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Some general results are obtained regarding the behavior of atomic systems in a strong ra­
diation field. By the latter is understood a radiation field with such a density that the energy 
of interaction between it and the atomic electrons approaches that between the electrons and 
nucleus. It is shown, in particular, that if the interaction time between the atom and field is 
sufficiently large, atomic ionization will be more probable than its excitation in the bound 
state, even though the field quantum tiw may be much smaller than the ionization potential I. 
Some estimates of the photoionization potential for liw « I are presented. 

1. It is clear from general considerations that the 
behavior of atomic systems in a strong radiation 
field, whose energy of interaction with the atomic 
electrons approaches the energy of interaction of 
the electrons in the nucleus, will differ qualitatively 
from the usual behavior predicted by the perturba­
tion theory of quantum transitions. For these field 
intensities it is clear that the condition for reso­
nance transitions derived in the first approxima­
tion of perturbation theory is violated. In the pres­
ent case, from the point of view of perturbation 
theory, many photon processes become dominant 
and take place with the same probability as single­
photon processes. If the interaction time of the 
atom with the radiation field is sufficiently long, 
then, as will be shown, the most probable process 
is the ionization of the atom (and not its excitation 
to a bound electron state ) , even though the quantum 
of the field liw may be many times smaller than 
the ionization potential. An example of such a 
process is the much studied (both theoretically 
and experimentally) ionization of hydrogen atoms 
in a constant electric field ( cf. for example [1, 2]). 

The critical values of the field strength, for 
which the above features of the quantum transi­
tions begin to occur, may be considerably less 
than the values that correspond to the internal 
energy of the atom. The above example of the 
ionization of the hydrogen atom in a constant field 
supports this conclusion. As shown both by theory 
and experiment, the critical value of the field 
strength for ionization of the initial states of the 
components of the Hy lines (principal quantum 
number n = 5) is of order 106 V /em, although the 

interatomic field (for n = 5 ) is of order 1) 1 o8 

V/cm. 
The radiation intensities obtainable from pres­

ent day lasers approximate the above mentioned 
critical values 2>. For a laser power P"' 5 x 102 

MW focused to a spot of diameter d"' 10 JJ., the 
field strength ct0 ~ 3 x 108 volts/em. A rough es­
timate shows that for this laser power one should 
expect to ionize hydrogen atoms even in the ground 
state (for n = 1 the strength of the interatomic 
field is of order 5 x 109 volts/em). The probabil­
ity per unit time of ionizing this atom in a constant 
electric field is given by (in atomic units ) [2 J 

w = (4/ct) exp (- 2/3ct). (1) 

Clearly we may use the same formula for cal­
culating the ionization probability of a hydrogen 
atom in an alternating field of frequency v, re­
placing the quantity ct by the amplitude of this 
alternating field ct 0, if the probability w( ct0 ) ob­
tained in this way satisfies the condition w( ct0 ) 

~ v (the adiabatic approximation). If this condi­
tion is satisfied the atom has the time to become 
ionized before the field i£0 cos 21rvt decreases sig­
nificantly from its peak value. For a ruby laser 
v ~ 10-2 a.u.; for iE0 ~ 3 x 108/5 x 109 = 6 x 10-2 

1 >The value 10• V/cm corresponds to an ionization prob­
ability for a hydrogen atom per unit time of order 108 sec -•, 
i.e., it is of order 1/r0 , where r0 is the spontaneous lifetime 
of the level. 

2 >Since the present article was submitted for publication 
we have become aware of experimental observation['] of the 
ionization of helium, argon and oxygen by ruby laser radia­
tion. 
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a.u. Eq. (1) leads to a comparable value for the 
quantity w ( ~ 10-2 atomic 1mits ) . Thus w ( {g 0 ) I v 
~ 1, and one should expect ionization of the atom 
during a time of the order of the period of the ra­
diation field ( 1/ v). This estimate of the critical 
value of the power P is clearly excessive because 
of the supplementary condition w/v ~ 1, which 
clearly is not actually necessary. 

