated by the saddle point method. 
When {3 2T3 ~ 1 the theory is not applicable, and 
the ionization probability can essentially differ 
from unity. 

We note that the limitation indicated here on the 
side of large V is entirely connected with the ap
proximate method used to solve the problem formu
lated in Sec. 2. If we solve this problem, for exam
ple, numerically, then for a real function f ( t) 
(and for a Volterra type equation such a solution 
can be obtained by the method of steps), we can 
get rid of this notation at the expense of compli
cating the calculations. 

Another essential limitation is connected with 
the replacement of the system of the two atoms 
by a point singularity at the origin. It is obvious 
that such a replacement is valid only for the mo
menta corresponding to a wavelength which is 
appreciably larger than the dimensions of the 
system of the colliding atoms. We thus arrive at 
the inequality 

~'/, = m'!, (hV)'I• (d2JjdR2)~' ~ 2rthjR, 

or 

V'f, ~ 2rtR- 1m-'l•h'l• (d 2 JjdR2 )";;'1•, (2 0) 

where R is the effective dimension of the system. 
This limitation is quite important, because the 

velocity enters into the inequality in the 1;'3 power. 
Therefore even for very small velocities the left 
half can be only a few times smaller than the right 
half. 

We can expect, however, that even under those 
conditions when this inequality is not satisfied, the 
energy distribution of the emitted electrons will 
be described by formula (17) at low energies, 
whereas the position of the maximum and the be
havior at large energies will be determined by the 
finite dimensions of the colliding-particle system. 

Finally, there exists an obvious limitation con-

nected with the classical analysis of the nuclei of 
the colliding atom and ion, on the side of low veloc
ities. It is necessary here that the kinetic energy 
of relative motion of the atom be noticeably larger 
than the energy of detachment of the electron from 
the negative ion. Only in this case can we ascribe 
a definite relative velocity V to the nuclei in the 
vicinity of the merging point R0• 

6. CONCLUSIONS 

It is difficult to apply the results obtained di
rectly to an interpretation of experimental data, 
since apparently there are no data on the energy 
of the electrons emitted in the reaction A + B
- A+ B +e. 

In addition, the quantity ( d2J/dR2 ) 0, which 
enters into the theory, has not been calculated 
even for the simplest case H- + H. Nonetheless, 
the theory considered makes it possible to make 
the following general predictions. 

1. The average momentum of the emitted 
electrons decreases quite slowly (as vl/3 ) with 
decreasing velocity of the colliding particles. 
This circumstance essentially limits the applica
bility of the theory, but the violation of the applica
bility conditions can lead (when V ~ 1) only to a 
shift of the average momentum to a value k0 

= 2rrh/R, that is, at any rate it cannot lead to very 
small values of the momentum. 

2. For small momenta k the distribution of the 
emitted electrons is isotropic and is proportional 
to the square of the momentum (energy). The 
momentum distribution for large k will follow 
formula (13) up to k ~ k0• 

3. The ionization probability is large if 
j3 2 R~ /V3 is much larger than unity. In this case 
the ionization cross section is determined by the 
geometrical cross section of the target of radius 
R 0 [ 7]. On the other hand, if this quantity is 
smaller than unity, then the theory is not appli
cable, the ionization probability for R < Ro de
creases, the adiabatic analysis is not suitable, and 
an essential contribution to the cross section is 
made also by the far collisions, in which the dis
tance between the atoms does not decrease to R 0. 

4. The problem considered here, involving the 
"pushing out" of the bound state of a quantum 
system into the continuous spectrum by slow vari
ation of the external parameter, is quite general in 
character. It is quite possible that the results ob
tained can be used in other cases. 

In conclusion, I am grateful to V. A. Fock, 
G. F. Drukarev, G. V. Dubrovskil, A. M. Ermolaev, 
and other members of the Theoretical Division of 
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the Leningrad State University Physics Department 
for a discussion of the work and valuable advice. 
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