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The theory of the propagation of electromagnetic excitations inside metals placed in a strong 
magnetic field is considered for an arbitrary electron dispersion law. The limiting case is 
analyzed where the excitation wavelength is large compared with the Larmor radius and 
small compared with the c·arrier mean free path. It is shown that anisotropy of the electron 
dispersion produces new features in the spectrum, attenuation and polarization of the exci­
tations. In metals with a simply-connected Fermi surface the attenuation of the helicoidal 
electromagnetic wave is nonmonotonic in the field strength. Polarization of this wave de­
pends greatly both on the direction and strength of the static magnetic field. In metals with 
equal electron and hole concentrations anisotropy of the Fermi surface leads to the disap­
pearance of the Alfven wave in the field region where the Alfven velocity is smaller than the 
Fermi velocity. On the other hand, in this region a new electromagnetic wave is generated 
having a quadratic spectrum independent of the field strength. The electric field vector of 
this wave is directed along the static magnetic field. 

IN [1] we showed that weakly damped electromag­
netic waves of different types can propagate in a 
metal placed within a strong metal field. Thus, 
"helicoidal" waves exist in metals having unequal 
electron and hole concentrations (n1 ""'n2 ). The 
spectrum of these excitations is determined by the 
Hall conductivity and is thus quadratic. In the gen­
eral case wave damping results from spatial dis­
persion (Landau damping), and in special cases 
from the collisions of electrons with scatterers. 

In metals having equal carrier concentrations 
(n1 = n2 ) high-frequency magnetohydrodynamic 
("magneto-plasma") waves exist; the dispersion 
and polarization of these waves are linear. Both 
helicoidal and magnetohydrodynamic waves exist 
in strong magnetic field regions where the cyclo­
tron frequency of the carriers is large compared 
with their reciprocal relaxation time and the wave 
frequency. The wavelength of these excitations is 
much greater than the Larmor radius of the car­
riers. 

High-frequency magnetohydrodynamic waves 
have been observed in bismuth by several inves­
tigators, [2- 6] and low-frequency helicoidal waves 
have been discovered in a large number of metals 
[ 7- 9] and in degenerate InSb [10] (under conditions 
where spatial dispersion pla~s no part). 

In our earlier work[1J, in determining the spec­
trum and damping of the electromagnetic waves, 
we considered mainly an isotropic carrier disper­
sion law or the equivalent case, in which the mag­
netic field is directed along an axis of higher than 
twofold symmetry. In the present work it is shown 
that a number of new properties appear when aniso­
tropy of the Fermi surface is taken into account. 
Thus, the damping and polarization of a helicoidal 
wave in a metal with a simply-connected Fermi 
surface depends on the field H entirely differently 
than in the case of a multiply-connected Fermi 
surface. The complex character of conduction 
electron dispersion in metals with n1 = n2 can 
lead to the disappearance of weakly damped mag­
netohydrodynamic waves in magnetic field regions 
where their phase velocity is much smaller than 
the carrier velocity. 

1. ELECTRIC CONDUCTIVITY TENSOR 

The investigation of electromagnetic wave prop­
agation in a metal requires calculation of the con­
ductivity tensor O"ik ( k, w, H) taking account of 
spatial and time dispersion and of dependence on 
the static magnetic field H. A general expression 
for aik is obtained by solving the kinetic equation 
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describing the behavior of conduction electrons in 
high-frequency electromagnetic and static mag­
netic fields. 

From [1] we have 

oo +oo 2n 

O;k = 2~: ~ de~; ~ dpz ~ ~ d-rvi (e, Pz. -r) 
() -00 

" 
X ~ d-r' Vk (e, Pz• -r') 

-00 

,, 
xexp {~ d-r" [v - iw + ikv (e, p" -r")J/Q}. (1.1) 

" 