2. At the radiation field intensities we are con­
sidering, the usual perturbation theory of quantum 
transitions becomes completely unsuitable. Hence 
in making a theoretical analysis of the behavior of 
atomic systems interacting with a strong field it 
is necessary to seek solutions to the equations of 
quantum mechanics which exhibit the total temporal 
behavior of the systems. In what follows we will 
consider the problem of quantum transitions in 
hydrogen-like atoms which are located in a mono­
chromatic radiation field of circular polarization. 
This particular type of radiation is chosen for two 
reasons; first, it is possible in this case to obtain 
rigorously a whole set of interesting results; sec­
ond, it is clear from physical considerations that 
several of these results are general in character 
and are valid for the case of a strong radiation 
field of arbitrary polarization (and, within wide 
limits, of arbitrary spectral composition). 

Our treatment of the problem of the excitation 
of an atom in a circularly polarized radiation field 
involves transforming the problem to that of the 
excitation of the same atom in constant electric 
and magnetic fields. This transformation is very 
useful, since it permits formulation of the problem 
in terms of the familiar and well understood rela­
tions of the general theory of the spontaneous de­
cay of quantum systems [4, 5]. 

3. We first consider the problem of quantum 
transitions in an atomic system (we are not re­
quiring now that the system be hydrogen-like) 
under the influence of external, arbitrary, static 
fields. The total Hamiltonian of such a system is 

H = H0 +V, (2) 

where H0 is the Hamiltonian of the isolated atom 
and V is the time-independent Hamiltonian of the 
interaction with the external fields. We assume 
that at some initial instant t = 0 this system is in 
some eigenstate lji~1> ( q) of the Hamiltonian H0, 

corresponding to a discrete energy level E~: 

( q is the set of all coordinates of the atom ) . We 
wish to calculate the probability Pk1k2(t) of a 
transition of the atom in time t, due to the effect 
of V, to the state 1Ji&_0>(q), described by the set 

2 

of quantum numbers k2• The final state k2 may 
belong either to a discrete energy spectrum (an 
excitation of the atom to a bound state) or to the 
continuous spectrum (ionization of the atom ) . 

It follows from the general theory of spontane­
ous decay [4, 5] that the initial state of the system 
we are considering will break up eventually (i.e., 
the atom will be ionized) only when the perturba­
tion V is such as to change the energy spectrum 
of the system from discrete to continuous. More 
exactly, in order for such a process to occur, it 
is necessary and sufficient that the total Hamilto­
nian H have a continuous energy spectrum. In this 
case the functions giving the energy density dis­
tributions fk1(E) =I ck1(E)I and fk2(E)= lck2(E)I 2 

in the initial and final states of the system do not 
contain singularities of the type 3> 6 ( E - E0 ); we 
have 

(3) 

where IJ!E( q) is an eigenfunction of the operator 4> 
H. 

It should be pointed out that the perturbation V 
due to a uniform electric field ( V = -ex {g) always 
satisfies the above requirement, i.e., it always 
spreads out the discrete energy spectrum of the 
atom into a continuous spectrum [2]. This fact in 
turn is reflected by the phenomenon of the ioniza­
tion of atoms in such a field. 

In general the transition probability Pk1k2 ( t) 
is given by 

Pk,k, (0) = 0, 

where ak1 k2 ( t ) is the projection of the state 

1JI k, (q, t) = exp (- iHt!Ti) 1p~~> (q) 

(4) 

of the system at the instant t on the state lji~2> ( q): 

ak,k, (t) = ~ 1JI k, (q, t) 'Pk~>· (q) dq = ~ ck, (E) cic, (E) e -iEt/Ti dE. 

