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The normal thermoelectric power and the Nernst coefficient of ferromagnetic metals are 
considered for weak and strong magnetic fields when the Larmor notation frequency of the 
conduction electrons, w, is respectively smaller and greater than the collision frequency 
1/ T of these electrons. It is shown that the special properties of the electron-magnon 
collision operator, referred to in earlier work, [J] lead to a violation of certain universal 
properties (which are characteristic of nonferromagnetic metals) of thermomagnetic co­
efficients. 

1. INTRODUCTION 

WE showed earlier [1] that the electron-magnon 
collision operator of ferromagnetic metals has 
special symmetry properties considered as a 
function of the energy variables. Expressed in 
terms of the relaxation time these properties 
mean that this time is a rapidly varying function 
of ( £ - !; ) ( £, and !; are, respectively, the en­
ergy and chemical potential of electrons) in the r 
range I £ - !; I ::S T ( T is the temperature). Such 
properties of the collision operator lead to the 
possibility of the appearance of an electric cur­
rent (a thermal current) in the presence of a tem­
perature gradient (an electric field) in the zeroth­
order approximation with respect to the degener­
acy parameter T I!;. 

The present paper investigates the influence of 
these special features of the electron-spin wave 
collision operator on the thermomagnetic effects 
in weak ( w T ::S 1) and strong ( w T » 1) magnetic 
fields. However, it is assumed that pH « T ( /.1 

is the effective magneton) and therefore the spin­
wave spectrum is independent of the magnetic 
field. For this condition, the transport equation 
solution is of such a form that the quantity which 
plays the role of the relaxation time is also inde­
pendent of the magnetic field. 

It is known that in ferromagnets the galvano­
magnetic and thermomagnetic coefficients consist 
of a normal component, due to the direct effect of 
the magnetic field on conduction electrons, and 
an anomalous component, due to the relativistic 
spin-orbital effect of the magnetization on these 

electrons. A theoretical comparison of the order 
of magnitude of these two components is very dif­
ficult and we can only say that, on cooling, the 
ratio of the anomalous to the normal component 
decreases. [2] On the other hand, there are no 
reliable experimental data on the thermomagnetic 
properties of ferromagnetic metals. In the pres­
ent work, we restrict ourselves to the calculation 
of the normal part of the thermoelectric power 
and of the Nernst coefficient, which means that 
our results can be compared with experiment only 
under conditions such that the normal part can be 

When w T « 1 (as in [1]), it is interesting to 
consider the case when the scattering of conduc­
tion electrons (which determines the electrical 
resistance) is mainly due to causes other than 
magnons. However, if only the non-magnon scat­
tering is allowed for, we obtain the thermoelec­
tric power a11 and the Nernst coefficient a1 only 
in the first-order approximation with respect to 
the degeneracy parameter, although weak scat­
tering on spin waves gives a11 and a1 in the 
zeroth-order approximation with respect to the 
degeneracy parameter. It follows, therefore, 
that the spin-wave scattering may be important. 
If electrons are scattered mainly on defects the 
thermoelectric power [1] and the Nernst coeffi­
cient are inversely proportional to the first and 
second powers of defect concentration, respec­
tively (instead of the zeroth and first powers in 
the case of non-magnon scattering). 

In strong magnetic fields ( w T » 1), the 
thermomagnetic coefficients a11 and a1 of ferro­
magnetic metals exhibit the following features. 

1) Although allowance for collisions in the 
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calculation of a II is important only in the second 
approximation with respect to the small parame­
ter ( u..' T - 1), the part of a 11 due to collisions ap­
pears in the zeroth-order approximation with 
respect to the degeneracy parameter and there­
fore it may be comparable to the part calculated 
without allowance for collisions in the first-order 
approximation with respect to the degeneracy 
parameter. The thermoelectric power will then 
depend strongly on the magnetic field intensity 
(without allowance for collisions with magnons, 
the value of a11 is independent of the magnetic 
field). 

2) For ~he usual types of scattering, a 1/ a 11 
"" ( w T) - 1 « 1. When the collisions of electrons 
with magnons are allowed for, this relationship 
is not satisfied. Then the Nernst coefficient may 
be comparable with or greater than the thermo­
electric power. 