Here h is the Planck constant; e is the absolute 
electronic charge; d p) is the energy; p is the 
quasimomentum; v = BE/Bp is the velocity; Q 
= eH/mc is the cyclotron frequency, where m 
= (27r)-1 aS(E,pz)/BE is the effective mass of a 
conduction electron; S( E, Pz) is the area of the 
cross section of the constant-energy surface E (p) 
= E intersected by the plane pz = const; f0( E-?;) 
is the Fermi distribution function; af0 /Bt 
= 6( E-?; ), where t is the Fermi energy; T is 
the dimensionless time (phase) of electron mo­
tion in the magnetic field; v is the frequency of 
electron -scatterer collisions; w and k are the 
frequency and wave vector of the high-frequency 
electromagnetic field. We have z II H, and the 
x axis is orthogonal to k and H. The Latin in­
dices of the vectors run from 1 to 3. In the case 
of several carrier groups (a multiply-connected 
Fermi surface) the total conductivity tensor is 
the sum of expressions like (1.1) for the different 
groups. The electron dispersion law is arbitrary 
but closed trajectories in momentum space will 
be assumed. 

We shall calculate the asymptotic behavior of 
O"ik in the limiting case where the electromagnetic 
wavelength k-1 is large compared with the Larmor 
radius R, and there is high spatial inhomogeneity 
of the variable field along H: 

kR < 1 < kzvl/ v - iw j, (1.2) 

where kz = k cos <I>; ky = - k sin <I>; <I> is the angle 
between H and k; v is the characteristic velocity 
on the Fermi surface; R,.., v/Q. 

We shall calculate the elements uxy and CTxz 
as examples. Using the unperturbed equations of 
motion of a charged particle in a magnetic field, 

we integrate the expression for uxy by parts with 
respect to T and T', obtaining 

- - 1 -
X [px (r) - Pxl [py (-r) - Pul + Q2 [px (-r) - Pxl 

~ 

X [v - iw + ikv ('r)l ~ dr' [py (-r') - Pul 
-00 

~' 

x[v- iw + ikv (-r')lexp ( {- ~ [v - iw + ikv ('r")l d-r") }· 

~ (1.3) 

where the bar denotes averaging with respect to T 

(withperiod 27r). 
Noting that for any periodic function lj;( T) we 

have 
~ ~ 

~ dr''ljJ (r') exp(~ [y + ikR (r")l d-r") 
-00 

" 
= {1 - exp [- 2rr (y + ikR)l}-1 ~ dr''ljJ (r') 

,, 

x exp (~ [y + ikR (r")l dr"), 

y + ikR = (v - iw + ikv)/Q (1.4) 

and transforming according to (1.4) in the integral 
of (1.3), we expand the exponentials in powers of 
the small quantity y + ik • R. After some simple 
calculations the expression for uxy becomes 

nee 4:n:c2 \ I . Oxu = ""7/- 7F J dpz J m {(v - LW) (Px - Px) (py - Pu) 

+ kv (Px - Px) kv (Pu - Pu) (v - iw + ikvt1}. 

n = 2h-3 ~ dpz ~ Px dpu, (1.5) 

where n is the concentration. It follows from (1.2) 
that 

- - i 
(v - iw + ikvf1 = m'l (w - kv) + P------==, (1.6) 

w-kv 

where P denotes the principal value. 
The imaginary part of the last term in (1.5) 

(the principal value of the integral over Pz) is of 
the same order as the imaginary part of the second 
term. This is associated with the fact that when w 
is neglected compared with k. v the principal value 
of the integral vanishes because the Fermi surface 
is centrally symmetric. Therefore the integral in 
the sense of the principal value is kzv I w smaller 
than the term with 6( w- kzVz ). Whenever the co­
efficient of the 6 -function differs from zero the 
small imaginary part of uxy can be neglected com­
pared with the real part. If the coefficient of the 
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6-function vanishes, the term with P(w -k·v )-1 

is also absent. Therefore we shall always neglect 
the term with P ( w - k. v ) -1. 

In exactly the same way, integration by parts 
for Uxz yields 

4nec \ 
Oxz = h3H J I m I dpz 

X{- Vz{py- py) + V:.kv (py- Pu) 1 . } . 
kzvz-W- tV 

(1. 7) 

A simple calculation of the last term in (1. 7) using 
(1. 6) leads to 

(1. 8) 

The asymptotes of all other elements of uik can 
be found similarly. We present the final expres­
sion for the Fourier component of the current 
density j(k, w, H): 

j = ~; [kE] + _2J Aw (w*E) + sH (HE) H-2 + ~E, 
N = 2h-3 _2Jv = 2h-3 ([V1 I-IV2 1) = n1 - n2; (1.9)* 

where I V 1 I is the total volume, bounded by the 
Fermi surface, containing states of energies € 