(5) 
Equations (4) and (5) give the following impor­

tant result. The transition probability of the atom 

3 >1n mathematical terms the above necessary and suffici­
ent condition follows from the continuity of the integral of 
the distribution function 

E 

Fk (E)= Fk (E') + ~ fk (E1) dE1. 
E' 

4 >The fact that the states of the continuous spectrum 
are practically always degenerate is not important to us, 
here, and hence we will not explicitly write the other quan­
tum numbers which, along with the energy E, form a com­
plete set. 
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Pk1k2(t) to a bound state (i.e., to a state corre­
sponding to a discrete energy value Ek2 of the 
Hamiltonian H0 ) has at least one maximum and 
tends to zero as t - oo . This conclusion is not 
valid for a transition of the atom to an ionized 
state; for such a transition the probability Pk1 k2 ( t) 
in general does not approach zero as t-oo (the 
total probability for ionization always approaches 
unity). Physically this difference in the asym­
ptotic behavior of the probabilities Pk1 k2 ( t) means 
that for a sufficiently large interaction time t be­
tween the atom and the perturbing field, the only 
probable process is the ionization of the atom. 

This result may be easily understood on phys­
ical grounds which are also relevant to the case 
of the strong radiation field. The effect on an 
atom of a field which is strong enough to cause 
ionization is to cause a significant modification 
(distortion) of the electron cloud. If the interac­
tion time with the field is not too long, the electron 
cloud of the atom is not totally destroyed and the 
probability of the atom making a transition to a 
discrete state of the Hamiltonian H0 is non-zero. 
As the interaction time is increased, the electron 
cloud is perturbed so strongly that its configura­
tion begins to correspond only to an ionized state 
of the Hamiltonian H0 (this state continues for 
infinitely long t ) . 

The validity of this assertion follows from (4) 

and (5) and the theorem of Riemann-Lebesgue[GJ, 
according to which the integral (5) approaches 
zero as t - oo if the real and imaginary parts of 
the function Ck1 (E) Ck2( E) are absolutely inte­
grable over the whole range of E. It is easy to 
show that this latter condition is always satisfied 
for discrete states l{i~1> ( q) and 1/1~2> ( q). In fact 

for such states one has 

~ 1 ck1,, (E) [2 dE < oo, (6) 

i.e., the integral always converges (and is usually 
normalized to unity). The question of the absolute 
integrability of the functions 

cp1 (E) = Re ·ck1 (E) cir, (E) and cp2 (E) = lm ck1 (E) cr,,(E), 

is clearly determined by the behavior of these 
functions for large values of E. However from 
the condition for the integrability of the functions 
(Re Ck1 2(E))2 and (Im Ck1 2 (E))2 [which follows 
from (6))' it is clear that as I E I - 00 the functions 
I cp 1 ( E )I and I cp 2 (E) I approach zero at least as 
rapidly as IE 1-a, where a> 1, i.e., these func­
tions are in fact absolutely integrable. 

If, however, even one of the states k1 and k2 

corresponds to the continuous spectrum of the 
Hamiltonian H0, condition (6) is not fulfilled (the 
integral diverges), and the probability Pk1k2 ( t), 
in general, does not tend to zero. The above dis­
cussion shows that since the total transition prob­
ability to discrete states of the atom goes to zero, 
the total ionization probability Wk1 ( t), i.e., the 
total probability of ionization to all states of the 
continuous spectrum, must approach unity as 
t - oo . Thus for sufficiently long interaction times 
t the probability Wk1 ( t ) must coincide with the 
probability for the spontaneous decay of the initial 
state of the system, i.e., 5> 

Wk1 (t) = 1 -j ~ !k, (E) e-iEtflidEI2
• (7) 

The ionization probability per unit time wk1 is de­
termined by the width of the energy level E~/. 

More precisely, if the energy density distribution 
is given by the dispersion formula 

(8) 

then G> 

4. We now turn to the problem of quantum tran­
sitions in hydrogen-like atoms (and in particular 
in hydrogen atoms ) , interacting with a strong mon­
achromatic radiation field of circular polarization 
in the (x, y) plane. The interaction between the 
optical electron of the atom and the field will be 
assumed to have a dipole character. Our treat­
ment will be semiclassical in nature (the field 
will not be quantized); the transition probabilities 
calculated below will apply only to stimulated tran­
sitions in a strong field. 