3) For the usual types of scattering, the 
product (a 1/ a 11) (a 1/a11) in independent of tem­
perature and magnetic field. This is not true if 
the scattering of electrons on magnons is allowed 
for. 

2. GENERAL RELATIONSHIPS 

In the isotropic case, in the presence of a 
magnetic field H along the z axis, a temperature 
gradient VT along the x axis and an electrical 
field E in the x-y plane, the components of the 
electrical current j and of the thermal current 
Q (when allowance is made for Onsager's rela­
tionships [3]) are 

jx = <JuEx + Gj_Ey- ~II ar;ax, 
jy =- Gj_Ex + <JuEu- ~j_ ar;ax, 

Q.x = T~ 11Ex- T~1_Ey- e118T/8x, 

Qu= T~j_Ex+T~ 11 Eu-ej_ar;ax, 

jz=O, Qz=O. 

If j = 0, then a thermoelectric field appears 

Ex= a 11 8T!8x, 

~llcrll-~j_crj_ 
au= 2+2 • 

cr 11 cr j_ 

Ev = a1_ artax; 

~II crj_ + crll~ j_ 
a1_ = 2 2 

cr 11 + crj_ 

(2.1) 

(2.2) 

(2 .3) 

The thermoelectric tensor a is, according to Eq. 
(2.3), related to the tensors a and {3, and to find 
the latter it is sufficient to calculate the electrical 
and thermal currents on the application of an elec­
tric field, for example, along the x-axis direction, 
and in the absence of a temperature gradient. 

The electron distribution function in the pres­
ence of an electric field differs from the equili­
brium Fermi function n0 ( £), so that 

( ± refer to electrons with different spin direc­
tions; the notation is the same as in [1]). If we 
introduce as variables the energy ( £), the pro­
jection of the momentum along the magnetic field 
( Pz), and the azimuthal angle in the Larmor 
orbit ( cp), then the transport equation for b.n has 
the form 

ano E Px a A { at'ln } --.-e --ffi-un+ -- =0. as X m * arp at col 
(2.5) 

Here v = 8£/op is the electron velocity, 
w = -eH/m*c is the Larmor frequency, and 
= p/v. 

m* 

We shall consider separately the cases w T 

« 1 and w T » 1 ( T is the relaxation time of 
conduction electrons). 

3. WEAK MAGNETIC FIELDS ( WT « 1) 

In this case a 1/a11 ~ {31/{311 "" WT « 1. There­
fore, from Eq. (2.3), we have 

( 3.1) 

For the non-magnon scattering of electrons 
1 T 1 T crl_ 

au =-T, aj_=-T·'u-r=-au. (3.2) e , e , cr 11 

We shall now consider the case when spin 
waves are among electron scatterers. Since w T 

« 1, the term with the magnetic field in the 
transport equation (2.5) is small and we shall 
allow for it by the iteration 

.1.n± = .1.n±o + .1.n±1 (3.3) 

( u± = U± 0 + u± 1 ). The quantities .6n0, 1 are defined 
by the equations 

_ a.no eE ~ + {~t'lno} = O 
01', X m * at col ' ( 3 .4) 

a {at'ln1} 
- (i) orp .1.no + !it- col = 0· (3.5) 

Since b.n0 is defined by Eq. (3.4) without 
bringing in the magnetic field, its solution is 
known: [1] u0 is directed along the x axis so that 
b.n0 determines f311• all• and also the thermoelec­
tric power <l'll• which remains the same as in the 
absence of a magnetic field. 

The Nernst coefficient a 1 is related to f31 

and a 1, which are calculated with the help of b.n1. 

As shown in [1], the symmetry of the electron­
magnon collision operator is such that the tensor 
{3 may appear even in the zeroth-order approxi­
mation with respect to the degeneracy parameter 
(and not in the first order as in other types of 
scattering). Nevertheless, as shown in our 
earlier work, if electrons are scattered only on 
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magnons, the thermoelectric power is found to be 
of the same order as a 11 in Eq. (3.2). 