< t (electrons, m > 0); I V2 I is the volume con­
taining states of energies € > t (holes, m < 0 );C11J 
sums are taken over the different carrier groups. 
Also, 

A = (21te )2 I _!!!.,___ I 
h3 k 'V' - , 

z z Vz= o 
(1.10) 

The complex "velocity" vector w has the compo­
nents 

Wz =- iwfkz. Wcx = kvpcxJ- _ 0 (a= X, y), Vz-

Px = c (py- py)!eH, 

Pu = - C (Px - Px)!eH (I PI~ R). (1.11) 

The asterisk in (1.9) denotes the complex conjugate; 
also, 

4ne2 "1;1 • ~ 2e2 "1;1 . I dn I S=-2 -,..w(v-~w) lmldpz=-,.w(v-~w)-k2h3 k~ d(; • 

(1.12) 

The two-dimensional tensor s 01 (3 (with Greek in­
dices denoting x and y ) is given by 

*[kE] = k X E. 

!1~te2 "1;1 • \ --
Sa(3 = h'J ,.w (v - ~w) J dpz I m I PaPf3· (1.13) 

The first term of (1.9) with N "' 0 is the non­
dissipative "Hall" current. In the case of strong 
spatial dispersion, kzv » lv- iw I, this current is 
orthogonal to the vectors k and E, not to H and E 
as in the static case. The second term in j is also 
associated with spatial inhomogeneity of the field. 
The corresponding transverse conductivity ele­
ments 6 AwaW(3 are due to electrons moving in 
phase with the wave w = kzVz (near the central 
cross section of the Fermi surface pz = 0 ). This 
term describes Cerenkov absorption of an electro­
magnetic wave by electrons and is similar to the 
familiar Landau damping in a collisionless plasma. 

The current sH( E • H )H-2, which is longitudinal 
with respect to H, is I kz v /( v - iw ) 12 times smaller 
than in the absence of spatial dispersion. The ten­
sor s a(3 is the transverse conductivity, with re­
spect to H, of the metal in the limit of a homo­
geneous high-frequency field (it is independent 
of k) for N "" 0. 

When the magnetic field is along a threefold or 
higher-order symmetry axis (and also in the case 
of an isotropic spectrum), we have VzPa = PxPy 

= 0 and s a(3 is a diagonal tensor. 

2. HELICOIDAL WAVES (n1 "'n2 ) 

We shall now consider the propagation of elec­
tromagnetic waves in a metal with unequal elec­
tron and hole concentrations. It will be assumed 
that the electron and hole Fermi surfaces are 
simply connected; this assumption does not affect 
the final conclusions, but it does simplify subse­
quent calculations. 

If H is not parallel to a high-order symmetry 
axis, the tensor 6 AwaW(3 does not vanish. Then 
we have the ratio 

I Sa~ I/ ~AWcxW~ ~ J (1 - iw!v)lkzll ~ 1 (Z = v/v), 

and the quantities s 01(3 in (1. 9) can be neglected. 
Excluding the variable magnetic field, we rep­

resent Maxwell's equations in the form 

E-n (nE) 

4niw {Nee J 'VA • } = k•c• nH [nE + ,.w w (wE) + sh (hE) , (2.1) 

where n = k/k is a unit vector in the direction of 
wave propagation and h = H/H. We have neglected 
the displacement current; it therefore follows 
from (2.1) that 
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nj = 0, (2.2) 

which is identical with the condition for an elec­
trically quasineutral metal. 

The electric field E is written in the form 

E = E' + n (nE), (2.3) 

where E' is the part of the field that is transverse 
with respect to k. It is convenient to exclude the 
longitudinal component E • n from (2.1). Then, 
multiplying (2 .1) by n and using (2. 3), we obtain 

nE = - { s (nh) (hE')+ ~A (nw) (w*E')} 

x {s (nh)2 +~A lnwl2tl· (2.4) 

With the aid of (2.3) and (2.4), Eq. (2.1) in the case 
of two carrier groups can be written as 

E' - i :~ [nE') = iD {s ~ Aa (aE') + A 1A 2g (g*E')}; 