The Schrodinger equation describing the time 
dependence of the state >¥ ( r, t) of the optical elec­
tron has the form 

i'li 8l¥!8t = {H0 - e[g0 (x coswt- y sinwt)} 1¥, 

1i2 a H0 = - 211 V + U (r), (9) 

where H0 is the Hamiltonian of the isolated atom, 
and [g0 is the amplitude of the field. At t = 0 the 

5 lExpression (7) is well known as the Fock-Krylov 
theorem. 

6 lThe concept of time-independent transition probabili­
ties (in particular, ionization probabilities) per unit time 
can, as is well known, be introduced only for sufficiently 
large t (strictly speaking fort ~ oo). When this is true, (7) 
is always valid and also (in the most general case) we can 
use the dispersion formula (8)[•]. 
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atom is in the state 'lt(r, O) = lj;~!z 1m 1 (r), charac­

terized by the values of the principal quantum num­
ber n1, the azimuthal quantum number Z1, and the 
magnetic quantum number m 1. 

We now transform to a new wave function 

'1'7 (r, t) = exp (iwt Lz) 'I' (r, t), (10) 

where Lz is the operator of the z -component of 
the momentum of the electron; the operator 
exp ( iwtLz) is the operator for rotation around 
the z axis by an angle wt. Clearly, 

'I'r (r, 0) = 'I' (r, 0) = 'ljl~~l,m, (r). (11) 

The equation for >It ( r, t) has the form 7 > 

Hr = H 0 - nwLz - eit0x. (12) 

Thus in a rotating coordinate system the prob­
lem of quantum transitions is equivalent to the 
problem treated above of quantum transitions under 
the influence of the static perturbation 

(13) 

Clearly, this type of perturbation corresponds 
to the presence of mutually perpendicular constant 
electric and magnetic fields &0 and JC0 = w/ 
(I e [/2J.W). (along the x and z axes respectively. B> 

It is easy to show that the transformation to the ro­
tating coordinate system does not alter the conclu­
sions of the previous section. In particular the 
probability pn2ZZ2m2 ( t ) for an atomic transition 

ni tilli 

from the state k1 = ( ni> Z1, m 1) to the state k2 
= ( n2, Z2, m 2) during the time t is equal to 

pn2l,m, (t) c= [ n,l,m, (f) [2 
11tllm1 anlllml ' 

where 

(14) 

Cnim (E) = ~ 'ljllf)* (r) 'ljl~0/m (r) dr, (16) 

where lfil[> ( r ) is an eigenfunction of the operator 
Hr. The expression (15) differs in form from ex­
pression (5) only by the factor exp (- im2wt ), 
which does not effect the probability pn2Z2m2 ( t). 

n1Z1m1 
It must be emphasized that this result was ob-
tained only for a hydrogen-like atom (U(r) is a 
potential with central symmetry). 

Since the perturbation V r contains the electric 
field [g 0, the Hamiltonian H r has a continuous en­
ergy spectrum (see the preceding section) which 

7 >Here we have used the obvious equality 
exp (iwtLz) (x cos wt- y sin wt) exp (- iwtLz) = :t:. 

8 >We are not taking account of the electron spin. 

in turn ensures the above -mentioned asymptotic 
properties for the transition probability pn2ZZ2m2(t ). 

ni till! 

In particular the total atomic ionization probability 
Wn1z1m 1 (t) for a sufficiently long time t must be 
given by equation (7) for an arbitrary value of the 
frequency w. This probability always tends to 
unity with increasing t, i.e., the photoelectric ef­
fect can occur for a radiation field of any frequency 
if it is sufficiently strong. 

It is interesting to compare these results with 
the known first-order perturbation theory results 
and the theory of spectroscopic saturation. It is 
easily seen that to a first approximation in the field 
equation (15) leads to the well known expression for 
the coefficient a~1J ( t) in the expansion of the wave 
functions under a monochromatic perturbation[2] 9>. 
As far as the saturation effect is concerned, it fol­
lows from our considerations that the well known [2] 
description of this effect for atomic transitions 
from the state k1 to the state k2 and back at fre­
quency ~k1k2 S' 0 /n (~k1k2 is the matrix element of 
the transition) remains valid only for values of 
the field which are not too large; that is, it re­
mains valid as long as 

(17) 

where Wk1, 2 ( [t 0 ) is the probability per unit time 
for ionization of the atoms in the states k1 and k2. 
When this condition does not hold, the concept of 
saturation clearly loses its meaning. 