It is easily shown that in this case 

(3.6) 

where T~ is the momentum relaxation time for 
electrons scattered on magnons [cf. [tJ, Eq. (4.10)]. 

Thus the results, both for the thermoelectric 
power and for the Nernst coefficient, are the same 
as for other scatterers. 

We shall consider in greater detail the more 
interesting case when electrons are scattered on 
spin waves less than on other scatterers. In this 
case (cf. CtJ, Sec. 5) 

(3.7) 

Here u~ = eE T dim* ( T d is the relaxation time 
for the non-magnon scattering of electrons) is 
the drift velocity of electrons without allowance 
for collisions with magnons, and u0 is the change 
of this velocity when such collisions are allowed 
for. Then, although u 0 « u~, u0 is not an even 
function of x = ( £ - ?; )/T and therefore it pro­
duces a thermal current in the zeroth approxima­
tion with respect to the degeneracy parameter. 
This thermal current is due to the quasi-odd 
part of the drift velocity 

w~0 (x) = + [u~0 (x)- u:0 (- x)l, 

and 

_ ono w' (x) = y .!!:_ _:!__ (pud) I L_ (xx') dx' = y .!!:_ ug. ( 3. 8) 
ox -0 ... odp 0 J ... 

Substituting Eq. (3.7) into Eq. (3.5), we obtain 
( u 1 is directed along the y axis): 

Since u~ is independent of the energy in the 
zeroth approximation with respect to the degener­
acy parameter, then the first term in Eq. (3.10) 
gives a contribution to (31 only in the first ap­
proximation of this parameter (this term is re­
sponsible for u1 = wTda 11 ). Thus that part of 
w~ 1 of the drift velocity, which is due to the scat­
tering on spin waves and gives a contribution to 
(3 1 in the zeroth approximation with respect to 
the degeneracy parameter, consists of Eq. (3.11') 
and the second term of Eq. (3.10): 

={w-rdw~0 (x)(- ~; )+ y~ :P (w-rdpug) ~ L_ (xx') dx'} 

(3.12) 

Comparing Eqs. (3.12) and (3.8), we find 

( 1 d (In p) ) 
~ 1_/~ II = 3w 't'd \ i-3 d (In vTd) · 

( 3 .13) 

Since a 1!u11 = WTd, we find from Eq. (3.1) that 

- /, (t 1 d(lnp) ) (3 14) aj_ - ±w 't'da II -4 d (In v 1'a) , . 

where a 11 is given by Eq. (5.9) in [tJ. From Eq. 
(3.14), we conclude that the usual relationship of 
Eq. (3.2) is retained between a1 and all• but the 
quantities a1 and a11 themselves are different 
from the corresponding quantities for the 
"normal" types of scattering. In particular, in 
the case of scattering on defects, a II is as 
pointed out in [t]_inversely proportional to the 
defect concentration; a1, as indicated by Eq. 
( 3.14), is then inversely proportional to the 
square of the defect concentration. 

- u~d1 (- ~;o) + (u~1 = w ~:o (u~ 0 + u~0). ( 3 .9) 4. STRONG MAGNETIC FIELDS ( w T » 1) 

Since the term (8u/8t)s is small, we can use it in 
the iteration so that, in analogy with Eq. (3.7), we 
have 

where 

(3.10) 

(3.11) 

It is easily seen that because Td/ Ts « 1, it is 
sufficient to substitute u~ 1 = ( wTd )u~0 into Eq. 
(3.11). Then it is convenient to write down first 
the result for the quasi-odd part 

on • Td d ( d) ~ L ( ') d ' (3 11') - _y_w_1 (x) = y- - ffi't'dpu 0 _ XX X • ' 
ox ... dp 

In this case 

(4.1) 

It will be shown that a relationship of the type of 
Eq. (4.1) is not satisfied by the tensor (3 if the 
scattering of electrons by spin waves is important. 
However, before dealing with this case, it is use­
ful to consider the results for the "normal" 
types of scattering. In the latter case (31/(311 
~ wT » 1, so that Eq. (2.3) assumes the form 

au =- ~j_/O'j_, 

<X 1_ = - (~ 11 /f3 1_ +a 11 1a _1_) a 11 = (w -rr1 a 11 <a 11 • 

(4.2) 

The following conclusions can be drawn from the 
foregoing formulas: 

1. The temperature dependence and order of 
magnitude of the thermoelectric power remain 
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the same as in the absence of a magnetic field: 
a 11 is independent of the magnetic field because 

a .l (~ ..L) = (ro -r)-lcr o (~~~)' 

where u 0 ( J3r1 ) is the electrical conductivity (the 
coefficient Fi11) in the absence of a magnetic field. 