(2.5) 
here 

k2 _ 4nroNe 
0 - c I nH I' 

a= [n [wh]], (2.6) 

the index 1 denotes electrons, and 2 denotes holes. 
When the determinant of the system of homoge­

neous equations (2.5) is set equal to zero we obtain 
a dispersion equation determining the spectrum and 
damping of a helicoidal wave: 

k4 k" ) 
1 - k~ = iD {s ~ Aa2 + A 1A 2 (I g 12 + i k~ n [gg*]) j 

+ D2sA 1A 2 {~A In [ag]l2 +sIn [a1a2ll2} . (2. 7) 

Following simple but laborious transformations and 
neglecting the small quantity Wz, this equation ac­
quires the simple form 

1 - ~~ = ~~~~ { ~Aw! + [s~Aw~- (nv~Awxwv)2 ] 

xI sn~ + ~A (nvwv) 2r 1 }· (2. 8) 

From (2.8) in conjuction with the inequalities (1.2) 
the dispersion law of a weakly damped helicoidal 
wave is determined, except for small terms, by 
the condition k2 = k~ and has the form 1> 

ro (k) = ck I kH I j4nNe. (2. 9) 

The right-hand side of (2.8) determines the 
damping of the electromagnetic waves (2.9). The 
logarithmic decrement and polarization of the 
wave depend essentially on the form and topology 

1 lA second wave with k2 = -k~ has an imaginary wave 
vector and is damped out in a wavelength. 

of the Fermi surface, and also on the relative 
orientation of the vectors k and H and the crystal 
axes. We shall now consider different cases. 

Let H be parallel to a twofold symmetry axis 
(a case considered in [1 J). Then wy = 0, and the 
last term on the right-hand side of (2.8) disappears. 
The relative damping of the wave is determined by 

(2.10) 

where w" = - Im w. 
For k II H (<I> = 0) spatial dispersion is unim­

portant and the Landau damping (2.10) disappears. 
In this case damping results from electron scat­
tering: w" I w,.... v/Q. [ 1] 

It follows from (2.4) that in the present case 

nE = - (E'H)!nH, i.e., EH = 0. 

On the other hand, Eq. (2.5) shows that the trans­
verse part of E' is circularly polarized: E' 
~ in x E'. This means that the electric vector E 
of the wave rotates in a plane perpendicular to the 
static magnetic field H. 

We consider also the case of a simply-connected 
Fermi surface, with the sum 2:; Awaw(3 reduced to 
a single term. The direction of H is not taken to 
coincide with a crystal axis of symmetry. In this 
case it is convenient to write (2.8) as 

2 ~ 

1 - :~ = q {x ~: + i ( 1 + x + ~: )}[ ~: + (1 + x)2] , 

(2.11) 
with the notation 

+ (z:msin <I>- VzPvCos<t>f}_ ~kR, 
Vz=O 

(2.12) 

carets denote an average over the Fermi surface: 

At low frequencies ( w « v ) the change of the 
spectrum of Re ( 1 - k~ /k2 ) is considerably smaller 
than the wave damping, which is given by 

ro• q o.kR 

w = 1 + x = 1 + f3 I kz il (kvR)2 ' 
(2.13) 

where a and (3 are dimensionless positive quanti­
ties of the order of unity, a being a complicated 
function of the angle <I>. This equation shows that 
in the present case the damping of a helicoidal 
wave is not monotonic. In a relatively weak mag­
netic field with (kyR) 2 kzZ » 1 the damping in-
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creases with the field: 

ro" a H 
w ;:::::;:: ~kzlkR sin2 <D ~ k2 · 

With further increase of the magnetic field, w" 
reaches a maximum where 

(2.14) 

In strong fields with (kyR)2 kzl « 1 the damp­
ing w" decreases monotonically: w" /w ~ akR. 
The accompanying figure is a graph of the rela­
tive damping as a function of H; the dashed curve 
represents the damping of a helicoidal wave under 
the same conditions with isotropic electron dis­
persion. 
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Magnetic field dependence 
of the relative damping of a 
helicoidal wave in a metal 
having a single carrier group. 