5. The fact that the effect of a strong radiation 
field of arbitrary frequency on an atom is to cause 
the same physical result, i.e., ionization, as the 
effect of a strong constant electric field, makes it 
possible to introduce the concept of an effective 
ionizing field. By the latter we mean that constant 
electric field lteff which, when acting on a given 
atom in a given quantum state k1, causes its ioni­
zation with the same probability wk1 (per unit 
time ) as the effect of the given radiation field of 
amplitude (t0 and frequency w. Clearly cgeff de­
pends on (t0 and w, and the particular form of 
this dependence (for a given atom ) is determined 
in general by the initial state k1 and by the polari­
zation of the radiation. It may be shown that in 
principle the field ISeff may be found by an inde­
pendent method, i.e., without solving the problem 
of the ionization probability in the given radiation 
field. 

Introduction of the concept of the effective ion­
izing field is very advantageous since the problem 

9>Qne must calculate the coefficients Cnlm(E) using the 
initial Hamiltonian H0-hwLz and the selection rule [m,-m2 [ 

=1. 
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of ionization in a constant electric field is consid­
erably simpler than the problem in the radiation 
field, since the former can be formulated simply 
as a problem of the elementary tunneling effect. 
For a hydrogen atom this problem has, as is well 
known, been solved completely [1, 2• 7]. 

We will now show how to find lteff for the above 
case of a radiation field with circular polarization; 
however we will limit ourselves to finding the first 
approximation in w to the value lteff = .%' 0, corre­
sponding to the adiabatic approximation (see Sec. 1). 
It is convenient in making the calculation to intro­
duce the projection operator Qk1' which causes 
projection onto the initial atomic state ¢~1> ( r ) 
(k1 = (nt> lt> m 1 )). 

In applying Eq. (7) to the present problem we 
may write it in the form ( cf. [5 J) 

Wk, (t) = 1 - Sp Q~r, Q)(.> (t); 
(18) 

According to (12) the operator Hr may be written 
as follows: 

Hr = H(o)- fiwLz- ex (.%'0 - It err); 

H (O)_ H w = o- exweff· (19) 

For sufficiently low frequencies w the two last 
terms in the expression for Hr may be treated 
as perturbations. Putting (19) in (18) and using 
the expansion for the S-matrix accurate to terms 
of order "' w, we find 

t 

W~r, (t) = Wj,~> (t) + i~ ~ dt1 Sp Q~r, {e (Ito- f£ err) [x, Qk~> (t1 

0 

(20) 

Here W~1 is the ionization probability in the field 
i£eff. The value of the quantity i£eff is determined 
from this expression by imposing the requirement 

that the first order terms approach zero as t - oo • 

In this way we obtain 

nw 
f£ eff =Ito- [eT 

co 

~ dt Sp Qk, [Lz. Qk~> (t) I 
0 

co 

~ dt Sp Q1,, [x, Qk~) (t) ]. 
0 

(22) 

In calculating the operator Q~1 (t) for use in this 
formula it is of course possible to set It eff = f£ 0 

[ cf. (21) and (19)]. For a hydrogen atom the eigen­
functions ¢E ( r) of the operator ( H0 -ex t\feff) are 
well known [1, 7 J and the integrals in (2 2) can be 
evaluated. In this case it should be kept in mind 
that the matrix elements of the operator Qk1 in 
the representation formed by the functions 1/JE(r ), 
as may easily be shown, are equal to Ckl E )ck1( E' ). 
In estimating the order of magnitude of the second 
term in (22) one may clearly consider the ratio of 
integrals occurring in the latter expression to be 
of order 1/a, where a is the size of the atom. 
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