2. The Nernst coefficient a 1 is inversely 
proportional to the magnetic field and w T is in­
versely proportional to the magnetic field and 
WT orders of magnitude smaller than the thermo­
electric power. 

3. The product of these two ratios (a 11/ a 1) 

( 0"11/u 1) is independent of temperature and mag­
netic field. 

We shall now return to the case of electron 
scattering on magnons. Its characteristic feature 
is this: in the absence of other types of scattering 
(as well as in the absence of any scattering), the 
thermal current (the tensor j3 ) may appear not in 
the first but in the zeroth-order approximation 
with respect to the degeneracy parameter. We 
shall represent the tensor j3 in the form 

~II= ~f1 + ~ll; ~.l = ~~ + ~j_. (4.3) 

Here, 13ft is due to all types. of electron scattering, 
except scattering by spin waves; 131 is the value 
of j3 1 calculated without allowance for any colli­
sions; and J3fl and 131 are the parts of Fi11 and Fi1 
which are related to the scattering by spin waves. 

Since j3s appears in the zeroth approximation, 
and j3 °, 13d in the first approximation with re­
spect to the degeneracy parameter, the former 
should be allowed for specially in Eq. (2.3). 
Therefore, we have 

When w T » 1, the collision term in the trans­
port equation (2.5) is small and therefore we 
shall use it in the iteration. Then 

!t..n± = !t..n±o + !t..n±1 + !t..n±2 + ... 
and correspondingly 

where 

- iln"eE Px - w d'lim !t..no = 0, 
liB x m* "' 

so that u0 = -cE/H, 

(4.6) 

- w :(j) !t..n; + {~ !t..ni-1} st= 0 (i = 1, 2, ... ). (4.7) 

All the even approximations to the drift veloc-

ity, u20 , are directed along the y axis and de­
termine j3 1 and u 1; all the odd approximations, 
u2n+t• are directed along the x axis and deter­
mine Fill and o-11· From now on, we shall omit the 
index of the vector component of uk for the sake 
of brevity. 

As is evident from Eqs. (4.4) and (4.5), a1 is 
determined by a correction to the first approxi­
mation with respect to collisions Wft ) , and a~ 
by the correction to the second approximation 
(J3l>· Moreover, according to' Eqs. (4.4) and (4.5) 

air'= aj_o11/cr.l- ~l!u..L, 

so that it is more convenient to calculate a1 
first. 

(4.4') 

5. NERNST COEFFICIENT a1, DUE TO THE 
SCATTERING OF ELECTRONS ON MAG NONS 
(wT»1) 

We should first determine Lln 1 from the equa­
tion 

_ 00 il!:w1 + {li!J.n0} = O (5 .1) 
il(j) lit col 

with .&10 taken from Eq. (4.6). The collision in­
tegral is the sum of the integrals representing 
{aAn/at}s and other scatterers {atm/at}d, 
which in this section will be allowed for by intro­
ducing a relaxation time Td, so that 

{ii!J..n} !J..n {ii!J..n} 
----a! col = - T;; + at 8 ( 5.2) 

Therefore 

where 

i.e., 

and tm~ is given by the equation 

li~ !t..n~= ~ r~~o}.. r~n}. = ;{~}.; (5.3) 

the form of {au/at }s is given by Eq. (2 .9) in [t]. 
Substituting Eq. (4.6) into Eq. (5.3), we obtain 

!t..n±l = c ~X ~X (ro -r.)-1{ + r s L± (xx') dx' 