The polarization of the excitations also varies 
distinctively. The transverse part of the electric 
vector exhibits circular rotation as previously: 
E' ~ in x E', but the longitudinal part is given by 

Ew' = 0, 

EH = 0, 

(Ew') (nH) + (EH) (nw') = 0, 

kzlkZR2 ~1. 
kzlk~R2~ 1, 
~kzlkZR2 = 1. (2 .15) 

Here wa = wa. w~ = 0, i.e., in weak magnetic 
fields the electric vector E rotates in a plane 
perpendicular to the vector w' ( E 1 w' ). Near 
"resonance" E is orthogonal to w'(n·H) + H(n•w' ), 
while in a strong magnetic field E 1 H. Similar 
nonmonotonic behavior is exhibited by helicon 
wave damping at higher frequencies w > v. The 
maximum here shifts towards smaller magnetic 
fields. 

In the general case of two or more carrier 
groups the logarithmic decrement of the waves 
is of the order kR and decreases monotonically 
with increasing H. However the helicoidal wave 
polarization then varies as in the case (2.15). In 
a strong magnetic field E rotates in a plane per­
pendicular to H, while in a weak field it rotates 

in a plane that is orthogonal to 2:; A ( n. w' )w'. 
The physical cause of the aforementioned prop­

erties of helicoidal wave damping and polarization 
lies in the possibility of interaction with a longi­
tudinal wave. The longitudinal wave dispersion 
equation 

sn~ + ~A I nw 12 = 0 (2.16) 

does not give real values of the frequency or wave 
vector, i.e., a longitudinal wave attenuates within 
its own wavelength. Nevertheless, when the heli­
coidal and longitudinal wavelengths are of the same 
order the damping and polarization of the helicoidal 
wave can vary greatly. Since a longitudinal wave 
attenuates rapidly in a metal, the resonance is 
broad and diffuse. These characteristics of a 
helicoidal wave appear only with anisotropic car­
rier dispersion, when wy ,.:. 0. [When (1. 2) holds 
true the term Aw~ in (2.16) can be neglected com­
pared with sn~.] 

3. MAGNETOHYDRODYNAMIC WAVES (n1 = n2 ) 

We now consider electromagnetic waves in a 
metal having equal concentrations of electrons and 
holes ( n1 = n2 = n). It was shown in [1] that in such 
metals high-frequency ( w » v) magnetohydrody­
namic waves exist with a linear spectrum and plane 
polarization. Their phase velocity is of the order 
of the Alfven velocity v a = H [ 47rn ( m 1 + I m 2 1)] -1/2, 
where m 1 and m 2 are the cyclotron masses of the 
carriers. 

In analyzing the spectrum and attenuation of 
magnetohydrodynamic waves two magnetic field 
regions must be distinguished. In strong fields, 
where v a » Vj ( j = 1, 2 ) , spatial dispersion plays 
no part, since w ~ kva » kvj. According to [1] 

two types of magnetohydrodynamic waves, an Alfven 
wave and fast magnetic sound wave, then always 
exist in a metal with arbitrary carrier dispersion. 
The phase velocity of the Alfv€m wave does not ex­
ceed that of the fast magnetic sound wave. The 
attenuation of both waves depends on the collisions 
of conduction electrons with scatterers: w" ~ v. 

In weak magnetic fields H satisfying the condi­
tions 

(3.1) 

only an Alfven wave is present. In this case the 
second wave (a slow magnetic sound wave) has an 
imaginary wave vector and is damped. It was noted 
in [1] that the existence of an Alfven wave in the 
case (3.1) requires that H be parallel to a high­
order axis of symmetry. 

A necessary condition for the existence of a 
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weakly damped wave in the case (3.1) is, as usual, 
smallness of the Hermitian (dissipative) part of 
the conductivity tensor Uik compared with its anti­
Hermitian part. Because of compensation ( n1 = n2 ) 

Hall conduction is absent. Therefore the anti­
Hermitian part of Uik coincides with the anti­
Hermitian part of the tensor Sik = SOizOzk + sa{3· 
It follows from the foregoing asymptotic formulas 
for Uik that I Saf31 is at least kzv I w times smaller 
than Aw aw{3. Therefore the possibility of the prop­
agation of weakly damped magnetohydrodynamic 
waves is associated with the disappearance of Lan­
dau damping along some directions in the xy plane. 
In other words, in these directions the projections 
of the velocities w1 and w2 must vanish simulta­
neously for both electrons and holes. In the gen­
eral case, where H is not parallel to a high-order 
symmetry axis, this is impossible, so that weakly 
damped magnetohydrodynamic waves are absent. 