+ r: ~ L± (xx') (x' - x) dx'}. (5.4) 

Since the contributions to the electrical and 
thermal currents are governed, respectively, by 
the quasi-even and quasi-odd parts of the drift 
velocity, CO it is convenient to write down the ex­
pressions for them: 

- ~:o w~1 = - c !x (ro -r.t1 y' ~L- (xx') (x - x') dx', ( 5.5) 
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- 88~ w~1 =- c; (ffi't'st1 y~L_ (xx') dx'. (5.6) 

From Eqs. (5.5) and (5.6) it is evident that the 
momentum relaxation time of electrons scattered 
on magnons is of the order of Ts ( 'Y' )- 1 for the 
quasi-even part of the drift velocity, and of order 
~ Ts'Y- 1 for the quasi-odd part (we should point 
out that y ~ Tel t, y 1 ~ T ITc). According to [1] 

the contribution of the quasi-odd part of Eq. ( 5.6) 
to the thermal current is ( y 1 ) - 1 times greater 
than the contribution of the quasi-even part of 
Eq. (5.5), so that the latter can be neglected in 
the calculation of the thermal current. 

Using Eq. (3.1) from [1], and substituting Eq. 
(5.6), we find the thermal current Qs associated 
with the scattering on magnons: 

00 

Qs = - l:_ Tp3 (2n2n3)-1 Jm*J (" dx &no X 
X 3 m* J ax 

0 

[w_ (x)- w_ (- x)] = - ~62 c EHx T /m*/ _I_ N (5.7) 
m* ffiT8 

( N is the conduction electron density). Since 
a-1 = -ecH- 1 N, then 

• :rt2 1 I m* I r 
o:..L=s-e~ffiT8 • 

Because T 81 ~ T, therefore a1 ~ T. 

( 5.8) 

As is easily proved by means of Eq. (4.4), the 
order-of-magnitude value is 

o:l~ff<ffi't')-1, (5.9) 

where T- 1 ~ ( Td_1 + ')' 1 T8 1 ) is the total relaxation 
frequency of electrons. Comparison of Eqs. (5.8) 
and (5.9) allows us to conclude that a~ may be 
considerably greater than a}_ and that the tem­
perature dependence of a~ given by Eq. (5.8) is 
the same as for the "normal" case al given by 
Eq. ( 5.9) when the latter quantity is due to the 
scattering on lattice defects and is characterized 
by a relaxation time which is independent of 
temperature. 

6. THERMOELECTRIC POWER a~ DUE TO THE 
SCATTERING OF ELECTRONS ON SPIN 
WAVES ( w T » 1 ) 

The thermoelectric power a~ can be repre­
sented in the form [cf. (4.4) and (4.5)] 

aj1 =- ~~Ia ..L + a~a 11 /a..L. (6.1) 

The second term in Eq. (6.1) is calculated by 
means of a correction to the distribution function 
in the first-order approximation with respect to 
collisions, while the calculation of the first term 
requires iteration of the transport equation (4.7) 
to the secopd order, so that we have 

_ 8n0u =_!_[(aut) + (au1) J. (6.2) ax 2 (!) at d at- s 

Since in the zeroth-order approximation with 
respect to the degeneracy parameter, the thermal 
current appears only due to the odd (as a function 
of x) part of the drift velocity, we shall be in­
terested only in that part of u2• The quantity ud 
is an even function of x, and the operator (oiBt)d 
is even (in the sense of Eq. (3.9) in [1] ), so that 
(Bud IBt )d is also an even function of x. There­
fore, it is sufficient to use that part of u2 which 
is contained in the expression 

- ~:o u2 = d- [ (a;: t + (a;~ ) • + (a;: ) .] . ( 6. 3) 

In subsequent calculations, it is essential to 
divide (a lot )d into terms representing collisions 
with phonons ( alat)f and with defects, the latter 
being represented by a relaxation time TD. 
Similarly, 

Neglecting the small terms of the order of 'Y or 
')' 1 compared with the other terms, and introduc­
ing the notation Tf, Tf for the energy and mo­

mentum "relaxation times" of electrons scattered 
on phonons1), the quasi-odd part of the drift veloc­
ity w_ 2 is given by: 

_ ~no w- 2 (x) = - 1- (" L1 (xx') [w~1 (x') - W~1 (x)l dx' 
dx ffiTl j 

X~ L_ (xx') dx' - (!)!. ~ L_ (xx') [w~1 (- x') 

1 (" { 1 d (In ffiT 8 ) , + W"_1 (x)J dx' ffiTs .)£- (xx') z y d1llP (u{ (x) 

- u{ (x)] - [w~1 (x') + w~1 (x) l + ffi~s ui (x')} dx'. 

( 6.4) 

S. f,D f,D th t . b . mce w_ 1 ~ ')'U1 , e erms m races m 
Eq. (6.4) (i.e., w- 1 (ouflat)s) are of the order of 

r r 1 -u'~---Uo. ffiT8 1 ffiT 8 ffiTf 

The first term in the right-hand part of Eq. (6.4), 
which originates from w- 1 (au~ lot )f, is of the 
order of 

[cf. (5.6)]. Since Tf » Tf, the terms in braces 

1Yfhe form of Lr(4 ] is irrelevant in our case; all that is 
important is that Lt(x, x 1) are simply numbers which are in­
dependent of temperature. 
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may be neglected as being small corrections of 
the order of Tfl Tf. It can be shown that the 
second and third terms in the right-hand part of 
Eq. ( 6 .4) are of the order of 

1 i 1 ----u = --w• 
WT D WT8 0 WTD -1' 

and the fourth term is of the order of w~ 11 w T s. 
Thus 

w_2 ( 1 1 1 ) ----;;;.- = w:r- + w:r + -8- . 
-1 D s WT f 

(6. 5) 

The relationship (6.5) means that if electrons are 
scattered on phonons (magnons), then the ratio of 
the components of the tensor {3 in the second 
approximation to its components in the first ap­
proximation contains not ( w Tf) - 1 ( ( w T~) - 1), but 
a much larger parameter ( wTf)- 1 ( ( wTs )-1). 
Since 

~j_/~j; = wjw':_1, 

then, comparing Eqs. (6.1) and (4.5), we find that 
the first term in Eq. (6.1) is of the order of 

s I s a lw-2 w-1· 
Furthermore, since 

cr 11 ( 1 i' 1 ) 
c; j_ = WTD + WTs + wTf ' 

it is easily seen that the second term in Eq. (6.1) 
is either equal in its order of magnitude to the 
first term (if the relaxation time for electron 
scattering on defects is less than the energy re­
laxation time for electron scattering both on 
phonons and magnons) or smaller than the first 
term (if the relaxation time for electron scatter­
ing on defects is longer than any one of these 
times). Thus for the thermoelectric power aTI, 
we have: 

(6.6) 

where J 1 2 3 are numerical parameters of the 
' '. 2) order of umty. The expression (6.6) contains all 

2)They are determined by integral of certain combinations 
of Lt and L_, and can be evaluated. However, in view of 
the limitations of the isotropic energy spectrum model, we 
present no "exact" numerical formulas. 

the information on the dependence of a~ on tem­
perature and magnetic field and on its order of 
magnitude (together with Eq. (5.8) of a~). Since 

(6.7) 

then in moderately strong magnetic fields a~ may 
be comparable with a~1 and then the thermo~lec­
tric power a 11 will depend strongly on the mag­
netic field (in accordance with the law a 11 = A 
+ BIH2 ). 

Furthermore, a comparison of Eq. (5.8) with 
Eqs. (6 .6) and (6. 7) allows us to conclude that a 1 
may be comparable with or even greater than a 11 

(the latter will occur if, in accordance with the 
above discussion, a II depends strongly on H). 

Finally, it is easily seen that the ratios 
u11lu 1 and a1l all are now essentially different 
and, therefore, (u11lu1) ( a11la1) may depend 
both on temperature and on the magnetic field. 
Thus the properties of the thermomagnetic coef­
ficents all and a 1 listed at the beginning of Sec. 
4 do not apply to ferromagnetic metals in strong 
magnetic fields. 
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