When H is along a symmetry axis, for k II H 
the vectors Wj vanish and we have two linearly 
polarized magnetohydrodynamic waves with iden­
tical spectra. In the case of nonparallel k and H 
only an Alfven wave exists, with its electric field 
polarized along the y axis. The permissible an­
gular uncertainty is represented by cp < w/kv 
~ va/v. 

The cases considered in [i] thus exhaust the 
possibilities of magnetohydrodynamic wave prop­
agation in metals with n1 = n2• We shall here in­
vestigate the dispersion equation for damped waves 
when (3.1) is satisfied but H does not coincide with 
a symmetry axis. 

The desired dispersion equation can be obtained 
directly from (2.7) by assuming kij = 0. Using (3.1), 
the equation can be written as 

2 (t- 4:rti(J) " A 2) + ( 2 _ 4:rti (J) ):. {" A 2 _ 4:rti(J) 
Snz k'c' L.J Wx ny k•c• S L.J Wy k2c2 

(3.2) 

In magnetic fields satisfying the condition 

(ro/Qj) (vjlva)3 ~ 1, 

we have 4rrw Is I /k2c 2 » 1, and (3.2) determines 
two waves with imaginary wave vectors: 

k2c2 • { 2 2 2 
Z:rtffi = l 2} A (wx + Wy/nz) 

± [(2} A (w~- w~;n;)r + 4 (2}Awxwyfnx)T'} · (3.3) 

In both waves, I w/k I~ v~ /v « v a· 
In weaker fields with 

(3.4) 

there are also two waves. One wave has, as pre-

viously, an imaginary wave vector with I w/k I 
~ v~ /v. The dispersion equation for this wave is 

(3.5) 

In this wave E is perpendicular to the static mag­
netic field H. 

The second wave attenuates weakly. Its electric 
vector is polarized along H. The appearance of 
this new electromagnetic wave is accounted for as 
follows. In the given case (wy ;rc 0) all elements of 
the conductivity tensor Uik. except Uzz, are Her­
mitian. The longitudinal conductivity with respect 
to the magnetic field, Uzz = s, is anti-Hermitian. 
The corresponding effective dielectric constant is 
positive and the off -diagonal elements u az are 
negligibly small: 

I ClcxzClz[3J ~ J Cla.[3Clzz J. 

Furthermore, due to (3.4) we have uyy » I Uzz 1. 
Therefore a weakly damped electromagnetic wave 
with its electric vector parallel to H can propa­
gate in a metal, having the dispersion equation 

k~ - 4niroc-2s = 0. (3.6) 

This equation can easily be obtained from Max­
well's equations (2.1) by setting 

jz = sE" Clcxz = 0, Ea. = 0 (a = x, y). 

We note that this wave is absent when k II H 
( ky = 0 ). 

Substituting (1.12) for s in (3.6), we easily ob­
tain the wave spectrum, which can be represented 
by 

Jik2 
ro (k) = 2f1 I sin 2<D j, (3. 7) 

where the effective mass of the excitations is 

- .!!_ [4 2" ..'!!:_1'/, = .!!_ f.t - c ne L.J d~ ern ' 
(3. 8) 

in which rD is the Debye-Hlickel screening radius. 
In the considered limiting case (3 .1) the asym­

ptote Uzz = s does not depend on the magnitude of 
H. Therefore the longitudinal wave spectrum (3. 7) 
depends only on the angle between k and H, but is 
independent of the magnetic field strength. The at­
tenuation of the waves represented by (3. 7) results 
from carrier scattering and also from weak cou­
pling with the damped wave (3.5). 

We note in conclusion that for the existence of 
a longitudinal wave with the spectrum (3. 7) the in­
equalities (3.1) and (3 .4) must be satisfied as well 
as the conditions wy ""' 0 and ky ""' 0. Using (3. 7) 
to express the wave vector k in terms of w, we 
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represent (3 .1) by the inequalities 

(3. 9) 

which in conjunction with (3.4) determine the re­
gion where a longitudinal wave exists. 
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